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Abstract 

Systemic pan-tumor analyses may reveal the significance of common features implicated in cancer 

immunogenicity and patient survival. Here, we provide a comprehensive multi-omics data set for 32 

patients across 25 tumor types by combining proteogenomics with phenotypic and functional analyses. 

By using an optimized computational approach, we discovered a large number of novel tumor-specific 

and tumor-associated antigens including shared common target candidates. To create a pipeline for 

the identification of neoantigens in our cohort, we combined deep DNA and RNA sequencing with MS-

based immunopeptidomics of tumor specimens, followed by the assessment of their immunogenicity. 

In fact, we could detect a broad variety of non-wild type HLA-binding peptides in the majority of 

patients and confirmed the immunogenicity of 24 neoantigens. Most interestingly, the majority of total 

and immunogenic neoantigens originated from variants identified in the RNA dataset, illustrating the 

importance of RNA as a still understudied source of cancer antigens. Moreover, the amount of these 

mainly RNA-based immunogenic neoantigens correlated positively with overall CD8+ tumor-infiltrating 

T cells. This study therefore underlines the importance of RNA-centered variant detection for the 

identification of shared biomarkers and potentially relevant neoantigen candidates. 

 

 

Statement of significance 

The significance of this study lies not only in the potential of our optimized proteogenomic workflow 

for the discovery of neoantigens (in particular RNA-derived neoantigens) for clinical application, but 

sheds light on the entity-agnostic prevalence of HLA class I peptide presentation of RNA processing 

events to be used for tumor targeting. 
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Introduction 

Genetic aberrations are not only centrally involved in the development of cancer but may also result 

in the formation of neoantigens that have the potential to mount an anti-tumor immune response. 

Such neoantigens can be recognized as foreign and targeted by neoantigen-specific T cells. Thus, the 

identification of such neoantigens is becoming increasingly important for the development of novel 

immunotherapies (1–5). However, the vast majority of neoantigens are not shared between cancer 

patients and the validation of in silico-predicted neoantigen candidates that range in the thousands is 

often limited or impractical in a clinical setting. For this reason, our group reported a proteogenomic 

approach that combines mass spectrometry (MS) of immunoprecipitated HLA class I (pHLA-I) peptides 

with whole exome sequencing (WES) of melanoma tumors for the identification and validation of such 

neoantigens at the protein level (6). We were able to show for the first time that such a proteogenomic 

approach is feasible in fresh solid tumor material and yields a refined number of immunogenic 

neoantigens. Yet the number of neoantigens that could be identified with our approach was limited 

and the findings had to be validated in different cancer entities. 

It was reported that not only somatic mutations on coding exons represent a source of neoantigens 

but also non-coding transcripts, intronic regions and splice sites (7–10). Furthermore, RNA processing 

events such as RNA editing have been investigated in more detail lately. RNA editing is a widespread 

post-transcriptional mechanism conferring specific and reproducible nucleotide changes in selected 

RNA transcripts that occurs in normal cells (11) but is also involved in disease pathogenesis and is 

altered in cancer (12–14). These events have been recently associated with diversifying the cancer 

proteome (14,15) and RNA variants derived from editing events were further investigated in more 

detail as a source of aberrantly expressed peptides (16,17). As RNA regulation is mediated by cis 

regulatory elements and trans regulatory factors which are often disrupted by somatic mutations or 

affected by oncogenic signaling (18), antigens derived from cancer-associated RNA editing may 

represent in part true neoantigens and are therefore of high interest for targeted cancer 

immunotherapy. Thus, we included tumor transcriptomics in addition to WES, to detect neoantigens 

that were derived from RNA processing events. 

Furthermore, we previously showed that integrating spectral prediction features into the MS-spectra 

matching process during neoantigen identification, known as rescoring, is a powerful method to deal 

with larger search spaces and it increases coverage and sensitivity of the analysis (19,20). Therefore, 

we added the artificial intelligence algorithm Prosit and utilized a Prosit-based rescoring workflow in 

our pipeline for neoantigen identification (20,21). 
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In this study, we use a subset of 32 patients with different tumor entities that were mainly included in 

the previously described MASTER cohort (22) to test our improved proteogenomic pipeline in a cross-

entity cohort ImmuNEO MASTER. We discover many shared genetic variants and tumor-associated 

peptides between patients independent of the tumor entity. Most importantly, in the majority of 

patients we identify neoantigens that were predominantly derived from RNA sources. In addition, we 

perform T cell phenotyping in the tumor microenvironment and show that immunogenic neoantigens 

correlate with increased CD8+ T-cell infiltration. Thus, these data demonstrate that proteogenomic-

based neoantigen identification is feasible in a cross-entity cohort and that neoantigens originating 

from RNA sources might present highly relevant targets for the development of novel 

immunotherapies. 
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Results 

This study took advantage of a patient cohort included in the MASTER Program (22). Detailed 

information about patient samples and respective analyses are described in the Methods section and 

are listed in Suppl. Table S1A and B. 

For the identification of common tissue-agnostic immune-related hallmarks and neoantigen 

candidates in our cross-entity cohort ImmuNEO MASTER (Suppl. Table S1A, B and Suppl. Figure S1A, 

B), we created a general workflow for the analyses of tumor specimens which is illustrated in Figure 1. 

First, tumor-infiltrating immune cells were characterized in the tumor microenvironment (TME) of 

fresh tumor tissue by flow cytometric immunophenotyping as well as transcriptome analyses of sorted 

CD8+ T cells. Next, for the respective characterization of indicated tumor specimens we used 

WES/whole genome sequencing (WGS) and RNA sequencing (RNA-seq) data from patients included in 

the MASTER cohort or from the ImmuNEO Plus samples that were respectively analyzed at the same 

DKFZ facility as the samples of the MASTER cohort (22). The analytical core of our neoantigen discovery 

pipeline is its proteogenomic approach. For this, we performed immunoprecipitation of pHLA-I with 

subsequent MS analysis for the identification of the presented immunopeptidome. We then used an 

optimized workflow of our previously published strategy (6) for the identification of neoantigens by 

combining the personalized genomic data with the MS-based immunopeptidomic data using pFIND 

(23). As critical innovations we included RNA-seq data and used the artificial intelligence algorithm 

Prosit for increased coverage and sensitivity of our neoantigen discovery pipeline (20,21). 

Immunogenicity of the identified neoantigen candidates was assessed in vitro by using patient-derived 

autologous or healthy donor (HD)-derived allogenic-matched T cells. Finally, in order to decipher 

potential clinical conditions for the identification of neoantigens which might be crucial knowledge for 

clinical application, we correlated the number of identified total and immunogenic neoantigens with 

the TME immunophenotyping data. 

The phenotype of tumor-infiltrating T cells is independent of the tumor entity 

To study if we could observe tumor-agnostic immunological features in the immune TME and correlate 

them with clinical outcome, we performed flow cytometric immunophenotyping of fresh primary 

tumor tissues. In 17 patients, from whom enough tumor material was available, T cell subsets were 

examined. 

First, we looked at the relative cell numbers of CD8+ T cells per gram tumor (Figure 2A). The two 

melanoma specimens and the pancreatic cancer metastasis of a patient with mismatch repair 

deficiency (dMMR) (ImmuNEO-11 T2) demonstrated a high amount of T-cell infiltration matching to 

the high mutational burden often present in these malignancies (24,25). However, also other tumor 
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entities, including a sarcoma specimen (ImmuNEO-5), showed high amounts of tumor-infiltrating 

lymphocytes (TILs) (Figure 2A). CD8+ and CD4+ T cells predominantly consisted of effector memory T 

(Tem; CD45RA-CD62Llow) cells regardless of the tumor entity (Figure 2B and Suppl. Figure S2A, B). 

Moreover, the distribution of CD8+ T cell subsets and – to a lesser extent – of CD4+ T cell subsets 

between different metastases of a defined individual patient were highly comparable independent of 

their anatomical metastatic location (Figure 2B and Suppl. Figure S2B) and despite differences in their 

relative cell numbers (Figure 2A). Since the functional state of TILs is linked to their potential anti-

tumor activity, we analyzed the expression of selected activation markers (HLA-DR and CD103) and 

inhibitory markers (PD-1, TIM-3, and LAG-3). To account for differences in overall cell numbers and to 

investigate the activation status on a population level, we looked into the frequencies of activation or 

inhibitory markers on CD8+ and CD4+ T cells (Suppl. Figure S2C), respectively, that express at least one 

marker. There was no difference in the frequencies of CD8+ T cells with activation markers between 

different tumor entities, and tumor specimens with high frequencies of inhibitory markers were 

present in carcinoma, sarcoma, and melanoma patients (Figure 2C). 

In order to identify clinically relevant transcriptional T cell signatures in our cohort, we performed RNA-

seq on sorted CD8+ T cells from eight patients. Patients were grouped based on their survival data since 

tumor resection into a short survival (less than 1 year) and a long survival (more than 1 year) group 

(Suppl. Figure S2D and Suppl. Table S1A). By using gene set enrichment analyses (GSEA), we could show 

that pathways associated with T cell-mediated cytotoxic functions were upregulated in the long 

survival group, while pathways associated with general inflammatory responses were upregulated in 

the short survival group (Figure 2D). In addition, to identify tissue-agnostic features that correlate with 

survival, the influence of each parameter on the survival of our patients since tumor resection was 

assessed by log rank test and Cox's proportional hazards model (Figure 2E, Suppl. Figure S2E). Although 

the quantified numbers and frequencies of CD8+ T cells showed only a non-significant trend for a 

positive correlation with increased survival, the overall frequency of CD8+ T cells without inhibitory 

markers in the TME correlated positively with increased survival (Figure 2E). Moreover, the frequencies 

of cells without activation or inhibitory markers within the CD8+ Teff subset correlated positively as 

well with increased survival and, consequently, a high fraction of cells with activation or inhibitory 

markers within this subset correlated positively with reduced survival (Figure 2F). Of note, we observed 

only non-significant trends for CD4+ T cells (Suppl. Figure S2E). 

In summary, we observed that tumor-infiltrating T cells in our heterogenous pan-cancer cohort were 

mainly comprised of Tem cells independent of the tumor entity. Moreover, we could reproduce 

findings that had previously been observed in homogenous tumor cohorts, such as increased numbers 

of TILs in malignancies that are characterized by high mutational burden, and observed specific 
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transcriptional pathways in CD8+ T cells that were associated with clinical outcome (26) in this cross-

entity cohort. 

Genetic variants are more common at the RNA level and are often shared between 

different tumor entities 

In a next step, we assessed the number of genetic variants in the tumors at the DNA and RNA level. 

Since these data are the basis for the identification of neoantigen candidates and will later be cross-

validated by our MS-based analyses of the tumor immunopeptidomes (Figure 1), we decided to use 

the datasets with unfiltered genetic variants to avoid loss of potential candidates (Suppl. Figure S3). Of 

note, the majority of genetic variants passed the filtering criteria at the RNA level for all tumor 

specimens but there were multiple exceptions regarding mutations at the DNA level. 

