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Proteogenomic landscape of squamous cell lung
cancer
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Zachary Thompson2, Katherine M. Fellows1, Jewel M. Francis1, James J. Saller4, Tania Mesa5, Chaomei Zhang5,

Sean Yoder5, Gina M. DeNicola 6, Amer A. Beg7, Theresa A. Boyle4, Jamie K. Teer 8, Yian Ann Chen8,
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How genomic and transcriptomic alterations affect the functional proteome in lung cancer is

not fully understood. Here, we integrate DNA copy number, somatic mutations, RNA-

sequencing, and expression proteomics in a cohort of 108 squamous cell lung cancer (SCC)

patients. We identify three proteomic subtypes, two of which (Inflamed, Redox) comprise

87% of tumors. The Inflamed subtype is enriched with neutrophils, B-cells, and monocytes

and expresses more PD-1. Redox tumours are enriched for oxidation-reduction and glu-

tathione pathways and harbor more NFE2L2/KEAP1 alterations and copy gain in the 3q2 locus.

Proteomic subtypes are not associated with patient survival. However, B-cell-rich tertiary

lymph node structures, more common in Inflamed, are associated with better survival. We

identify metabolic vulnerabilities (TP63, PSAT1, and TFRC) in Redox. Our work provides a

powerful resource for lung SCC biology and suggests therapeutic opportunities based on

redox metabolism and immune cell infiltrates.
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L
ung cancer continues as the cause of the most cancer-related
deaths in the United States and is a major health care
concern throughout the world1. Recently, therapeutic

options for the treatment of lung cancer have emerged through
better understanding of the molecular mechanisms of tumor
formation and progression. In adenocarcinoma of the lung
(ADC), identification of somatic gene mutations, amplifications,
or fusions of oncogenes, such as receptor tyrosine kinases, has
facilitated development of targeted agents with small molecule
kinase inhibitors or therapeutic monoclonal antibodies2. How-
ever, few inroads in targeted therapy have been made for squa-
mous cell lung cancer (SCC), despite initial enthusiasm about
targeting EGFR, FGFR, DDR2, and PI3K2. In contrast, immune
checkpoint inhibitor therapy has demonstrated durable tumor
regressions in SCC histologies with prolonged survival. This
result has led to approval of multiple antibodies targeting the PD-
1/PD-L1 interaction for patients with advanced lung cancer and
now provides an alternative therapy beyond conventional cyto-
toxic chemotherapy for patients with advanced SCC3.

Genomic and transcriptomic technologies have enabled
important insights into the molecular underpinnings of SCC,
leading to initial molecular classification strategies4–6. The Cancer
Genome Atlas (TCGA) identified recurrent mutations in genes
associated with cell cycle and apoptosis (TP53, CDKN2A,
andRB1), antioxidant gene expression (NFE2L2, KEAP1), phos-
phatidylinositide 3-kinase signaling (PIK3CA, PTEN), and epi-
genetic signaling (MLL2)4. TCGA also identified high level
changes in chromosome gain and loss associated with severe
genomic instability. In addition to tumor autonomous features,
patterns of infiltrating immune cell types have been associated
with tumor progression and patient prognosis7. Based on these
results, studies such as the NCI’s Molecular Analysis for Therapy
Choice (MATCH) trial are attempting to capitalize on improved
molecular knowledge of SCC to employ precision medicine tar-
geting PI3K, CDK4/6, FGFR, MET, and PD-L1.

These genomic and transcriptomic alterations shape the
functional proteome, control infiltration of immune cells, and
present potential vulnerabilities that can be therapeutically
exploited, but only after their specific roles in these molecular
mechanisms is known. To begin to address this lack of knowl-
edge, we report an integrated analysis incorporating expression
proteomics with DNA copy number variation (CNV), somatic
mutations, and mRNA expression levels determined by RNAseq
in 108 SCC tumors, which is further informed by accompanying
patient outcomes, evaluation of tumor pathology, and other
clinically relevant data. The incorporation of mass spectrometry-
based proteomics data is a critical addition as protein abundance
can correlate poorly with corresponding mRNA abundance8–11.
Our study leverages prior deep genomic and transcriptomic
studies of SCC allowing a focused examination of the SCC pro-
teome and its relationship to previously observed genomic or
transcriptomic subgroups4–6. Finally, we discuss how the
knowledge gained from proteogenomics can create a molecular
classification with the potential to impact treatment strategies for
SCC patients.

Results
Clinical and molecular features. We identified 108 SCC snap
frozen tumor tissues from patients consented under the Total
Cancer CareTM protocol. We linked these samples to all available
molecular, clinical, pathology, and outcomes data (Table 1,
Supplementary Data 1, Supplementary Fig. 1). Patient clinical
data and physician notes were reviewed to ensure these samples
constituted treatment-naïve, primary lung cancer. Clinical char-
acteristics were typical of this tumor type with older patients

(mean age= 69.1) and a majority of the cohort having a history
of tobacco smoking (97.2%). Tumors were collected from patients
with surgically resected stage I–III SCC of the lung (AJCC Ver-
sion 7). The median follow-up of this cohort for overall survival
was 4.8 years, while recurrence-free survival had a median of 4.2
years. Snap frozen tumor tissues were matched to a corre-
sponding formalin fixed paraffin embedded sample for both
image capture for hematoxylin and eosin (H&E) stained slides
and immunohistochemistry assays. Snap frozen tumor tissues
were randomized, pulverized into homogenized powder while still
frozen, and split into two equal aliquots for targeted exon
sequencing, copy number analysis, RNAseq, and mass
spectrometry-based proteomic analysis.