The number of DNA and RNA variants varied greatly between patients but showed no clear deviation 

between different tumor entities in our pan-cancer cohort (Figure 3A). On average, we identified 302 

somatic mutations per tumor, but a much higher number of genetic variants were identified at the 

RNA level, with an average of 4024 genetic variants per tumor (Figure 3A). Of note, the majority of 

DNA variants were also found at the RNA level (Suppl. Figure S4A), highlighting the power of RNA as a 

source for the discovery of genetic variants. In general, single-nucleotide substitutions accounted for 

most of the variants found at the DNA and RNA level but deletions and insertions as well as multi-

nucleotide substitutions were also observed for some variants (Suppl. Figure S4B). Interestingly, there 

was no correlation between the number of DNA and RNA variants that were identified for each tumor 

(Suppl. Figure S4C), indicating that tumors with low levels of somatic mutations can still harbor a high 

amount of RNA variants. 

The higher number of variants that were detected at the RNA level compared to the DNA level could 

be explained in part by more non-coding sources for RNA variants, such as regulatory RNAs and 

pseudogenes (Suppl. Figure S4D). However, these additional non-coding sources still did not account 

for this striking difference since most RNA variants were detected from protein coding regions (Suppl. 

Figure S4D). RNA editing events could present an additional source for RNA variants (11,27). For this, 

we analyzed the coverage of the corresponding wild type (WT) locus at the DNA level and nucleotide 

exchange patterns for all variants that were only identified at the RNA level. Indeed, for most RNA 

variants we could detect a corresponding WT sequence at the DNA level (Figure 3B), suggesting that 

part of these variants might be derived from RNA editing events. In fact, a considerable portion of RNA 

variants harbored an adenosine (A) to guanosine (G) nucleotide exchange, which has been described 

in the context of RNA editing events (defined by A to inosine (I) editing, where I appears as G in RNA-

seq data (28)) (11,14), and the majority of variants with this specific nucleotide exchange have been 
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reported as RNA editing events in the databank REDIportal (29) (Figure 3C). We observed that both 

DNA and RNA variants were mainly comprised of missense variants, but RNA variants consisted of 

more splice-site and intron variants (Figure 3D). Although the correlation between tumor mutational 

burden (TMB) (DNA variants per Mb) and increased survival was not statistically significant, we 

observed a positive trend and the overall number of DNA variants correlated positively with increased 

survival in our heterogenous cohort (Suppl. Figure S4E). There was no correlation between the number 

of genetic variants that were found solely at the RNA level and overall survival (Suppl. Figure S4E), 

suggesting that the sheer quantity of RNA variants does not present a prognostic biomarker for 

immunogenicity-associated survival. 

Moreover, shared genetic mutations within this pan-cancer cohort were of special interest to us as 

these might lead to potential common neoantigens that could be attractive targets for 

immunotherapy. Therefore, we investigated in how many patients each genetic variant was detected. 

As expected, the vast majority of genetic variants were found to be unique at the DNA and RNA level 

(Figure 3E, F). Indeed, approximately 97% of variants were unique in our cohort at the DNA level (Figure 

3E) but only 89% at the RNA level (Figure 3F). Together with the fact that we detected roughly 10 times 

more RNA variants compared to DNA variants, this means that we could identify approximately 37 

times more shared genetic variants (detected in at least 2 patients) at the RNA level. In addition, we 

observed that a subset of RNA variants was shared in all patients, however, DNA variants were shared 

significantly less frequently and in smaller groups of patients (Figure 3E, F and Suppl. Table S2A, B). 

To elucidate if these shared RNA variants were overlapping with each other in the same sets of 

patients, we focused on RNA variants that were found in at least ten tumor specimens with a minimum 

of two shared RNA variants (Suppl. Figure S4F). Overlapping shared RNA variants were not only 

commonly present in tumor metastases but also in different tumor entities in our pan-cancer cohort 

(Suppl. Figure S4F). Although the majority of shared RNA variants in these sets were found to be 

exclusive, we were able to identify 59 shared variants that showed some degree of overlap. Out of 

these, 11 RNA variants were present in all patients and tumor metastases of our pan-cancer cohort 

(Suppl. Tables S2B, C). 

Taken together, we identified remarkably more genetic variants at the RNA level in general and shared 

variants in particular, and a substantial part of additional RNA variants was likely derived from RNA 

editing events. 
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The tumor immunopeptidomes harbor many shared cancer-associated peptides 

across different tumor entities 

To characterize the tumor immunopeptidomes in our pan-cancer cohort, we performed 

immunoprecipation of pHLA-I followed by MS analysis as previously described (6). Similar to the 

numbers of genetic variants, the overall numbers of peptides varied greatly between patients without 

a clear deviation between different tumor entities (Figure 4A and Suppl. Figure S5A). On average, 

approximately 5075 peptides could be identified per tumor (Figure 4A), with a length of 8 to 15 amino 

acids that were predominated by nonamers (Suppl. Figure S6). Exemplified in four patients (ImmuNEO-

4, -11, -14, -38), we analyzed the HLA anchor residues of the immunopeptides in all patients and could 

show that they were characteristic for the patients’ HLA composition with a purity of at least 95% 

(Suppl. Figure S7). 

By focusing on peptides derived from cancer-associated genes that have been described in the Human 

Protein Atlas (30), we spotted that 36% of these peptides were shared between patients (Figure 4B) 

and a considerable number of them were present in up to 18 patients (Figure 4C). Out of these, 79 

shared peptides showed some degree of overlap in at least eight tumor specimens (Suppl. Figure S5B). 

Moreover, 18 shared peptides were identified in at least 11 patients (Suppl. Figure S5B arrows and 

Suppl. Table S3) and were predicted by NetMHC4.0 to bind with good affinities to the patients’ HLA 

molecules (HLA-A03:01 or HLA-A11:01; Suppl. Table S1C). These peptide ligands have been previously 

described by several studies in the context of cancer (studies found on PeptideAtlas, 2022; IEDB.org: 

Free epitope database and prediction resource, 2022). 

In addition, we analyzed peptides derived from reported cancer testis antigens (CTAs) using the 

CTpedia database (33) and discovered numerous CTA peptides in our cohort (Figure 4D). Although the 

majority of CTA peptides were only found to be unique in one patient, we identified multiple peptides 

derived from CTA-associated genes that were present in a substantial portion of patients independent 

of the tumor entity (e.g. ATAD2, SPAG9, ODF2, KIAA0100) (Figure 4D). Importantly, there was not only 

an overlap between peptides derived from the same CTA genes across different patients, but the exact 

same CTA peptides could be found in multiple patients (Suppl. Figure S5C). 

Investigating the immunopeptidome in this cross-entity cohort therefore resulted in the discovery of 

a number of potential tumor-associated antigen candidates for immunotherapy. 

The majority of MS-based neoantigen candidates is derived from RNA sources 

For the identification of neoantigen candidates, we have optimized our bioinformatics pipeline (6) by 

including novel tools such as an expanded mutation calling algorithm (34) and an improved mutation 
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to peptide converter. The peptide identification algorithm pFind (23) was used with subsequent 

rescoring by the machine learning algorithm Prosit (21) (Figure 1). Neoantigen candidates had to pass 

our comprehensive post-processing pipeline, which is described in detail in the method section. By 

utilizing a Prosit-based rescoring workflow for our proteogenomic data, we could increase the total 

number of identified neoantigen candidates by 14 (Figure 5A). 

With this proteogenomic pipeline we were able to identify 91 neoantigen candidates in 24 patients 

across different tumor entities (75% of all patients) with 1 to 13 identified neoantigen candidates per 

patient (Figure 5B, Suppl. Table S4A), highlighting that most cancer patients harbor potential targets 

for personalized immunotherapy. We did not observe shared neoantigen candidates between 

patients, however, three peptides were shared between two metastases of a melanoma patient 

(ImmuNEO-19) and one peptide was shared between two distinct tumor samples of a patient with 

dMMR (ImmuNEO-11) (Suppl. Table S4A). Interestingly, we identified two neoantigen candidates in 

two patients (ImmuNEO-4 and -23) that were derived from shared genetic variants in MAP4K5 

(IN_04_F, 1.5% FDR; shared between 32 tumor samples; Suppl. Table S2B) and in AC024075.2 

(IN_23_A, 4.3% FDR, shared between 24 tumor samples; Suppl. Table S2B), respectively. Since both of 

these shared genetic variants were able to yield a pHLA-I that was presented in at least one patient, it 

is possible that these two peptides are presented in other patients with the genetic variants but were 

missed due to detection limitations of the patients´ immunopeptidomes. 

The peptide length of all identified neoantigen candidates ranged from 8 to 14 amino acids with 

nonamers predominating (Figure 5C). Perhaps most strikingly, out of 91 identified neoantigen 

candidates 80 were derived exclusively from RNA variants, while only three originated exclusively from 

DNA variants, and eight were shared between both sources (Figure 5D). Comparable to the overall 

number of RNA only variants, we could detect a corresponding WT sequence at the DNA level for the 

majority of identified neoantigen candidates that were derived exclusively from RNA variants (Figure 

5E). Moreover, many of these variants also harbored an A to G nucleotide exchange pattern that has 

been associated with RNA editing and were reported as RNA editing events in the databank REDIportal 

(29) (Figure 5F). This suggests that RNA altering mechanisms (e.g. RNA editing) could be an important 

source for the formation of neoantigens. Regarding the variant effect of the variants that gave rise to 

the neoantigen candidates, missense variants were still most abundant, however, splice-site and intron 

variants were more prevalent compared to overall detected variants (Figure 5G, left). The majority of 

neoantigen candidates were derived from protein coding regions but a substantial amount was also 

derived from non-coding regions such as pseudogenes and lncRNAs (Figure 5G, right). 
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Taken together, our data indicate that MS-based identification of neoantigen candidates is feasible in 

the majority of cancer patients with tumor RNA representing an important source for the detection of 

peptide ligands derived from genetic variants. 

Identified neoantigens derived from RNA sources are immunogenic in a set of patients 

independent of the tumor entity 

To assess the immunogenicity of the identified neoantigen candidates, we evaluated T cell responses 

against 79 neoantigen candidates from 21 patients in an in vitro assay with autologous or allogenic 

HLA-matched peripheral blood mononuclear cells (PBMCs) or expanded TILs by ELIspot analysis (Suppl. 

Figure S8A). 

Out of 79 examined neoantigen candidates, 24 were capable of inducing T cell responses (29% of all 

tested neoantigen candidates) in either an autologous PBMC (Figure 6A, left), expanded TIL (Figure 6A, 

right), or an allogenic-matched PBMC (Figure 6B) culture setting (Figure 6C, Suppl. Table S4B). The 

majority of immunogenic neoantigens were identified by using autologous PBMCs and only three 

immunogenic neoantigens could be identified with expanded TILs (Figure 6A). This highlights the 

difficulties known for TIL cultures that could be explained by either insufficient expansion or a 

dysregulated and exhausted T cell phenotype of the expanded TILs, thus, preventing a proper T cell 

response against the presented neoantigen candidates. Although allogenic-matched PBMC cultures 

are challenging, especially with respect to donor selection, we tested a small set of neoantigen 

candidates (n=10) and could confirm the immunogenicity for four neoantigens that were immunogenic 

in the autologous setting and even identified one additional immunogenic neoantigen (IN_19_A) 

(Figure 6B). Of note, there was no enrichment observed regarding the frequency of immunogenic 

neoantigens out of the pool of neoantigen candidates that were identified by either of the two 

processing workflows or by both of them (Figure 5A, Suppl. Table S4B). 

Importantly, all 24 immunogenic neoantigens were identified from RNA sources, with 23 detected 

exclusively from RNA variants and only one from both RNA and DNA variants (Figure 6D). In line with 

our findings for RNA only variants and neoantigen candidates, we observed that the majority of 

immunogenic neoantigens harbored a detectable WT sequence at the DNA level (Suppl. Figure S8B) 

and a substantial portion were reported as RNA editing events in the databank REDIportal (29) (Suppl. 

Figure S8C). This supports our hypothesis that RNA-altering mechanisms might be implicated in the 

formation of neoantigens that are capable of inducing T cell responses in patients. Moreover, the 

variant effect and the transcript type of the variants that gave rise to the immunogenic neoantigens 

were highly comparable to the distribution of neoantigen candidates as well (Figure 6E). When looking 

at binding predictions for our identified immunogenic neoantigens with NetMHC4.0 (35) and 
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MHCFlurry (36) (Suppl. Table S4A), only 65% were identified as binders by at least one algorithm 

(percentile rank <2% or predicted binding affinity <500nM), indicating that one third would have been 

missed with these binding prediction algorithms. Overall, we observed immunogenicity of neoantigens 

regardless of the patients` tumor entity, including patients with carcinoma, sarcoma, and melanoma 

(Suppl. Figure S8D, Suppl. Table S4B), indicating that the identification of immunogenic neoantigens is 

not limited to specific tumor entities. 

Finally, in an effort to link the level of identified neoantigens (Figure 5 and 6) with the immune activity 

in the TME and the level of detected immunopeptides of our patients, we performed a Spearman`s 

rank correlation test with our immunophenotyping (Figure 2) and immunopeptidomic data (Figure 4). 

Since all neoantigen candidates were matched to the presence of pHLA-I mass spectra, both the 

number of neoantigen candidates and immunogenic neoantigens correlated strongly with the size of 

the detected immunopeptidome (Figure 6F). The overall number of neoantigen candidates also 

correlated slightly with the total frequency of CD3+ T cells and CD8+ Teff cells in the TME (Figure 6F). 

Importantly, the number of immunogenic neoantigens did not only correlate stronger with the total 

frequency of CD3+ T cells and CD8+ Teff cells in the TME, but we also observed a strong correlation with 

CD8+ T cells and CD8+ Tem cells as well as a generally more exhausted phenotype of these cells (Figure 

6F). Thus, immunogenic neoantigens correlated with a more immune-active TME with high T-cell 

infiltration in our cohort. 

In summary, we identified immunogenic neoantigens in a quarter of all patients of our pan-cancer 

cohort independent of the tumor entity by using a proteogenomic pipeline that utilizes RNA 

transcriptomics of tumor specimens for the identification of genetic variants. These immunogenic 

altered peptides correlated with T-cell infiltration and potentially an exhausted T cell phenotype.  
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Discussion 

The clinical application of personalized cancer immunotherapies based on neoantigens is benefitting 

greatly from the recent advances in mRNA-based vaccines (4) and cellular immunotherapy (37). 

However, the identification of tumor-specific and therapy-relevant targets is still critical. This is an area 

of research that mainly focused on cancer genomics and bioinformatics epitope prediction models for 

the identification of potential neoantigens in the past (1) but might benefit greatly from combinatorial 

approaches like proteogenomics that have been applied by other groups (7,10) and us (6,20). In this 

study, we showed that RNA is an important source for the identification of neoantigens and shared 

tumor antigens with our improved proteogenomic pipeline in an extensively characterized pan-cancer 

cohort. By combining proteogenomics with phenotypic and functional analyses, we linked the 

identified candidates to immunological features and validated their potential to induce T cell-driven 

immune responses. 

Despite the relatively small size of this cohort and the high diversity with respect to tumor entity, 

disease stage, treatment history, age, and gender, we were able to confirm biomarkers with prognostic 

significance which have been already established for a number of distinct malignancies, indicating that 

these biomarkers have a strong prognostic power. When looking at the TMB as a prognostic biomarker, 

we could confirm a significant positive correlation between the number of somatic mutations and 

patients` survival, as previously shown for several different cancer entities as well as selected cross-

entity studies (38–41). In addition, we observed that high levels of CD8+ T cells expressing inhibitory 

markers, previously shown as an indication for a dysfunctional T cell state in the TME (42), correlated 

with poor clinical outcome. 

To increase the number of identified neoantigens from our previously published proteogenomic 

strategy (6), we integrated tumor RNA as an additional source for variant detection. Including RNA-seq 

to our pipeline has two advantages. First, RNA-seq has been shown to complement WES in calling 

somatic mutations in glioblastoma multiforme to broaden the scope of discoveries (43). Second, RNA-

seq is able to detect variants that are not occurring at the DNA level but are derived from RNA 

processing events like alternative splicing and RNA editing (44,45). It has been previously reported that 

RNA editing events and RNA dysregulation lead to the diversification of the cancer proteome (14,15) 

and in fact, we substantially increased the number of genetic variants and neoantigens by including 

RNA-seq in our pipeline. Variant detection using RNA-seq is already utilized in a number of studies for 

the identification of neoepitopes (7,16) but comes with its own limitations, in particular for variants 

derived from RNA processing events since they cannot be validated by matched-normal DNA samples. 

In addition, obtaining matched-normal RNA samples from the same tissue as the tumor is similarly 

limited as it might be either not available or may be influenced by the tumor activity and transcriptional 
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profile of the surrounding tissue. To exclude false positive RNA variants based on single-nucleotide 

polymorphisms (SNPs), we used a methodology of combining tumor RNA-seq with normal WES data 

that has been shown to be most effective for calling RNA variants (46). We thereby excluded frequent 

population SNPs. Since that still did not control for false positive RNA variants from RNA processing 

events, we overcame this limitation by matching the RNA variants to the MS spectra from the tumor 

pHLA-I and thereby performed a cross-validation of the neoantigen candidates. Of note, due to this 

subsequent cross-validation, less stringent mutation calling algorithms for RNA but also DNA variant 

detection were used that increase the search space for potential neoantigen identification. Therefore, 

false positive hits may have been still not completely excluded here. However, using our sensitive 

algorithms for the detection of genetic variants, we were able to identify genetic variants that occurred 

not only in individual patients but were shared in a substantial number of patients at the DNA and 

especially at the RNA level, representing potentially attractive common targets that need to be 

investigated in a larger cross-entity cohort. 

The strength of our neoantigen discovery platform, the matching of MS-spectra to variants, is also its 

bottleneck because the number of identified neoantigens strongly correlated with the size of the 

immunopeptidome. Therefore, improving MS-based neoantigen detection is paramount and there are 

three avenues that can be addressed. (1) Optimizing artificial intelligence tools for the matching and 

rescoring of MS spectra (like Prosit) will enhance their potential for neoantigen discovery. (2) 

Improving protocols for sample preparation and immunoprecipitation of pHLA-I might result in a 

higher yield of detected peptides. (3) Increasing the sensitivity of MS instruments will likely have the 

biggest impact in the future (47). 

The number of neoantigen candidates that we identified was small compared to the thousands of hits 

that were reported with epitope prediction models (1,2). However, in our study approximately 30% of 

the tested candidates elicited a T cell response in vitro, a far greater number than could be expected 

from any epitope prediction approach. Thus, drastically reducing the need for large-scale 

immunogenicity testing that would not be feasible in a clinical environment. Since a substantial portion 

of our immunogenic neoantigens was not predicted as binders, solely prediction-based approaches 

might miss these potentially promising targets. Moreover, immunogenicity testing in autologous T cell 

assays has the inherent risk of a lack of an immune response to the presented peptide because of T 

cell dysfunction (48), suggesting that some neoantigen candidates that did not induce a T cell response 

might actually be potentially immunogenic. More sensitive assays for validation are therefore 

necessary and combined single cell RNA and T cell receptor (TCR) sequencing shows great promise for 

this need (48,49). 
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Neoantigen candidates derived from RNA variants have been previously reported (7–10,16,17) and 

may represent missing targets in studies where suspected neoantigens could not be detected by 

focusing only on WES (49). Indeed, the majority of neoantigens in our cohort were derived only from 

RNA variants and we observed a high number of A to G modifications typical for RNA editing events 

(16,28). However, RNA variants detected in this cohort also include other forms of RNA dysregulation 

as well as potentially somatic mutations which have not been covered by WES. Elucidating the nature 

of RNA variants and their role in cancer biology and immunotherapy is an important research area 

(reviewed in (50–52)) that might lead to new types of cancer treatment. 

Neoantigen-based vaccines showed limited clinical response in previous trials (5,53). This might have 

been due to poor candidate selection or because of a dysregulated T cell state in the treated patients. 

However, some efficacy has recently been observed using mRNA vaccination in melanoma and 

pancreatic cancer including also a combination with immune checkpoint inhibitors (4,54,55), 

suggesting that it is crucial to overcome the dysregulated T cell state for neoantigen vaccines to be 

efficacious. It will be important to understand subtle differences in vaccines and clinical protocols in 

order to understand outcomes of these early trials. In addition, developing alternative strategies that 

engage non-dysfunctional T cells like neoantigen-specific TCR-T cell therapy is of great importance to 

treat patients that do not respond to immune checkpoint inhibition. 