Targeted exome sequencing of 154 genes revealed mutation
patterns similar to those found in the TCGA patient cohort
(Fig. 1)4. Copy number analysis revealed 5819 amplifications in
719 regions and 3884 losses in 666 regions, consistent with the
findings observed by TCGA (Supplementary Fig. 2)4. Proteomic
analysis was performed by liquid chromatography-tandem mass
spectrometry (LC-MS/MS) using tandem mass tag (TMT)
chemical labeling experiments, which gives comparable biological
content to label-free LC-MS/MS (Supplementary Fig. 3)12. Similar
to Zhang et al. and Slebos et al., we employed a highly stringent,
two-step filtering process and identified 8300 protein groups
(average of 6570 protein groups per sample; see Methods)10,13.
Functional analysis and downstream associations with DNA and
mRNA were restricted to the 4880 protein groups that were
observed in >90% of samples, resulting in a final protein false
discovery rate of 1.3%. Supporting targeted exome sequencing
and copy number data can be found in Supplementary Data 2,

Table 1 Squamous cell lung cancer cohort

n= 108

Age at diagnosis 69.1 (8.3)

Gender

Female 36 (33.3%)

Male 72 (66.7%)

Ethnicity

Non-hispanic 106 (98.1%)

Hispanic 1 (0.9%)

Unknown 1 (0.9%)

Race

White 105 (97.2%)

Black 3 (2.8%)

AJCC-7 Stage

I 49 (45.4%)

II 46 (42.6%)

III 13 (12.0%)

Grade/differentiation

Poor 54 (50.0%)

Moderate 51 (47.2%)

Well 2 (1.9%)

N/A 1 (0.9%)

Smoking

Never-smoker 3 (2.8%)

Ever/missing 105 (97.2%)

Lymph nodes

Negative 79 (73.1%)

Positive 29 (26.9%)

n= 104

TLN Score

0 41 (39.4%)

1 31 (29.8%)

2 31 (29.8%)

3 1 (1.0%)
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supporting proteomics data in Supplementary Data 3, and
supporting RNAseq data in Supplementary Data 4.

Inflammation and redox biology define tumor classification
strategies using SCC proteomes. Consensus clustering identified
five proteomic clusters with clear patterns of expression (Fig. 1;
Supplementary Fig. 4)14. Pathway analysis of the first two clusters
revealed immune biology and were combined into an “Inflamed”
subtype (43 tumors or 40%). The next two clusters showed clear
oxidation-reduction (redox) biology and were combined into the
“Redox” subtype (51 tumors or 47%). Notably, these first two
subtypes make up 87% of the patient cohort. The fifth cluster
includes biology associated with Wnt/stromal signaling and is
referred to as the “Mixed” subtype (14 tumors or 13%). The
subtypes were not associated with differences in clinical variables
such as stage, gender, smoking status (Fisher Exact Tests P-values
> 0.05; Supplementary Data 5), or tumor cellularity (Wilcoxon
rank-sum P-values > 0.05; Supplementary Data 1). Each of these

subtypes will be detailed, but we first compared our identified
subtypes to previously identified mRNA-based classifications6.

Relationship of the SCC proteome and transcriptome. We first
compare our proteomics subtypes to gene expression signatures
of SCC previously identified by Wilkerson et al.6. RNAseq ana-
lysis was performed on the same homogenized tumor tissue
samples as the proteomics, thus we can classify the Wilkerson
et al. subtypes from gene expression profiling using RNAseq data.
Within our cohort, 47 samples (44%) corresponded to the clas-
sical group, 30 (28%) to secretory, 21 (19%) to basal, and 10 (9%)
to primitive, which is concordant with observations by both
Wilkerson et al. and TCGA4,6. Our Inflamed proteomics subtype
consisted of a mixture of mRNA groups but was predominantly
secretory (immune) and basal (cell adhesion). The Redox pro-
teomics subtype consisted primarily of the classical group
(metabolism), and the Mixed proteomics subtype included a
mixture of basal, secretory, and primitive tumors but none clas-
sified as classical. Interestingly, none of the three proteomic

Wilkerson et al.
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Fig. 1 Identification of three proteomic subtypes of SCC. One hundred eight patient tumors are displayed as columns, and the 1000 most variable proteins

by absolute median deviation are displayed as rows. The patient tumors were organized by consensus clustering into five clusters corresponding to three

biological subtypes (Inflamed, Redox, and Mixed). There is partial concordance with the Wilkerson et al. mRNA-based classifiers of these same samples,

but the primitive group is not recapitulated. Mutation status and copy alterations of commonly mutated SCC genes/loci are shown directly above the

heatmap. We identified five groups of proteins from the heatmap clustering. We took the proteins from each group and searched against GO: Biological

Processes to yield a list of pathways (Enrichr). The topmost enriched pathway with Padj≤ 0.05 was used to label the protein clustering in the heatmap. The

mean transcript-protein correlations for these pathways using matched RNAseq expression were: 0.46 for neutrophil degranulation, 0.56 for extracellular

matrix organization, 0.35 for platelet degranulation, 0.64 for glutathione metabolic process, and 0.60 for bicarbonate transport
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subtypes were predominantly primitive. Independent consensus
clustering of our RNAseq gene expression identified clusters
similar to three of the four Wilkerson et al. mRNA groups: basal,
secretory, and classical (Supplementary Fig. 5).