Taken together, our data identified a number of attractive cancer-associated and -specific canonical 

and non-canonical peptide antigens that have been partially shared by a significant portion of patients 

in our cohort. Most importantly, we demonstrate the importance of RNA as a source for MS-based 

neoantigen identification in a large number of patients of this cross-disease cohort correlating with T-

cell infiltration. Functionally active neoantigen-specific T cells could be identified only in a sub-cohort 

of these patients likely due to a severe dysfunctional state of these T cells. Therefore, immunotherapies 

focusing on the rescue of such T cells or targeting neoantigens with a non-dysfunctional repertoire 

including TCR-transgenic T cells may represent a valid immunotherapeutic option for a large number 

of cancer patients. 
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Figure Legends 

Figure 1 | Overview of the workflow for immunophenotyping, proteogenomic and functional 

analyses for neoantigen identification in the cross-entity cohort 

Tumor material and peripheral blood from 32 patients included into the ImmoNEO MASTER cohort 

harboring diverse tumor entities was used for the following analyses: (1) tumor microenvironment 

phenotyping; fresh primary tumor tissue was enzymatically digested and single cells were used for 

multi-colour flow cytometric analysis of several immune cells and phenotypic markers. In parallel, 

FACS-sorted CD8+ T cells were used for bulk transcriptome analysis (RNA-seq). (2) Genomic and 

transcriptomic analysis; primary tumor tissue was used for whole exome (WES)/whole genome 

sequencing (WGS) and RNA-seq. Blood from the same patient served as control samples for WES/WGS 

analyses. Mutations were called by MuTect2 (v4.1.0.0) from WES/WGS data and by Strelka2 (v2.9.10) 

from RNA-seq data and mutations were filtered for short nucleotide polymorphisms (SNPs) by using 

the dbSNP database. 3) Immunopeptidome analysis; fresh primary tumor tissue was used for HLA class 

I-bound peptide immunoprecipitation and subsequent mass spectrometry (MS) analysis of eluted 

peptides. The whole HLA class I peptidome was analysed using pFIND (v3.1.5) with 1% FDR on the 

spectral level looking for 8-15mers. (4) MS-based neoantigen identification; patient-specific 

mutational data from (2) were used to generate a personalized database. Therefore, all full length 

mutated ORFs generated by VCF-translate (v1.5) were added to the Ensembl92 data set and matched 

with the MS-identified peptide sequences using pFIND with 5% FDR on the spectral level looking for 8-

15mers. By filtering for peptides only matching to the mutated ORF sequences, tumor-specific 

neoantigen candidates were identified. The machine learning tool Prosit was additionally integrated 

to rescore the peptide spectra matching to the patient-specific ORF database. Afterwards several 

filtering and post-processing steps were applied for the identification of neoantigen candidates. (5) 

Immunogenicity assessment of neoantigen candidates; patient-derived autologous immune cells 

(PBMCs and TILs) as well as selected allogenic-matched healthy donor-derived PBMCs were tested for 

immunogenicity in response to the identified neoantigen candidates using a modified accelerated co-

cultured dendritic cell (acDC) protocol to identify immunogenic neoantigens. APC, antigen-presenting 

cell; FDR, false discovery rate; HLA-I, human leukocyte antigen class I; ORF, open reading frame; PBMC, 

peripheral blood mononuclear cells; TIL, tumor-infiltrating lymphocytes. 

 

Figure 2 | Phenotypic and transcriptomic investigation of the immune tumor microenvironment of 

a defined subgroup of the ImmuNEO MASTER cohort 

A, Quantitative numbers of CD8+ T cells per gram tumor identified by flow cytometric assessment of 

fresh tumor tissue per patient grouped by tumor entity. B, Frequencies of different CD8+ T cell subsets 

of all identified tumor infiltrating CD8+ T cells per patient grouped by tumor entity. C, Frequencies of 

CD8+ T cells expressing at least one activation marker (HLA-DR, CD103) or inhibitory marker (PD-1, TIM-

3, LAG-3) for different cancer entities. Symbols depict individual tumor samples. Data are shown as 

mean + s.d.. D, Gene set enrichment analysis (GSEA) for gene signatures differentially expressed in 

sorted tumor-infiltrating CD8+ T cells from bulk RNA sequencing (RNA-seq) of patients with short 

(below 1 year, n = 3) and long survival (above 1 year, n = 5) since tumor resection. NES scores for each 

pathway are depicted and significantly enriched (p ≤ 0.05) pathways are coloured in red. E, Forest plot 

showing the hazard ratio (dot) and 95% confidence intervals (lines) calculated by log rank test and 

Cox's proportional hazards model of several phenotypic parameters for the survival of patients since 

tumor resection (n = 17). Significant correlations (p ≤ 0.05) are highlighted in blue. For statistical 

analysis only one representative tumor sample per patient was used (see core cohort Suppl. Table 

S1A). A, B, n = 23 tumor samples from n = 17 patients (see Suppl. Table S1A). C, n = 22 tumor samples 

from n = 16 patients. FDR, false discovery rate; freq., frequency; GOBP, Gene ontology biological 
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function gene set; GOMF, Gene ontology molecular function gene set; HALLMARK, hallmark gene set; 

inh., inhibitory; NES, normalized enrichment score; quant., quantified per gram tumor; T, tumor; Tcm, 

central memory T cells; Teff, effector T cells; Tem, effector memory T cells; Tn, naïve T cells. 

 

Figure 3 | Genetic variants identified at the DNA and RNA level in tumor tissue from different cancer 

entities 

A, Distribution of the total numbers of variants identified from DNA (upper panel) and RNA data (lower 

panel) identified per tumor sample grouped by tumor entity. Mutations were called by MuTect2 

(v4.1.0.0) from whole exome (WES)/whole genome sequencing (WGS) data and by Strelka2 (v2.9.10) 

from RNA sequencing (RNA-seq) data. SNP-filtering was performed using the dbSNP-all data base. No 

RNA data was available for patients IN-11-T1, IN-14, IN-16, IN-20, IN-25, IN-31, IN-34. B, Pie chart 

depicting the proportion of variants only identified from RNA-seq data of all tumor samples combined 

where the respective wild type (WT) sequence was identified at the DNA level with a coverage of ≥ 3 

reads (green) or the respective region was not covered at the DNA level (grey, < 3 reads). C, Distribution 

of the nucleotide exchange pattern over all single nucleotide variants only identified from RNA-seq 

data of all tumor samples combined. Variants previously identified in the REDIportal (29) database as 

RNA editing events are highlighted in green. D, Pie charts depicting the distribution of each mutation 

type for variants called from all DNA (left) and RNA (right) variants. E, F, Pie charts showing the 

proportions of unique and shared DNA variants (E) and RNA variants (F) between different patients. 

The right bar graph shows the number of variants shared by 4 to 14 patients for DNA variants (E) and 

shared by 10 to 26 patients for RNA variants (F) in more detail. A-E, n = 39 tumor samples from n = 32 

patients for WES/WGS data; n = 32 tumor samples from n = 26 patients for RNA-seq data (see Suppl. 

Table S1A). T, tumor; WT, wild type. 

 

Figure 4 | Analysis of the HLA class I tumor immunopeptidomes 

A, Distribution of the total number of unique HLA class I peptides identified per tumor sample grouped 

by tumor entity. Peptides bound to HLA class I molecules on the surface of tumor cells were isolated 

by immunoprecipitation and sequenced by liquid chromatography with tandem mass spectrometry 

(LC-MS/MS). Peptide sequences were then mapped with 1% FDR to the Ensemble92 protein database 

using pFIND (v3.1.5) and unique sequences have been filtered. B, Pie chart showing the proportion of 

unique and shared peptides originating from cancer-associated genes (ProteinAtlas) between patients. 

C, Bar graph depicting the number of peptides shared by 4 to 18 patients in more detail. D, Heatmap 

depicting the numbers of unique peptides found per cancer testis antigen (CTA) gene in each tumor 

sample. Genes were sorted by the total number of peptides identified over all patients and samples 

were grouped by entity. A-D, n = 41 tumor samples from n = 32 patients (see Suppl. Table S1A). FDR, 

false discovery rate; HLA, human leukocyte antigen; T, tumor. 

 

Figure 5 | Proteogenomic identification of neoantigen candidates 

A, B, Number of identified neoantigen candidates based on the bioinformatics tool that they were 

identified with (A) and per tumor sample and grouped by tumor entity (B). pFIND (v3.1.5) (23) was 

used at 5% FDR on spectral level for the identification of non-wild type (WT) 8-15mer neoantigen 

candidates. The machine learning tool Prosit (21) was additionally integrated to rescore the peptide 

spectra matching to the patient-specific ORF database using unfiltered pFIND data as input. n = 39 

tumor samples from n = 32 patients were analysed in total; n = 27 tumor samples from n = 24 patients 

harboured n = 91 neoantigen candidates. C, Bar graph showing the length distribution of all identified 
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neoantigen candidates in amino acids (aa). D, Genetic origin (DNA or RNA data) of the variants that the 

identified neoantigen candidates were derived from. E, Pie chart depicting the proportion of 

neoantigen candidates identified only from RNA sequencing (RNA-seq) data where the respective WT 

sequence was identified at the DNA level with a coverage of ≥ 3 reads (green) or the respective region 

was not covered at the DNA level (grey, < 3 reads). F, Distribution of the nucleotide exchange pattern 

of all variants that yield neoantigen candidates identified only from RNA-seq data. Variants previously 

identified in the REDIportal (29) database as RNA editing events are highlighted in green. G, 

Distribution of each mutation type (left) and biotype (right) of all variants that yield neoantigen 

candidates. A-G, n = 39 tumor samples from n = 32 patients were analysed in total; n = 27 tumor 

samples from n = 24 patients harboured n = 91 neoantigen candidates; n = 3 neoantigen candidates 

from DNA variants; n = 8 neoantigen candidates from DNA and RNA variants; n = 80 neoantigen 

candidates from RNA variants. aa, amino acids; MS, mass spectrometry; Proc., processed; T, tumor; 

TEC, to be experimentally confirmed; WT, wild type. 

 

Figure 6 | Immunogenicity assessment of neoantigen candidates 

A, B, Summary of immunogenicity assessment data from all performed modified accelerated co-

cultured dendritic cell (acDC) assays for neoantigen candidates by ELIspot analysis using patient 

derived PBMC (non-enriched – left plot, CD137+ enriched – middle plot) or TILs (enriched and non-

enriched combined – right plot) (A) and allogenic-matched healthy donor PBMCs (non-enriched) (B). 

Mean IFN- spot forming units (SFU) for T cells tested against the mutated peptide (test condition) and 

tested against a control peptide (control condition) were calculated and the ratio as well as the 

difference of the mean SFU have been determined. Values are shown for every peptide and PBMC or 

TIL aliquot tested. Highlighted are peptides that elicit an immune response where the ratio of SFU is > 

2 and the difference of SFU is > 50. Autologous LCLs or allogenic HLA-matched cells (LCLs or HLA-

transduced cell lines) were used as target cells. Negative values (when controls show more spots than 

the test condition) were set to 0 for better readability. C, Representative IFN- ELIspot data showing 

spots per well for autologous and allogenic-matched PBMCs tested against a control peptide (top) and 

the indicated neoantigen candidate (bottom). D, Genetic origin (DNA or RNA data) of the variants that 

the identified immunogenic neoantigens were derived from. E, Distribution of each mutation type 

(left) and biotype (right) of all variants that yield immunogenic neoantigens. F, Correlation matrix 

summarizing significant (p ≤ 0.05) Spearman correlations for multiple phenotypic parameters and the 

size of the immunopeptidome with the number of identified MS-based neoantigens overall and 

immunogenic ones. Spearman correlation coefficient Rho is labeled in color and size. For statistical 

analysis only one representative tumor sample per patient was used. A, D-F, n = 79 neoantigen 

candidates from n = 24 patients were analysed in total; n = 8 patients harboured n = 23 immunogenic 

neoantigens; n = 22 immunogenic neoantigen candidates from autologous PBMC cultures; n = 3 

immunogenic neoantigen candidates from TIL cultures; n = 23 tumor samples from n = 17 patients for 

immunophenotyping data. B, n = 10 neoantigen candidates from n = 4 patients were analysed in total; 

n = 5 immunogenic neoantigen candidates from allogenic-matched PBMC cultures. MS, mass 

spectrometry; PBMCs, peripheral blood mononuclear cells; SFU, spot forming units; TIL, tumor-

infiltration lymphocytes.  
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Methods 

Primary human material and cell lines  

Informed consent of all participants was obtained following requirements of the institutional review 

boards (Ethics Commission of the Medical Faculty of Technical University Munich and Ethics 

Committee of the Medical Faculty of Heidelberg University (S-206/2011)). An overview about all 

patients is given in Supplementary Table S1A. Tumour tissue samples were collected from patients, 

who underwent tumor resection at the different DKTK partner sites. Immediately after resection, fresh 

tumor tissue was macroscopically dissected by an experienced pathologist and stored in PBS at 4°C for 

transport or until processing. Additional tumour tissue was formalin-fixed and paraffin-embedded 

(FFPE). Before molecular analysis, tumor diagnosis was confirmed by a pathologist and tumor content 

was determined by an HE stain taken from the sample going to be used.  

From the fresh tumour tissue a part was snap frozen and stored in liquid nitrogen (-196 °C) for later 

sequencing and mass spectrometry analysis.  

From all remaining fresh tissue a single cell suspension was generated by mincing and digesting 0.2g 

tissue pieces per tube for 90min at 37°C in 1ml RPMI supplemented with 40µL Enzyme H (Tumor 

dissociation kit human, Miltenyi; Stock conc.), 5µL Enzyme A (Tumor dissociation kit human, Miltenyi; 

Stock conc.), 25µL Hyaluronidase (Sigma Aldrich, 10 mg/mL stock), 25µL DNAse I (Sigma Aldrich, 10 

mg/mL stock). After digest the suspension and tissue pieces were meshed, and single cells were used 

for flow-cytometry analysis and FACS analysis.  

Primary patient cells used in this study: For TIL generation, part of the fresh tumor tissues was minced 

and TILs were expanded for 2–3 weeks by cultivation with irradiated feeder PBMC, 1000 U/ml IL-2 

(PeproTech) and 30 ng/mL OKT3 (kindly provided by Elisabeth Kremmer). Change of medium 

supplemented with 300 U/mL IL-2 was performed twice a week. After expansion for 2 weeks, TILs were 

frozen for later use in stimulation assays. PBMC from patients were isolated from whole blood by 

density-gradient centrifugation (Ficoll/Hypaque, Biochrom) immediately on receipt and frozen for later 

use in stimulation assays. Patients` T cells, derived from PBMCs or TILs, were cultivated in T-cell 

medium (TCM): RPMI 1640 (Invitrogen) supplemented with Penicillin/Streptomycin (Pen/Strep) 

(Invitrogen), 5% FCS (Invitrogen), 5% human serum (HS), 10 mM Hepes (Invitrogen), 10 mM MEM non-

essential amino acids (Invitrogen), 1 mM MEM sodium-pyruvate (Invitrogen), 2 mM L-Glutamine 

(Invitrogen) and 16.6 µg/mL Gentamycin (Biochrom). 

Cell lines used in this study: T2 and C1R cell lines (American Type Culture Collection (ATCC) and 

lymphoblastoid cell lines (LCL) generated from patient samples (LCL IN-01, IN-03, IN-04, IN-08, IN-09, 

IN-11, IN-13, IN-18, IN-19, IN-22, IN-24, IN-33, IN-37) and healthy donors (HD) (LCL HD04, HD06, HD07, 
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HD08) or purchased from ATCC (LCL CLA, Daudi, FM, IBW9, RSH, SWEIG007) were used. Morphology 

and constant growth behaviour of all cell lines were controlled periodically, and the absence of 

mycoplasma infection was routinely confirmed by PCR (Venor GeM mycoplasma detection kit, Minerva 

Biolabs). T2 and C1R were retrovirally transduced with the HLA restriction elements HLA-A6601 (C1R-

A6601), B0702 (C1R-B0702), A0301 (T2-A0301), B5101 (T2-B1501) and B4402 (T2-B4402) as described 

before (6). All target cell lines were maintained in complete RPMI (cRPMI): RPMI 1640 (Invitrogen) 

supplemented with Pen/Strep (Invitrogen), 10 mM MEM non-essential amino acids (Invitrogen), 1 mM 

MEM sodium-pyruvate (Invitrogen), 2 mM L-Glutamine (Invitrogen) and 10% FCS (Invitrogen). 

Whole exome and RNA sequencing of patient material and analysis 

Extraction of nucleic acids  

DNA and RNA from tumor specimens and DNA from matched blood samples were isolated using the 

AllPrep DNA/RNA/miRNA Universal Kit (Qiagen). For formalin-fixed and paraffin-embedded (FFPE) 

samples, the AllPrep DNA/RNA FFPE Kit (Qiagen) was used. DNA from blood samples was isolated using 

the QIAsymphony DSP DNA Mini Kit (Qiagen) or the QIAamp DNA Blood Mini Kit (Qiagen). Quality 

control and quantification were done using a FilterMax F3 Multi-Mode Microplate Reader (Molecular 

Devices), a 4200 or 2200 TapeStation system (Agilent). 

Library preparation and target capture for whole-exome sequencing  

For whole-exome sequencing (WES) library preparation, 1.5 µg genomic DNA were fragmented to 150-

200 base pair (bp; paired-end) insert size with a Covaris S2 device, and 250 ng of Illumina adapter-

containing libraries were hybridized with exome baits at 65°C for 16 hours. Exome capturing was 

performed using SureSelect Human All Exon in-solution capture reagents (Agilent). In case RNA was 

pooled in for sequencing, V5 without UTRs was used to reach a minimum average coverage of 80x for 

the tumor and 50x for the control. V5 with UTRs was used when DNA was sequenced alone.  

Library preparation for whole-genome sequencing  

Whole-genome sequencing (WGS) libraries were prepared using the TrueSeq Nano Library Preparation 

Kit (Illumina) following the manufacturer’s instructions.  

Library preparation for RNA sequencing  

RNA sequencing (RNA-seq) libraries were prepared using the TruSeq RNA Sample Preparation Kit v2 

(Illumina) using the stranded protocol. Briefly, mRNA was purified from 1 µg total RNA using oligo(dT) 

beads, poly(A)+ RNA was fragmented to 150 bp and converted into cDNA, and cDNA fragments were 

end-repaired, adenylated on the 3’ end, adapter-ligated, and amplified with 12 cycles of PCR. 2 The 
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final libraries were validated using a Qubit 2.0 Fluorometer (Life Technologies) and a Bioanalyzer 2100 

system (Agilent).  

Whole-exome, whole-genome, and RNA sequencing  

Paired-end sequencing (2 x 150 bp) was performed with HiSeq X-Ten instruments (Illumina). Two lanes, 

each of tumor and control, were sequenced, yielding an average coverage of at least 70x for WGS 

cases. Paired-end sequencing (2 x 100 bp) was carried out with HiSeq 4000 (Illumina), pooling two 

patients' samples on one lane. From January 2017, RNA was sequenced separately with dual indexing 

in pools of three samples per HiSeq 4000 lane or multiplexed over several lanes to prevent adapter 

hopping. From October 2019, RNA was sequenced in pools of 3-5 samples per NovaSeq 6000 lane. 

Comparability of data has been validated. 

Mutation calling from exome and RNA sequencing data 

Mutation calling was performed on WES/WGS and RNA-Seq data for identification of single nucleotide 

variants and insertion/deletions for the indicated patients (Suppl. Table S1A). Analysis of WES data was 

performed following the GATK Best Practice suggestions and utilizing the established analysis pipeline 

MoCaSeq (34), adapted for the human genome. After read trimming using Trimmomatic 0.38 

(LEADING:25 TRAILING:25 MINLEN:50), bwa mem 0.7.17 was used to map reads to the human 

reference genome (GRCh38.p12). Picard 2.18.26 and GATK 4.1.0.0 were used for postprocessing 

(CleanSam, MarkDuplicates, BaseRecalibrator) using default settings. Somatic mutations were called 

using MuTect2 4.1.0.0 (56). SNVs and Indels ≤ 10 base pairs were annotated using SnpEff 4.3t, based 

on Ensembl 92.  

For mutation calling from RNA-Seq, raw reads were trimmed using Trimmomatic (LEADING:25 

TRAILING:25 SLIDINGWINDOW:10:25 MINLEN:50) and aligned to the human reference genome with 

STAR (2.6.0c). Mutations were called using Strelka2 (2.9.10) using the RNA option (57). SNVs and Indels 

≤ 10 base pairs were annotated using SnpEff 4.3t, based on Ensembl 92. De novo variant calling on 

tumor WES data was performed by comparison to PBMC WES data.  

For variant calling on RNA-Seq data, positions sufficiently covered in WES with no evidence for the 

presence of germline SNVs/indels, were included as somatic. Furthermore, for positions where 

SNVs/indels were called only by Mutect2 or Strelka2, the threshold to include this SNV/indel in the 

second tissue sample was substantially lowered and did not require to be called separately by 

Mutect2/Strelka2.  

Population SNPs with certain population allele frequency based on GnomAD (58) (>1%) and dbSNP 

(>5%) (59) were excluded. 
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To calculate the tumor mutational burden (TMB), first WES probe regions (+/- 300bp) with a coverage 

above 10 reads were identified. The TMB was then calculated as the number of genic/non-synonymous 

mutations overlapping with these regions divided by the total length of probe regions in megabases 

(Mb). 

HLA typing  

HLA typing was done from the available whole exome or whole genome sequencing data using the 

consensus of all xHLA (60), BWAKit (61) and OptiType (62) using default settings. For confirmation, HLA 

typing was done on gDNA isolated from PBMC by targeted next generation sequencing in selected 

patients (Zentrum für Humangenetik und Laboratoriumsdiagnostik, Martinsried, Germany). 

Immunoprecipitation of HLA complexes and liquid chromatography (LC)-MS/MS 

analysis of eluted peptides  

Immunoprecipitation of HLA complexes, consequent elution and purification of peptide ligands was 

performed on indicated tumor samples (Suppl. Table S1A) as previously described (Bassani-Sternberg 

et al., 2016). Briefly, snap-frozen tumor tissue samples were placed in 5-7 ml of PBS with 0.25% sodium 

deoxycholate (Sigma-Aldrich), 1% octyl-β-D glucopyranoside (Sigma-Aldrich), 0.2 mM iodoacetamide, 

1 mM EDTA, and 1:200 Protease Inhibitor Cocktail (Sigma-Aldrich) and mechanically dissociated with 

an ULTRA-TURRAX Disperser (IKA) for 10 s on ice, followed by 1 h incubation at 4°C. The lysates were 

then cleared by centrifugation at 40,000g at 4 °C for 20 min and flowed through columns packed with 

protein-A Sepharose beads (Invitrogen) to deplete the endogenous antibodies. HLA class I complexes 

were immunoaffinity-purified from the cleared and antibody-depleted lysates on columns containing 

protein-A Sepharose beads covalently bound to 2 mg of the pan-HLA class I antibody W6/32 (purified 

from HB95 cells; ATCC) and eluted at room temperature with 0.1 N acetic acid. The eluted HLA-I 

complexes were then loaded onto Sep-Pak tC18 cartridges (Waters Corporation), and HLA-I peptides 

were separated from the complexes by elution with 30% acetonitrile (ACN) in 0.1% trifluoroacetic acid 

(TFA). Peptides were further purified using Silica C-18 column tips (Harvard Apparatus), eluted again 

with 30% ACN in 0.1% TFA and concentrated by vacuum centrifugation. Finally, HLA-I peptides were 

resuspended with 2% ACN in 0.1% TFA for LC-MS/MS analysis. 