In single steady state measurements, mRNA levels have been
shown to be poor predictors of protein abundance, and these
findings could explain why our proteomic subtypes only partially
recapitulate mRNA groups8–11. We assessed this concordance in
our cohort by intersecting RNAseq and proteomics identifica-
tions, yielding 4625 matching transcript/protein pairs (Supple-
mentary Fig. 6). Across the cohort, the 4625 matched transcript-
protein pairs had an average Spearman’s correlation (ρ) of 0.38,
and this was comparable to previous observations in breast,
colorectal, and ovarian cancers as well as in non-cancerous
tissues8–11. To further investigate the underlying biology relating
transcriptome and proteome, we compared the pathway enrich-
ment of 1683 highly correlated transcript-protein pairs (Spear-
man’s ρ > 0.5) to 1206 transcript-protein pairs that were poorly
correlated (Spearman’s −0.2 < ρ < 0.2). Highly correlated
transcript-protein pairs were enriched (Padj < 0.05) for neutrophil,
extracellular matrix, apoptosis, oxidative stress, and glycolysis
pathways. Poorly correlated pairs were enriched for nonsense-
mediated decay and translation-related machinery, suggesting
these functions are more regulated at the post-transcriptional and
proteome levels (Supplementary Data 6).

Neutrophil infiltration and activation define one Inflamed SCC
cluster. The first cluster (Fig. 1), Inflamed A, contained 23 tumors
(21% of the cohort), and had significantly higher expression of
neutrophil-associated proteins compared to the rest of the tumors
(Wilcoxon rank-sum test, ±1.5 fold-change, Padj ≤ 0.05), includ-
ing MPO, DEFA1, DEFA3, LTF, ELANE, MMP9, and RETN
(Supplementary Data 7). We used a ±1.5-fold-change threshold
for the expression proteomics data, because chemical labeling
experiments can lead to underestimation of fold-changes15. S100
proteins related to extracellular matrix and neutrophil functions
were also significantly higher. To better interpret these observa-
tions, we used a pathway enrichment approach combining
Enrichr and MSigDB (Supplementary Data 8, Supplementary
Data 9)16,17. Inflamed A was enriched for neutrophil degranu-
lation (Enrichr Padj= 2.20E-24) and matrisome pathways
(MSigDB Padj= 5.06E-05). Supporting protein differential
expression data can be found in Supplementary Data 7.

Antigen presentation superimposed on neutrophil biology
defines the second Inflamed SCC cluster. The second cluster,
Inflamed B, contained 20 tumors (19% of tissues). Similar to
Inflamed A, Inflamed B had significantly higher protein expres-
sion associated with neutrophil infiltrates and inflammatory
response (AGER, SFTPA1, PIGR, and C3; Supplementary
Data 7). To differentiate this cluster from Inflamed A, Inflamed B
expressed significantly higher levels of 11 MHC Class II proteins
and 9 cathepsins, which is consistent with antigen presentation
biology. Supporting this observation were significantly elevated
proteins related to γ-interferon and T-cell activation (CAV1,
CD53, and IFI30). Pathway enrichment of Inflamed B indicated
that neutrophil degranulation (Enrichr Padj= 1.52E-07) and
antigen processing pathways (MSigDB Padj= 8.42E-16) were
significant. Additionally, Inflamed B had enrichment of the same
matrisome pathway (MSigDB Padj= 6.83E-12) as Inflamed A.

Inflamed subtype is enriched for infiltrating immune cells and
has increased PD-1 gene expression. Since the two Inflamed
clusters shared similar immune and matrisome pathway enrich-
ment, they were combined into a single Inflamed subtype for

subsequent analyses (Fig. 2a). Because our proteomic analysis
indicated immune function, we used RNAseq data to infer infil-
trating cell types. First, we applied Estimation of STromal and
Immune cells in MAlignant Tumor tissues using Expression data
(ESTIMATE) to infer tumor purity (Fig. 2b–d)18. Consistent with
proteomic observations, the Inflamed subtype had the highest
median Immune score. We next applied CIBERSORT to infer 22
human hematopoietic cell phenotypes (Fig. 2e–o)7. Inflamed had
significantly higher proportions of memory B-cells (Wilcoxon
P= 5.73E-03), monocytes (Wilcoxon P= 3.78E-04), and neu-
trophils (Wilcoxon P= 0.021) compared to the other subtypes,
while plasma cells were the only cell type with significantly lower
proportions in Inflamed (Wilcoxon P= 0.048). In a comparison
of Inflamed A and Inflamed B, we found neutrophils significantly
higher in Inflamed A (Wilcoxon P= 0.025) and regulatory T-cells
significantly higher in Inflamed B (Wilcoxon P= 0.039). Resting
NK cells and activated mast cells were higher in Inflamed A
(Wilcoxon P= 0.082 and P= 0.086, respectively), and memory
B-cells were higher in Inflamed B (Wilcoxon P= 0.086). Finally,
to examine implications for immune checkpoint inhibitor ther-
apy, we also examined expression of PD-1 (PDCD1) and PD-L1
(CD274) using the RNAseq data. Inflamed tumors have sig-
nificantly higher PD-1 mRNA expression (Wilcoxon P= 1.74E-
04) than Redox and Mixed tumors, but PD-L1 was not differ-
entially expressed (Wilcoxon P= 0.19; Supplementary
Fig. 7A–B). PD-1 was higher in Inflamed B compared to Inflamed
A (Wilcoxon P= 0.099), and there was no difference in PD-L1
(Wilcoxon P= 0.74; Supplementary Fig. 7C-D). PD-1 and PD-L1
were not detected in the proteomics experiments. Taken together,
these results indicate that Inflamed tumors have more contribu-
tion of immune cell types to the observed proteome expression.
Supporting ESTIMATE and CIBERSORT data can be found in
Supplementary Data 4.