LC-MS/MS analysis was performed on an EASY-nLC 1200 system (Thermo Fisher Scientific) coupled 

online with a nanoelectrospray source (Thermo Fisher Scientific) to a QExactive HF-X mass 

spectrometer (Thermo Fisher Scientific). Peptides were loaded in buffer A (0.1% formic acid) on a 50 

cm long, 75 µm inner diameter column, in-house packed with ReproSil-Pur C18-AQ 1.9 µm resin (Dr. 

Maisch HPLC GmbH), and eluted during a 95 min linear gradient of 5-30% buffer B (80% ACN, 0.1% 

formic acid) at a flow rate of 300 nl/min. The mass spectrometer was operated in a data-dependent 
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mode with the Xcalibur software (Thermo Scientific). Full MS scans were acquired at a resolution of 

60,000 at 200 m/z and AGC target value of 3e6 with a maximum injection time of 80 ms. The ten most 

abundant ions with charge 1-4 were accumulated to an AGC target value of 1e5 and for a maximum 

injection time of 120 ms and fragmented by higher-energy collisional dissociation (HCD). MS/MS scans 

were acquired with a resolution of 15,000 at 200 m/z and 20 s dynamic exclusion to reduce repeated 

peptide selection. 

Wild-type peptidome analysis 

For the identification of peptide sequences from the MS spectra, pFIND 3.1.5 (23) was used to match 

the reference protein database (Human Ensembl GRCh38, release 92) with general contaminants to 

the generated spectra files. Parameters were set to search for non-specifically digested peptides 

ranging from 8-15mers with a maximum mass of 1,500 Da and N-terminal protein acetylation 

(42.010565 Da), methionine oxidation (15.994915 Da), cysteine carbamidomethylation (57.021463 Da) 

as possible post-translational modifications. Identified peptides were filtered with an FDR of 0.01 (and 

0.05) at the peptide spectrum match level. 

MHC-motif deconvolution 

To assess the quality and purity of the MS-generated immunopeptidomic data, the identified peptide 

sequences where deconvoluted to the respective patients HLA-allele by their binding motif using 

MHCMotifDecon-1.0 (63,64). Here, MHC binding predictions from NetMHCpan-4.1 (for MHC class I) 

are used to deconvolute and assign likely MHC restriction elements to MHC peptidome data. All 

identified peptide sequences with lengths of 8-15 amino acids and all HLA-A, B and C alleles of each 

patient have been used for analysis applying standard setting as indicated on the website. 

Pipeline for the identification of patient specific neoantigen candidates from MS data 

In order to improve the identification of neoantigens we further developed our MS-based pipeline (6) 

for the analysis of this diverse patient cohort (Figure 1). The following novel features have been 

integrated: (1) On the genetic level, mutation calling from RNA sequencing data has been accomplished 

using Strelka2 (34). Moreover, a refined algorithm for translation of open reading frames (ORFs) in all 

three frames has been implemented to identify potential neoantigens from a large source of genetic 

aberrations (splice site variants, intron-inclusions, non-coding variants, etc.). (2) On the proteomic 

level, pFIND as a peptide calling tool (23) as well as the machine learning tool Prosit (20,21) have been 

included into the pipeline. (3) We additionally established a comprehensive post-processing filtering 

procedure, especially focusing on exclusion of possible wt peptides and SNPs. In detail, the 

subsequently described analysis steps have been performed. 
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Generation of custom database for MS-based identification of mutated peptides  

With the main goal to obtain mutated peptide sequences, mutations called from WES/WGS and 

RNAseq were introduced into the wildtype transcript DNA sequences downloaded from biomart (v92) 

and translated into peptide sequences. Genes were included in the analysis without exceptions 

regarding the transcript biotypes. For non-protein-coding transcripts, ORFs enclosing the mutation site 

were determined by identifying paired start and stop-codons in all 3 reading frames. The same 

procedure was performed for protein-coding transcripts in case of start/stop-loss/gain and frameshift 

mutations. Furthermore, for start/stop mutations, the coding sequence (CDS) was extended into the 

corresponding UTR. For mutations affecting splice donor or acceptor sites, the affected intron was 

included into the CDS and again checked for valid ORFs. Only mutations resulting in amino acid changes 

and within valid ORFs were considered. For every affected transcript, up to three ORFs enclosing the 

mutation site were translated into the corresponding mutated peptide sequence. Peptide sequences 

were then used together with the immunopeptidomics data from mass spectrometry. 

Identification of mutated peptides sequences from MS data 

For the identification of mutated HLA class I peptides, the reference protein database (Human Ensembl 

GRCh38, release 92) was searched together with the patient-specific customized databases containing 

the mutated sequences from step 1 using pFIND 3.1.5 (23). Parameters were set to search for non-

specifically digested peptides ranging from 8-15mers with a maximum mass of 1,500 Da and N-terminal 

acetylation (42.010565 Da), methionine oxidation (15.994915 Da), cysteine carbamidomethylation 

(57.021463 Da) as possible post-translational modifications and a set FDR of 0.05 at the peptide 

spectrum match level. After protein annotation, the pFIND generated unfiltered peptide lists were (1) 

filtered for the FDR of 0.05 and used directly for further post-processing (pFIND peptides) and (2) used 

unfiltered for subsequent re-scoring and analysis by the Prosit pipeline (Prosit peptides) (20,21). The 

rescoring method is extensively described in Wilhelm et al., 2021. In brief, the unfiltered search engine 

output including decoys of pFind was used as input for the spectral intensity-based rescoring. 

Unprocessed MS2 spectra corresponding to the identifications were annotated with all matching b- 

and y-ions. Spectral comparison between predicted fragment ion intensities and experimental 

intensities was performed for using the best-matching prediction settings and calculating previously 

described similarity measures (e.g., normalized spectral contrast angle). FDR estimation was 

performed using SVM Percolator 3.00 (65). All PSMs surpassing a FDR threshold of 5% were further 

considered for analysis. 

Peptides identified by both approaches were combined and used for post-processing. 
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Post-processing and filtering of neoantigen candidates and MHC binding prediction 

Peptides were filtered to remove contaminants and reverse sequences, which were only used to 

determine statistical cutoffs. In addition, the results were filtered for sequences identified exclusively 

in the custom mutated databases, and not in the Ensembl database, thus ensuring the peptide 

originating from a non-wild-type ORF.  

Peptides harboring mutations (SNVs, In/Dels, multiple substitutions) within their sequence were 

directly taken as valid, whereas peptides not containing the mutations in the peptide sequence were 

further assessed. SNVs outside of the peptide sequence were excluded, whereas frameshift mutations 

upstream of a peptide or splice site mutations were checked manually in BLAT (66) and were 

considered “mutated” or “non-wt” if a peptide within a noncanonical frame or a retained intron was 

detected. The filtered potential neoantigens were then checked via an automated protein BLAST (67) 

search and peptides with more than 2 hits in the protein data base were excluded while peptides with 

1-2 hits were double checked manually by literature research and excluded if necessary. Additionally, 

three different peptide data bases PeptideAtlas (68), PepBank (69) and IEDB (70) were used to filter 

for already known (immunogenic) peptides. 

After complete filtering the binding affinity of each neoantigen candidate was predicted by using two 

different algorithms, NetMHC 4.0 (35) and MHCflurry 1.6.0 (models class1) (36), and the best binding 

allele according to predicted affinity or percentile rank was determined for each algorithm. 

Flow cytometry analysis of tumor single cells and FACS sort 

For flow cytometry analysis, up to 0.5 Mio alive single cells from the digested tumor tissue have been 

used per panel and isotype controls. Cells were first incubated in 50µL human serum (HS) for 20min 

for blocking unspecific binding. Subsequently, ethidium monoazide bromide (EMA, 1:500, Thermo 

Fisher Scientific) was added for live-dead staining to the HS and incubated 10min on ice in the dark 

and 10min on ice in the light. After washing 2µL of the respective antibodies or 1.5µL of the isotype 

control antibodies were added and stained for 20min on ice in the dark. The following antibodies were 

used: CD45-PerCP-Cy5.5 (clone HI30, ref. 564105, BD), CD3-AF700 (clone UCHT1, ref. 300423, 

BioLegend), CD8-APCH7 (clone SK1, ref. 560179, BD), CD4-V450 (clone SK3, ref. 651849, BD), CD45RA-

BV510 (clone HI100, ref. 304141, BD), CD62L-PE (clone DREG-56, ref. 560966, BD), CD366-BB515 (anti-

TIM-3, clone 7D3, ref. 565568, BD), CD279-PECy7 (anti-PD-1, clone EH12.2H, ref. 329917, BioLegend), 

CD223-APC (anti-LAG-3, clone 3DS223H, ref. 17-2239-42, eBioscience), CD103-FITC (clone Ber-ACT8, 

ref. 550259, BD), HLA-DR-APC (clone G46-6, ref. 559866, BD), CD56-PE (clone 5.1H11, ref. 362508, 

BioLegend), CD45-APC-H7 (clone 2D1, ref. 560274, BD), CD25-PE (clone 2A3, ref. 341011, BD), CD127-

BV510 (clone A019D5, ref. 351331, BioLegend). Appropriate isotype controls for each antibody were 
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used as negative control. After staining cells were washed and fixed with paraformaldehyde (PFA, 1%, 

Sigma Aldrich) and stored at 4°C for later analysis. Measurements were performed on an LSR II (BD) 

and anti-IgG beads (Miltenyi) as well as unstained cells were used for single stains and instrument set-

up. Voltages were adapted to the autofluorescence of each patient tumor and all possible events were 

measured using FACS DIVA software. All steps were carried out on ice and as quickly as possible to 

minimize changes in cell viability and marker expression. Data analysis and compensation was 

performed using FlowJo V10.7.1 and the gating strategy was kept consistent for every sample 

depending on the panels analysed (Gating strategy see Suppl. Figure S2A).  

For sorting of CD8+ T lymphocytes, min. 5-10 Mio cells were taken from the digested tumor 

sample/single cell suspension (when enough cells were available). Cells were blocked with 200-500µL 

HS depending on the cell numbers for 20min on ice in the dark. After washing 2µL/1Mio cells of the 

respective antibodies, CD8-PECy7 (clone RPAT-8, ref. 557746, BD) and CD45-APC (clone J33, ref. 

IM2473, Beckman Coulter), and 7-Amino-Actinomycin D (7AAD, Invitrogen) for live-dead staining were 

incubated in 100-200µL FACS Buffer for 30min on ice in the dark. After washing cells were resuspended 

in 1mL/10Mio cells FACS buffer, filtered and directly used for sorting on a FACSAria III (BD). Single stains 

were generated using anti-IgG micro beads (Miltenyi) according to the manufacturer’s instructions and 

were used together with unstained cells and 7AAD-only stained cells for on-device compensation. 

Alive-SingleCells-CD45+-CD8+ cells were sorted into pre-cooled tubes containing RPMI. Sorted cells 

have been pelleted and resuspended in 300µL RNA Protect (Qiagen), snap frozen and stored in liquid 

nitrogen (-196 °C) for later mRNA sequencing analysis. All steps have been carried out on ice and as 

quickly as possible to minimize changes in cell viability and marker expression. 

Bulk mRNA sequencing of sorted cells and analysis 

Paired-end sequencing (2 x 75bp) was performed on a NextSeq 500 (Illumina) with SMART-Seq 

Stranded Kits (Takara Bio, USA) to reach at least 50 Mio. raw reads per sample. The raw sequencing 

data was processed with Trimmomatic version 0.36 (71). Trimmed reads were acquired by removing 

Illumina TruSeq3 adapters and bases at the start and end of each read, for which the phread score was 

below 25. Further reads were clipped if the average quality within a sliding window of 10 fell below a 

phread score of 25. Conclusively reads smaller than 50 bases were removed. For mapping and 

counting, the human gene annotation release 29 and the corresponding genome (GRCh38.p12) were 

derived from the GENCODE homepage (72). STAR version 2.7.5b (73) was used to map the trimmed 

sequencing data to the reference genome, with the parameters adapted from protocol 

recommendations (74). Mapped reads were deduplicated with bamUtils v1.0.14 (75) and 

featureCounts v.1.6.3 (76) was used to assign and summarize reads to genes while ignoring multi-

mapping, multi-overlapping and duplicated reads. The resulting raw count matrix was imported into R 
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v4.0.5 and lowly expressed genes were subsequently filtered out. Prior differential expression analysis 

with DESeq2 v1.18.1 (77), dispersion of the data was estimated with a parametric fit using the Survival 

as explanatory variable. Shrunken log2 fold changes were calculated afterwards with the apeglm 

method (78) and used as ranking criteria for the pathway analysis with GSEA in the preRanked mode 

(79). The Hallmark and Gene Ontology gene set definitions from MsigDB v7.4 (80,81) were used for 

GSEA. 

Generation of lymphoblastoid cell lines as autologous target cells 

For the generation of patient derived LCL, first potent Epstein-Barr virus (EBV) supernatant was 

generated from B95-8 cells (provided by Ulrike Protzer). Therefore, 1 Mio cells per mL were stimulated 

in cRPMI (see Methods – primary human material and cell lines) with 20 ng/mL PMA (Sigma Aldrich) 

for 1h at 37°C, subsequently washed 3 times and cultured at a concentration of 1 Mio cells per mL in 

fresh cRPMI. After 3 days the supernatant was harvested, filtered with a 0.45µm sterile filter and 

stored at -80°C for up to 1 year. Afterwards, this supernatant was used for the infection and 

immortalization of patient derived B cells from PBMC samples. Therefore, up to 0.5 Mio PBMCs were 

incubated in 1mL RPMI with 1mL EBV supernatant for 2h at 37°C, following the addition of further 1mL 

cRPMI supplemented with Cyclosporine A (Sigma Aldrich) to a final concentration of 1µg/mL and 

culture in cell culture flasks at 37°C. Cells were split once clusters were visible and/or medium colour 

changed and expanded at 0.3-0.6 Mio cells per mL until enough cells were available for freezing or 

direct use in experiments. 

Immunogenicity assessment of identified peptide ligands 

Recall antigen-experienced T cell-responses to selected peptides were investigated as previously 

described with modifications (6,82). In brief, up to 1 Mio PBMCs or TILs per well from each patient 

were used for in vitro screening. For peptide stimulation on day 0, 1 µM of each synthetic peptide 

(>90% purity, DGPeptidesCo Ltd.) was added to the culture along with 0.5 ng/ml Interleukin (IL)-7 

(Peprotech), 50 ng/ml Tumor necrosis factor (TNF)-α (Peprotech) and 10 ng/ml IL-1β (Peprotech). As 

positive control T cells have been non-specifically stimulated with 0.5 ng/µL phorbol-12-myristate-13-

acetate (PMA, Sigma Aldrich) and 1 ng/µL Ionomycin (Sigma Aldrich). After 24h of peptide stimulation, 

100µL supernatant was collected for later ELISA analysis and cells where either used for direct 

overnight ELISpot analysis as previously published or enriched for specifically activated T cells using a 

CD137+-based magnetic isolation (83). CD137-expressing activated cells were isolated and enriched 

using the human CD137 MicroBead Kit (Miltenyi) according to the manufacturer’s instructions. 

Enriched cells were taken into culture in T cell medium (TCM, see Methods – primary human material 

and cell lines) supplemented with 5 ng/mL IL-7 (Peprotech), 5 ng/mL IL-15 (Peprotech), 30 U/mL IL-2 

(Peprotech) and 30 ng/mL OKT-3 (kindly provided by Elisabeth Kremmer) along with 1 Mio irradiated 
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(30 Gray) feeder PBMC. Enriched cells were cultured for 12 days and fed by adding IL-7 and IL-15 twice 

per week and IL-2 once per week. Non-enriched cells were cultured and expanded in TCM 

supplemented with 5 ng/mL IL-7 (Peprotech) and 5 ng/mL IL-15 (Peprotech) and fed twice per week. 

For assays using healthy donor PBMCs the protocol without enrichment was followed and a different 

HLA-matched donor for each peptide was selected based on the affinity predictions performed by 

NetMHC 4.0 (35) and MHCflurry (36), where possible. 

After 13 days of expansion, reactivities of T cells to the synthetic peptide ligands was assessed by 

specific interferon (IFN)-γ release by ELISpot assay. As antigen-presenting target cells for the second 

stimulation on day 13, either an autologous lymphoblastoid cell line (LCL) derived from the same 

patient or HLA-matched LCL, HLA-transduced T2 or C1R cells were used. The target cells were pulsed 

for 2 h with either the selected mutated peptide or an control peptide prior to co-culture with the T 

cells (in duplicate or triplicate according to available cell numbers). The co-cultures were performed 

with an effecter-to-target ratio of 2:1 using 20,000 pre-stimulated T cells and 10,000 pulsed target cells 

per well. ELISpot plates (Merck Millipore) were coated with an IFN-γ capture antibody (1-D1K, 

Mabtech) at 4°C overnight prior to the co-culture, development was performed with an IFN-γ-

detection antibody (7-B6-1-biotin, Mabtech) and Streptavidin-HRP (Mabtech). ELISpot plates were 

read out on an ImmunoSpot S6 Ultra-V Analyzer using Immunospot software 5.4.0.1 (CTL-Europe).  

We defined the reactivity by the spot counts at day 13 comparing the mean spots from the mutated 

peptide condition with the mean spots from the control peptide condition and set the threshold to a 

ratio above 2, meaning the mutated peptides elicited an IFN-𝛾 response in twice as many T cells 

compared to the control, and a difference of spots above 50, which is defined as the background 

threshold. 

Statistical analysis  

Two-tailed Mann-Whitney U test was used to compare frequencies of CD8+ T cells expressing at least 

one activation marker (HLA-DR, CD103) of tumor specimens with high vs low immune cell infiltration. 

Correlations of two distinct parameters were assessed using Spearman’s rank correlation coefficient. 

For correlation of the numbers of DNA variants and RNA variants, all samples with both analyses were 

included while for the correlation of phenotypic data with peptidomic data only one representative 

tumor sample from each patient included for analysis (ImmuNEO core cohort see Suppl. Table S1A) 

has been used to circumvent bias due to multiple metastasis available for some patients. 

Kaplan-Meier curves with log rank test and Cox's proportional hazards model was used to evaluate the 

overall survival (OS) since tumor resection between a high and low patient group of ImmuNEO 

patients. For continuous parameters, groups were divided by the median into high (above median) and 
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low (below median) groups. For relative parameters (0-100%), patients were divided into a high group 

with fractions above 50% and low group with fractions below 50%. Here, only one representative 

tumor sample from each patient (ImmuNEO core cohort see Suppl. Table S1A) has been used to 

circumvent bias due to multiple metastasis available for some patients. 
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Supplemental Information 

Supplementary Figure S1 | ImmuNEO MASTER cohort 

A, Distribution of the major groups of tumor entities of patients included in the ImmuNEO MASTER 

cohort. B, Overall survival of ImmuNEO MASTER patients since tumor resection in months. A, B, n = 32 

patients (see Suppl. Table S1A). 

 

Supplementary Figure S2 | Analysis of the tumor microenvironment 

A, Flow cytometric gating strategy for CD4+ and CD8+ T cell subsets. B, Frequencies of different CD4+ T 

cell subsets of all identified tumor-infiltrating CD4+ T cells per patient and grouped by tumor entity. C, 

Frequencies of CD4+ (bottom) and CD8+ T cells (top) per patient and grouped by tumor entity, 

expressing at least one activation marker (HLA-DR, CD103) or inhibitory marker (PD-1, TIM-3, LAG-3). 

D, Kaplan-Meier survival estimation since tumor resection of patients with short survival (below 1 year, 

n = 3) and long survival (above 1 year, n = 5). E, Forest plot showing the hazard ratio (dot) and 95% 

confidence intervals (lines) calculated by log rank test and Cox's proportional hazards model of several 

phenotypic parameters for the survival of patients since tumor resection (n = 17). For statistical 

analysis only one representative tumor sample per patient was used (see core cohort Suppl. Table 

S1A). A-C, n = 23 tumor samples from n = 17 patients (see Suppl. Table S1A). freq., frequency; m., 

marker; NK, natural killer; quant., quantified cells per gram tumor; T, tumor; Tcm, central memory T 

cells; Teff, effector T cells; Tem, effector memory T cells; Tn, naïve T cells. 

 

Supplementary Figure S3 | Quality assessment of genetic variants identified at the DNA and RNA 

level 

Total unfiltered genetic variants identified by MuTect2 (v4.1.0.0) from whole exome (WES)/whole 

genome sequencing (WGS) data (DNA variants; upper panel) and by Strelka2 (v2.9.10) from RNA 

sequencing (RNA-seq) data (RNA variants; lower panel) are shown per tumor sample and grouped by 

tumor entity. Variants passed filtering for quality assessment only if they showed at least a coverage 

of 5 reads, a variant frequency of 5%, and 2 mutated reads within the tumor as well as not more than 

1 mutated read within normal control tissue. n = 39 tumor samples from n = 32 patients for WES/WGS 

data; n = 32 tumor samples from n = 26 patients for RNA-seq data (see Suppl. Table S1A). T, tumor. 

 

Supplementary Figure S4 | Genetic variants identified at the DNA and RNA level in tumor tissue from 

different cancer entities 

A, Venn diagram showing the overlap between all variants identified from whole exome (WES)/whole 

genome sequencing (WGS) data (DNA variants) and from RNA sequencing (RNA-seq) data (RNA 

variants). B, Distribution of each mutation type for all identified genetic variants regardless of the 

sequencing origin (WES/WGS and RNA-seq combined). C, Correlation of DNA variants with RNA 

variants identified from tumor samples where matching WES/WGS and RNA-seq data was available (n 

= 32 tumor samples). Symbols depict individual tumor samples; Spearman’s rank correlation analysis, 

ρ = 0.1578; line depicts linear regression, R²=0.008. D, Bar graph showing the number of variants found 

in each genetic biotype and the originating dataset. E, Forest plot showing the hazard ratio (dot) and 

95% confidence intervals (lines) calculated by log rank test and Cox's proportional hazards model of 

several genetic parameters for the survival of patients since tumor resection (DNA variants n = 32 

patients, RNA variants n = 26 patients). Significant results (p ≤ 0.05) are highlighted in blue. For 

statistical analysis only one representative tumor sample per patient was used (see core cohort Suppl. 