We hypothesized that the neutrophil signatures generated by
our proteomics, pathway, and CIBERSORT analyses could
include not only mature neutrophils but also myeloid derived
suppressor cells, monocytes, and macrophages. This point can
have important ramifications for immunotherapies, since studies
have observed that neutrophils dominate the immune landscape
in lung cancer and have lymphocyte-suppressing capabilities19.
To address this, we first confirmed our neutrophil finding with
xCell, another method for estimating cell infiltration20. Similar to
CIBERSORT, neutrophils were significantly higher in Inflamed
(Wilcoxon P= 2.083E-05; Supplementary Fig. 7E) compared to
the rest of the cohort. Next, we validated our finding by scoring
both intratumoral and stromal CD33 using a dual color CD33
plus CD8 immunohistochemistry assay applied to 22 Inflamed A
and 19 Inflamed B tumors. We observed good correlation
between CD8 IHC staining and CD8 measured by mass
spectrometry (Spearman’s ρ= 0.49, P= 3.60E-03). We observed
more CD33 positive cells in the tumor stroma (Fig. 3, Table 2) in
the Inflamed A tumors while there were comparable amounts of
intratumoral CD33 positive cells between Inflamed A and
Inflamed B tumors. Overall, these results are consistent with
Kargl et al. who found large areas of NSCLC infiltrated by CD45+

cells with nearly 50% of these cells being of myeloid lineage19.
Together, these observations suggest that targeting CD33+
myeloid cells, using agents such as Gemtuzumab ozogamicin,
could potentially augment immune checkpoint therapy by
eliminating immunosuppressive cells from the tumor
microenvironment.

Inflamed tumors have fewer mutations of key genes and fewer
chromosomal alterations. We next sought to determine if any of
the frequently observed gene mutations or copy number changes
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ESTIMATE scores from the ESTIMATE algorithm18. The Inflamed subtype had the highest median Immune score. e–o Box plots showing CIBERSORT

results for each immune subtype compared across the three proteomic subtypes and between Inflamed A and Inflamed B7. Inflamed had significantly

higher proportions of memory B-cells (Wilcoxon P= 5.73E-03), monocytes (Wilcoxon P= 3.78E-04), and neutrophils (Wilcoxon P= 0.021) compared to

the other subtypes, and plasma cells were significantly lower (Wilcoxon P= 0.048). M2 macrophages were significantly higher in Redox (Wilcoxon P=

0.016), and resting NK cells were higher in Mixed (Wilcoxon P= 0.027). Regulatory T-cells were significantly higher in Inflamed B (Wilcoxon P= 0.039),

and neutrophils were significantly higher in Inflamed A (Wilcoxon P= 0.025). box plots Significance was denoted using the following: *= P < 0.05, **= P

< 0.01, ***= P < 0.001. The center line indicates the median, the bounds of the box indicate the interquartile range (IQR: defined as the difference between

the 75th and 25th percentiles), the topmost and bottom-most horizontal lines indicate the most extreme points less than 1.5 times the IQR below the 25th

or above the 75th percentile, black points indicate outliers, and red points indicate individual values
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were associated with Inflamed tumors. The Inflamed subtype was
less likely to have NFE2L2 (OR= 0.24, Fisher’s exact test P=
6.87E-03), KEAP1 (OR= 0.09, Fisher’s exact test P= 4.09E-03),
or APC (OR= 0, Fisher’s exact test P= 6.78E-05) mutations. The
incidence of TP53 mutations was reduced in Inflamed,
approaching significance (OR= 0.42, Fisher’s exact test P= 0.09).
Data analyzed from TCGA showed a statistically significant
reduction of TP53 mutations in the Wilkerson secretory mRNA
group (corresponding most closely to our Inflamed subtype) at
similar proportions to the Inflamed subtype (OR= 0.38, Fisher’s
exact test P= 0.015)4. The Inflamed subtype was enriched for a
single amplification on 14q3 (OR= 3.27, Fisher’s exact test P=
0.012), but had significantly less amplification of 3q2 (which

contains TP63/SOX2/PIK3CA; OR= 0.28, Fisher’s exact test P=
6.35E-03), 2q3 (containing NFE2L2; OR= 0.21, Fisher’s exact test
P= 2.22E-03), 12p1 (OR= 0.32, Fisher’s exact test P= 5.83E-03),
and 17q2 (OR= 0.41, Fisher’s exact test P= 0.031). Inflamed had
significantly fewer losses on 3p1 (OR= 0.29, Fisher’s exact test
P= 0.010), but did not have significantly more deletions of fre-
quently altered regions when compared to the other subtypes.
These results are consistent with reports of copy number varia-
tion negatively correlating with an immune score in a Korean
SCC cohort21. Supporting mutation and copy number variation
data can be found in Supplementary Data 2.

Tertiary lymph node structures are associated with improved
prognosis. We next tested for associations of our three proteomic
subtypes with the extensive clinical, pathology, and outcome data
collected for our cohort, but there were no significant differences
in overall or recurrence-free survival (Fig. 4a, b). This result was
surprising given the immune phenotype observed in the Inflamed
tumors, which we thought could be associated with better out-
comes. We next tested top mutated genes (e.g., TP53, MLL2,
and NFE2L2), but did not find any association with outcomes.
We were also unable to identify associations with outcome in the
DNA copy number, mRNA abundance, and protein abundance
datasets. These negative findings are in line with the general lack
of agreement of prognostic signatures in SCC2. We expect that as
we learn how to target specific drivers of SCC biology that we will
be able to define proteins and genes that can be used to predict
patient outcomes.

We attempted to identify associations of patient outcome with
DNA copy number, mRNA abundance, and protein abundance
through a combined meta-analysis. A meta-analytic random-
effects model was fitted using an empirical Bayes method for a
heterogeneity estimator using gene-level CNV, RNAseq expres-
sion, and protein expression from 3484 genes present in all three
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Fig. 3 Scoring intratumoral and stromal myeloid lineage cells in Inflamed A and B. The IHC for case 1 at low (a) and high power magnification (b) highlights

minimal CD33+ stromal neutrophils (in red) with a score of 1+ while background CD8+ stromal lymphocytes are highlighted in brown. The IHC for case 2

at low (c) and high power magnification (d) highlights a moderate CD33+ neutrophil population within the stroma with a score of 2+with rare

intratumoral CD33+ neutrophils. The IHC for case 3 at low (e) and high power magnification (f) illustrates the marked CD33+ neutrophil population

within the stroma with a score of 3+. Scoring legend: 0= virtual absence, 1= low (<25%), 2=moderate (25–50%), and 3=marked increase (>50%)

Table 2 CD33 immunohistochemistry scoring

Inflamed A

(n= 21)

Inflamed B

(n= 18)

P-valuea

Stromal score 2.91E-04

0= virtual absence 0 0

1= low (<25%) 0 4

2=moderate

(25–50%)

0 6

3=marked increase

(>50%)

21 8

Intratumoral score 0.12

0= virtual absence 0 2

1= low (<25%) 21 16

2=moderate

(25–50%)

0 0

3=marked increase

(>50%)

0 0

aCochran-Mantel-Haenszel Test
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Fig. 4 Tertiary lymph nodes (TLN) are enriched in the Inflamed subtype and are associated with better outcomes. a, b Proteomic subtypes are not

associated with overall or recurrence-free survival. c TLN, indicated by red boxes, are observable in H&E stained slides under low magnification. d TLN can

be observed in all three proteomic subtypes but are enriched in Inflamed (Cochran-Mantel-Haenszel P= 0.036). The height of each rectangle is

proportional to the TLN score in a given subtype, and the width of each column is proportional to the number of samples in each subtype. e, f Presence of

TLN provided a benefit to both overall and recurrence-free survival. g, h Immunohistochemical staining shows TLN primarily consist of CD20+ memory

B-cells
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datasets. However, we had to relax FDR to 30% (Storey’s q-value
< 0.3) in order to identify 15 proteins (Supplementary Fig. 8)
associated with outcome. This meta-analysis associated high
expression of the tyrosine phosphatase, PTPN12, with poor
survival. PTPN12 has been described as a tumor suppressor that
counteracts receptor tyrosine kinase signaling and oxidative
stress22, but it has also been shown to support tumorigenesis and
was associated with poor prognosis in breast cancer22. We
performed two exploratory analyses using PROGgene and
cBioPortal to test if these 15 genes were associated with survival
in the TCGA SCC cohort, but both failed to identify significant
associations23,24.

We hypothesized that the immune characteristics of the
Inflamed subtype would also be observed in the histologic
features of these tumors. Therefore, we first confirmed our
memory B-cell finding using xCell20. Similar to CIBERSORT,
memory B-cells were significantly higher in Inflamed (Wilcoxon
P= 2.53E-04; Supplementary Fig. 7F) compared to the rest of the
cohort. Next, we examined H&E slides and performed CD20
immunohistochemistry to detect B-cell infiltration from the same
tumors used in our proteogenomic experiments. H&E slides (n=
104) revealed lymphoid cell aggregates consistent with tertiary
lymph nodes (TLN), also known as tertiary lymphoid structures,
near the cancerous tissues (Fig. 4c)25. We next scored H&E slides,
blinded with respect to proteomic subtype, for TLN. TLN were
significantly enriched in Inflamed (Cochran-Mantel-Haenszel
P= 0.036, test; Fig. 4d), but TLN could be observed in all
subtypes: 30 Inflamed tumors (69.7%), 26 Redox tumors (51%),
and 7 Mixed tumors (50%). Importantly, there was significant
association between the presence and absence of TLN (TLN
score > 0 and TLN score= 0, respectively) in both recurrence-free
survival (RFS; log-rank test P= 0.032) and overall survival (OS;
log-rank test P= 0.035; Fig. 4e, f).