Table S1A). F, Upset plot showing the overlap of at least two RNA variants between at least ten tumor 
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samples. The bar graph shows the number of unique variants present in a shared subset of tumors 

defined as intersection size, dots indicate the tumor samples where the subset is present, and lines 

connect tumor samples within the same subset. The different genes harbouring the defined genetic 

variants are coloured in the intersection bar graph. A, B, D, F, n = 32 tumor samples from n = 26 patients 

for WES/WGS data and for RNA-seq data (see Suppl. Table S1A). Mel, melanoma; Mb, mega base; O, 

other; OS, overall survival; Proc., processed; T, tumor; TEC, to be experimentally confirmed. 

 

Supplementary Figure S5 | Characterization of shared cancer-associated peptides in the HLA class I 

immunopeptidomes 

A, Quantitative numbers of unique HLA class I peptides per gram tumor identified per tumor sample 

grouped by tumor entity. Peptides bound to HLA class I molecules on the surface of tumor cells have 

been isolated by immunoprecipitation and sequenced by liquid chromatography with tandem mass 

spectrometry (LC-MS/MS). Peptide sequences were then mapped with 1% FDR to the Ensemble92 

protein database using pFIND (v3.1.5) (23) and unique sequences have been filtered. B, Upset plot 

showing peptide overlap from tumor-associated genes defined by the Protein Atlas between all tumor 

samples. The bar graph shows the number of unique peptides present in a shared subset of tumors 

defined as intersection size, dots indicate the tumor samples where the subset is present, and lines 

connect tumor samples within the same subset. Subsets that present in at least 11 patients are 

highlighted by arrows. C, Bar graph showing peptides origination from the annotated cancer testis 

antigen (CTA) genes, their sequence, and the patients where they have been found. A-C, n = 41 tumor 

samples from n = 32 patients (see Suppl. Table S1A). CTA, cancer testis antigen; T, tumor. 

 

Supplementary Figure S6 | Length distribution of HLA class I peptides identified by mass 

spectrometry 

Bar graph showing the number of unique peptides per peptide length in amino acids for every analysed 

tumor sample. Peptides bound to HLA class I molecules on the surface of the tumor cells have been 

isolated by immunoprecipitation and sequenced by liquid chromatography with tandem mass 

spectrometry (LC-MS/MS). Peptide sequences were then mapped with 1% FDR to the Ensemble92 

protein database using pFIND (v3.1.5) and unique sequences have been filtered. n = 41 tumor samples 

from n = 32 patients (see Suppl. Table S1A). aa, amino acids; T, tumor. 

 

Supplementary Figure S7 | Peptide HLA class I binding motifs within the immunopeptidome 

MHCMotifDecon (v1.0) has been used to match all isolated HLA class I peptides with lengths from 8-

15 amino acids to the patients’ HLA class I alleles according to their binding motifs and anchor residues 

for each tumor sample using standard settings. Binding motives of four representative tumor samples 

for each HLA class I allele are displayed with the total number of matched peptide sequences in 

brackets. Peptides not matching any HLA class I allele of the respective patient are displayed in the 

trash subgraph. aa, amino acid; HLA, human leukocyte antigen. 

 

Supplementary Figure S8 | Characterization and immunogenicity assessment of neoantigen 

candidates 

A, Schematic overview of the immunogenicity assessment by modified accelerated co-cultured 

dendritic cell (acDC) assay using non-enriched or CD137+-enriched T cells (PBMCs or TILs) for 

subsequent IFN-γ ELISpot readout. B, Pie chart depicting the proportion of immunogenic neoantigens 
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identified only from RNA sequencing (RNA-seq) data where the respective wild type (WT) sequence 

was identified at the DNA level with a coverage of ≥ 3 reads (green) or the respective region was not 

covered at the DNA level (grey, < 3 reads). C, Distribution of the nucleotide exchange pattern of all 

single nucleotide variants that yield immunogenic neoantigen candidates identified only from RNA-seq 

data (n=22). Variants previously identified in the REDIportal (29) database as RNA editing events are 

highlighted in green. D, For those patients with immunogenic neoantigens, the total number of tested 

neoantigen candidates is depicted including immunogenic and non-immunogenic ones. B-D, n = 79 

neoantigen candidates from n = 24 patients were analysed in total; n = 8 patients harboured n = 24 

immunogenic neoantigens; n = 1 immunogenic neoantigens from DNA and RNA variants; n = 23 

neoantigen candidates from RNA variants. ca., carcinoma; endom., endometrium; GM-CSF, 

granulocyte macrophage-colony stimulating factor; IL, interleukin; OKT-3, Muromonab-CD3; Panc., 

pancreas; TNF-α, tumor necrosis factor-α. 

____________ 

Supplementary Table S1| Overview of the ImmuNEO patient cohort 

A, Detailed information on every tumor sample of the ImmuNEO cohort including entity, metastatic 

site (or primary), stage at admission and primary sampling cohort. Core samples used for statistical 

analysis (subset) are labelled. Tumor samples used for the immune phenotyping of the tumor 

microenvironment (TME) by flow cytometric assessment and RNA sequencing (RNA-seq) of sorted 

CD8+ T cells are marked. Samples where whole exome sequencing (WES) and bulk tumor RNA-seq was 

performed are annotated; samples analysed via whole genome sequencing (WGS) are marked with an 

asterisk. The survival status as well as the survival times in months are displayed for several periods 

since initial diagnosis (ID), diagnosis of metastatic disease (MD) and since admission to MASTER/tumor 

resection (MASTER). The time difference since MD and MASTER is shown in months. Furthermore, 

information is given on patients receiving immune checkpoint blockade in general, prior to and after 

study admission and the respective response with no response (0), mixed response (1) and good 

response (2). B, Information about applied therapies for every ImmuNEO patient prior to and after 

tumor resection. 1 = therapy applied, 0 = therapy not applied. C, Table providing information on HLA 

class I alleles identified for each patient from whole exome (WES)/whole genome sequencing (WGS) 

data using the combination of the algorithms xHLA, BWAKit, and OptiType. For ImmuNEO-1, -4, -19 

and -22 (*) the alleles were confirmed using targeted NGS (Zentrum für Humangenetik und 

Laboratoriumsdiagnostik, Martinsried, Germany). Ca, carcinoma; Chemo, chemotherapy; DSRCT, 

desmoplastic small round cell tumor; GIST, gastrointestinal stromal tumor; HLA, human leukocyte 

antigen; IME, immune microenvironment; IN, ImmuNEO; LN, lymph node; MPNST, malignant 

peripheral nerve sheath tumor; MS, mass spectrometry; OP, operation; RNAseq, RNA sequencing; 

WES, whole exome sequencing; WGS, whole genome sequencing. 

 

Supplementary Table S2| Genetic variants 

A, B, C, Table showing the somatic variants present in at least four patients (A), the RNA alterations 

present in min. 10 patients (B) and the RNA alterations (min. 2 in each group) present in min. 10 unique 

samples (C). Variants were called by MuTect2 (v4.1.0.0) from whole exome (WES)/whole genome 

sequencing (WGS) data and by Strelka2 (v2.9.10) from RNA sequencing (RNA-seq) data. SNP-filtering 

has been performed using the dbSNP-all data base. No RNA data was available for patients IN-11-T1, 

IN-14, IN-16, IN-20, IN-25, IN-31, IN-34. For every variant (Mutation_ID consist of chromosome, 

position, reference base and alternative base) the affected gene and the gene biotype are shown. The 

samples and patients where the variant is present is shown and counted (upper table). In the lower 

table all information for each variant within each sample is listed. The number of wt reads (TumorRD) 
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and mutated reads (TumorAD) in the tumor, the wt reads (NormalRD) and mutated reads (NormalAD) 

in the normal control, the variant frequency within the tumor (TumorVF) and the coverage of each 

mutation within the tumor (TumorCoverage) is included. IN, ImmuNEO. 

 

Supplementary Table S3| Tumor-associated peptides shared between several tumor samples 

Table shows the sequence of wild-type peptides found in at least eleven tumor samples from tumor-

associated genes defined by the ProteinAtlas. Peptides bound to HLA class I molecules on the surface 

of tumor cells have been isolated by immunoprecipitation and sequenced by liquid chromatography 

with tandem mass spectrometry (LC-MS/MS). Peptide sequences were then mapped with 1% FDR to 

the Ensemble92 protein database using pFIND (v3.1.5) and unique sequences have been filtered. The 

MS count and the length of each peptide in amino acids (aa) is annotated as well as the predicted 

binding affinity and rank for two HLA-I alleles present in all patients defined by NetMHC4.0. aa, amino 

acids; FDR, false discovery rate; HLA, human leukocyte antigen; IN, ImmuNEO; nM, nanomol; SB, strong 

binder; Seq, sequence; WB, weak binder. 

 

Supplementary Table S4| Overview of mutated peptide ligands 

A, Detailed information on all neoantigen candidates. By combining genomic mutational data with 

mass-spectrometry (MS)-based immunopeptidomic data for each patient sample, neoantigen 

candidates have been identified. pFIND (v3.1.5) was used at 5% FDR on spectral level for the 

identification of non-wild type (WT) 8-15mer neoantigen candidates. The machine learning tool Prosit 

was additionally integrated to rescore and rematch the peptide spectra using unfiltered pFIND data as 

input. n = 39 tumor samples from n = 32 patients were analysed in total; n = 27 tumor samples from n 

= 24 patients harboured n = 91 neoantigen candidates. Using netMHC4.0 and MHCFlurry, binding 

predictions for each peptide towards the patients six HLA class I alleles has been performed and for 

each algorithm the best binding allele by affinity and by rank are shown. Mutated amino acids are 

marked with two asterisks within the sequence. B, Additional information on immunogenic neoantigen 

candidates. Immunogenicity assessment has been performed using a modified accelerated co-cultured 

dendritic cell (acDC) assays with IFN- ELIspot analysis using patient derived PBMC (non-enriched and 

CD137+ enriched) or tumor-infiltration lymphocytes (TILs) (non-enriched and CD137+ enriched) (top 

table) and allogenic-matched healthy donor PBMCs (non-enriched) (bottom table). Shown are 

immunogenic neoantigens that elicit an immune response where the ratio of spot forming units (SFU) 

is > 2 (mutated / control peptide) and the difference of SFU is > 50 (mutated - control peptide). 

Autologous lymphoblastoid cell lines (LCLs) or allogenic HLA-matched cells (LCLs or HLA-transduced 

cell lines) have been used as target cells. a.a, amino acid; Alt, alternative; BA, binding affinity; CA, 

carcinoma; Chrom, chromosome; del, deletion; dup, duplication; HD, healthy donor; HLA, human 

leukocyte antigen; ins, insertion; n.a./NA, not applicable; nM nanomole; PBMC, peripheral blood 

mononbuclear cells; Pos, position; Ref, reference; Seq, sequence; T, tumor; VF, variant frequency. 
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