TLN exhibited strong staining for CD20 (n= 103), indicating
the presence of high concentrations of B-cells (Fig. 4g, h).
CD20 staining was significantly higher in tumors scored with
TLN >= 2 compared to TLN= 0 (Wilcoxon P= 0.001). RNAseq
showed significantly higher expression of B-cell markers,
including BLK (log2 ratio 1.31, Wilcoxon P= 1.45E-03), CD79A
(log2 ratio 1.55, Wilcoxon P= 1.37E-03), and CD79B (log2 ratio
1.30, Wilcoxon P= 2.91E-03) in the TLN >= 2 group, and
proteomics showed significantly higher expression of B-cell
marker IGLL1 (0.63 log2 ratio, Wilcoxon P= 0.013) in the
TLN >= 2 group. CD20 staining was significantly higher in the
Inflamed B subtype compared to Inflamed A (Wilcoxon P=
0.045), but no significant association was found between CD20
IHC scoring and either OS or RFS. CD20 staining was consistent
with CIBERSORT findings that memory B-cells are significantly
elevated in Inflamed (Fig. 2e). These results suggest that B-cell
rich TLN, but not infiltrating B-cell numbers, are associated with
better survival in surgically resected SCC. Taken together, these
results suggest that patterns of immune cell infiltration and their
organized structures are currently more effective for determining
patient outcome than gene mutations, transcriptomic subclasses,
or proteomic subclasses.

The Redox proteome is driven by genomic alterations in the
NFE2L2/KEAP1 complex. The third cluster, Redox A, consisted
of 12 samples (11%) and the fourth cluster, Redox B, consisted of
39 samples (36%). Both clusters shared elevated expression of
aldo-keto reductase (AKR) and alcohol dehydrogenase family
members. In a direct comparison, the only significant differences
between Redox A and Redox B were an enrichment of blood-
related pathways in Redox A. Since these differences between
Redox A and Redox B were minor, they were combined into a

single Redox subtype for subsequent analyses. Top elevated
proteins of the combined Redox subtype included 5 AKR family
members (Supplementary Data 7), which were also differentially
expressed at the transcript level (Supplementary Data 4). AKRs
are indicative of NFE2L2 (NRF2) activity and are overexpressed
in both SCC and ADC26. The Redox subtype had significantly
higher levels of TP63 expression and was enriched for oxidation-
reduction, glutathione synthesis, and keratinization pathways
(Padj < 0.05; Fig. 5a).

We identified strong associations with copy number changes as
well as NFE2L2 and KEAP1 mutations (Fig. 5b). Redox tumors
had the most copy number gains (3680), followed by Inflamed
(1402) and Mixed (737; Supplementary Fig. 2). Redox tumors
also had the most copy number losses (2117) compared to
Inflamed (1030) and Mixed (658). We tested the five regions with
the most gains, the five regions with the most losses, and
chromosome 2q3 (which contains NFE2L2). Redox was enriched
for amplifications in 3q2 (contains TP63/SOX2/PIK3CA; OR=
4.32, Fisher’s exact test P= 3.50E-03), 2q3 (contains NFE2L2;
OR= 5.77, Fisher’s exact test P= 2.00E-04), and 12p1 (OR=
2.61, Fisher’s exact test P= 0.02). The Redox group was not
enriched for losses compared to the other subtypes. The Redox
subtype had increased numbers of KEAP1 (OR= 20.71, Fisher’s
exact test P= 1.12E-04) and NFE2L2 mutations (OR= 3.90,
Fisher’s exact test P= 3.99E-03). Twenty Redox samples (39% of
Redox) possessed a NFE2L2 mutation and 14 samples (27% of
Redox) possessed a KEAP1 mutation. Forty-three Redox samples
(84%) had at least one type of genomic alteration of NFE2L2 or
KEAP1 and 18 Redox samples (35%) had two or more. NFE2L2
amplifications were the most abundant (22 or 43%), followed by
NFE2L2 mutations (20 or 39%), KEAP1 mutations (14 or 27%),
and KEAP1 region loss (9 or 18%). To compare the mutant
NFE2L2/KEAP1 proteome to the Redox subtype, we next took
tumors with either a NFE2L2 or KEAP1 mutation (41 samples
total; 32 Redox, six Inflamed, three Mixed) and compared to
NFE2L2 and KEAP1 wild-type tumors. This stratification
enriched for Redox tumors, and we observed downstream effects
of NFE2L2 signaling, including oxidative stress and glutathione
pathways (Fig. 5c).

KEAP1 is an E3 ligase that has multiple substrates, including
NFE2L2. We hypothesized that tumors with KEAP1 mutations
would be enriched for NFE2L2-independent co-expression,
because the loss of KEAP1 ubiquitin ligase activity could result
in accumulation of substrates. To test this hypothesis, we
performed a protein-protein correlation analysis with KEAP1
protein expression in KEAP1mutant tumors (15 samples total; 15
Redox, one Inflamed) and separately in KEAP1 wild-type tumors
(93 samples total; 37 Redox, 42 Inflamed, 14 Mixed). There were
no proteins significantly correlated with KEAP1 in the KEAP1
wild-type tumors nor in the KEAP1 mutant tumors (Spearman’s
ρ > 0.5 and Padj ≤ 0.25). However, we identified 107 proteins
(Supplementary Data 6) with a large difference in correlation to
KEAP1 expression (Spearman’s ρ > 0.5) between KEAP1 mutant
and wild-type tumors, and pathway analysis identified regulation
of mitotic cell cycle phase transition (Enrichr Padj= 3.16E-04),
which is consistent with KEAP1 function27.

Given the importance of SOX2, TP63, and NFE2L2 transcrip-
tional programs in SCC biology, we next examined mRNA
transcript-protein correlations using MSigDB target signatures
BENPORATH_SOX2_TARGETS, PEREZ_TP63_TARGETS, and
NRF2_01, respectively (Table 3)17. All three transcription factor
(TF) target signatures had positive transcript-protein correlations
(average Spearman’s ρ SOX2: 0.37, TP63: 0.34 and NFE2L2: 0.43),
suggesting changes in TF target mRNA transcripts were similar to
the overall transcript-protein correlations across the entire cohort
(Spearman’s ρ= 0.38). We observed a significant difference
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keratinization pathways. b 43 Redox samples (84%) had at least one genomic alteration of NFE2L2 or KEAP1. c Stratifying patients by NFE2L2 or KEAP1
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between the SOX2 TF target correlations in Redox compared to
Inflamed. No differences were observed in TP63 TF or NFE2L2
TF target correlations between these two groups. These results
suggest that the SOX2 transcriptional program may be translated
more consistently in the Redox subtype compared to the Inflamed
subtype.

TP63 and the NFE2L2-associated proteins PSAT1 and TFRC
are vulnerabilities in SCC. We hypothesized SCC therapeutic
targets could be identified by integrating highly correlated DNA
copy number/mRNA/protein changes with RNA interference
screening data in SCC cell lines. Amplified genes that produce
correspondingly higher amounts of proteins may be disease dri-
vers and may represent vulnerabilities that can be exploited with
therapeutic intervention. Because of the metabolism-related
pathways found through integrative analysis and the identifica-
tion of clear genomic drivers NFE2L2 and KEAP1, we focused our
analysis on the Redox subtype. We identified 290 highly corre-
lated proteins (Supplementary Data 6) by considering proteins
with both copy number to protein correlation >0.5 and transcript
to protein correlation >0.5 (Fig. 5d, e) and filtering by significance
(Spearman’s correlation Padj < 0.25). We next identified 94 unique
proteins significantly elevated in the Redox subtype. We then
mined siRNA data from Project DRIVE and identified 1101 gene
knockdowns that significantly impacted at least one SCC cell line
(Supplementary Data 10)28. We used the same redundant siRNA
activity (RSA) threshold of <−3 previously described as a cutoff
for significance28. Finally, intersecting the highly correlated pro-
teins, the proteins elevated in Redox, and the Project DRIVE SCC
targets (Fig. 5f) identified AKR1C3, PSAT1, and TP63 in common
(Fig. 5g–i). We also included three proteins elevated in Redox and
also overlapped with Project DRIVE SCC genes for further
investigation: GSR, TFRC, and SERPINB5 (Fig. 5j–l).

We performed an additional validation experiment by querying
PICKLES for the same genes and cell lines used in our analysis of
Project DRIVE results (five cell lines and five genes except
SERPINB5 were available; Supplementary Fig. 9)29. We used a
Bayes factor (BF) of >3 for a threshold of significance, as
recommended29. The three genes consistently deleterious in both
datasets, PSAT1, TP63, and TFRC, are biologically relevant to
metabolic signaling within the Redox subtype and pose potential
vulnerabilities in SCC. PSAT1 is regulated by NFE2L2 and
catalyzes serine biosynthesis, which is important for the growth of
NFE2L2/KEAP1-mutant lung cancer cell lines30. TP63 represents
the ΔNp63 (or DNp63) isoform, which is the dominant isoform
in SCC4,31. ΔNp63 has a missing N-terminus and altered exon
use that produces an oncogenic protein32. TP63 amplification has
been shown to upregulate glutathione metabolism, which is
enriched in Redox (Fig. 5a), and promotes tumorigenesis33.
Deletion of the ΔNp63 or ΔNp73 isoforms in TP53-deficient
tumors led to metabolic reprogramming and tumor regression34.
NFE2L2 regulates iron homeostasis, and in turn TFRC is an iron
uptake receptor related to ferroptosis and may be a target in
cancer35. Taken together, these results suggest that Redox tumors
harbor metabolic vulnerabilities that could be therapeutically
exploited.

The Mixed subtype of SCC is associated with Wnt signaling
and has increased stromal infiltration. The fifth cluster, referred
to as the Mixed subtype, was not as well defined through pro-
teomic analysis as the Inflamed or Redox subtypes. The Mixed
subtype exhibited significant decreases in oxidation-reduction
and neutrophil pathways (Enrichr Padj < 0.05; Fig. 6a) when
compared to other tumors. Mixed was the smallest of the three
subtypes (14 tumors or 13%), and only four proteins were sig-
nificantly increased in this subtype: CHRAC1, FN1, MARCKSL1,
and FHL2. Principal component analysis of protein expression
data revealed the Mixed subtype was interspersed between the
two clusters of Inflamed and Redox (Fig. 6b), which is consistent
with the lack of pathway enrichment in this subtype. However,
FN1, MARCKSL1, and FHL2 can be directly tied to Wnt/β-
catenin signaling (CTNNB1)36–38. Consistent with our observa-
tions about protein abundance associated with Wnt signaling, the
Mixed subtype had significantly more APC mutations (OR=
5.52, Fisher’s exact test P= 8.78E-03; Fig. 6c) with six of the 14
tumors (43%) harboring alterations. One Mixed tumor with wild
type APC harbored an oncogenic (S37F) CTNNB1 mutation39,
which was one of only two mutations in CTNNB1 observed in the
cohort. We identified no significant enrichment for copy gains or
losses associated with the Mixed subtype. Using ESTIMATE,
Mixed tumors had the highest median Stromal score and the
second highest median Immune and ESTIMATE scores (Fig. 2c,
d). Tumor stroma have been shown to secrete Wnt ligands to
activate Wnt signaling in cancer cells40.

Discussion
We report an examination of SCC centered on mass
spectrometry-based proteomics integrated with parallel analyses
of both DNA and mRNA to define molecular subtypes and
identify key alterations that drive these tumors. To our knowl-
edge, this study is the deepest analysis of genomic, transcriptomic,
and proteomic datasets in lung cancer41–43. By identifying and
quantifying large numbers of proteins in SCC tumors and
incorporating bioinformatics approaches, we identified three
subtypes of SCC at the proteomic level. Our results show SCC can
be thought of as a disease with three subtypes, the bulk (87%) of
which are associated with either immune infiltration (Inflamed)
or oxidation-reduction (Redox) biology. This line of thinking is
compelling, because it indicates that the majority of patients
could benefit from therapies directed against immune cell types
(Inflamed) or metabolic modulation of tumor intrinsic pathways
(Redox). While the proteomic subtypes are not currently prog-
nostic in surgically resected SCC, they may be more important in
effecting patient outcomes in the context of immunotherapy,
targeted therapy, and cytotoxic chemotherapy treatments.

One important observation here is the reduced immune infil-
trates in Redox tumors, which suggests that NFE2L2/
KEAP1 signaling may lead to tumor evasion of immune sur-
veillance programs (Supplementary Fig. 10). One mechanism
could be keratin-dependent features that mechanically interfere
with immune cell infiltration. We found higher levels of keratin
proteins associated with Redox tumors, which matches an
observation made in KEAP1-deleted mouse models that suffer
from hyperkeratosis of the esophagus and stomach44. High

Table 3 Average transcript-protein correlations of transcription factor targets

Transcription factor Overall Inflamed Redox Mixed P-value (Inflamed Vs Redox)

SOX2 0.37 0.31 0.37 0.39 3.59E−03

NFE2L2 0.34 0.30 0.32 0.40 6.83E−01

TP63 0.43 0.39 0.42 0.44 4.69E−01
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matrix density, which can be affected by keratins, is associated
with reduced migration of T cells45. Another potential mechan-
ism could be related to directly to redox biology, since NFE2L2 is
a key regulator of both the intracellular and extracellular redox
states. The extracellular redox state is primarily regulated by the
cystine/cysteine (CSSC/Cys) redox couple46, which is reduced by
the NFE2L2 target, SLC7A11 (xCT)47. The oxidized CSSC/Cys
couple promotes oxidation of plasma membrane thiols, elevates
peroxide levels, promotes cytokine secretion from monocytes48,
and promotes fibroblast proliferation and extracellular matrix
production49. Further, peroxide is a chemoattractant for neu-
trophils and monocytes, thereby influencing the immune com-
position of tissues50. Thus, the environment of the Redox tumor
may reduce the levels of inflammation in this subtype and prevent
infiltration of immune cells.

Furthermore, we found the Redox subtype harbored significant
increases in the 3q2 locus that contains TP63, SOX2, and PIK3CA.
These increases can further amplify changes induced by
NFE2L2/KEAP1 mutations or NFE2L2 copy number gains. SOX2

can enhance translation of oncogenic proteins driven by key
cancer transcription factors, including NFE2L2, while signaling
from PIK3CA can maintain NFE2L2 protein levels51,52. Integra-
tion of our proteogenomics results with public RNA interference
and CRISPR data revealed vulnerabilities in SCC that included
PSAT1 and TFRC, metabolic enzymes with direct ties to NFE2L2
as well as TP63. PSAT1 is a known target in NFE2L2/KEAP1
mutant lung cancer cell lines and was elevated in lung cancer and
PDX tissues compared to adjacent lung tissues, suggesting serine
biosynthesis could be an attractive target in SCC30,43. The TP63
isoform, ΔNp63, transcriptionally regulates amylin, which effects
glycolysis and production of reactive oxygen species. This pro-
teoform has been already identified as a vulnerability in lung
adenocarcinoma53. Along with a more recent report finding
GLUT8 as a vulnerability in KRAS/KEAP1 mutant lung cancer
cell lines, these results suggest metabolic vulnerabilities exist
within Redox54. The Redox proteomic subtype showed a clear
correspondence to the Wilkerson et al. mRNA groups with 84%
classified as classical, and other previously published classifiers
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also align with Redox4,5. Given the prominent proteome biology
associated with detoxification and cytoprotective proteins, this
SCC subtype could have intrinsic mechanisms of resistance to
cytotoxic agents and radiation, which needs further examination
in patient cohorts. Since KEAP1 mutations have been suggested
to play a role in therapy resistance, the Redox subtype may also be
expected to be resistant to targeted agents (i.e., EGFR, FGFR,
MET, and PI3K inhibitors) previously pursued in SCC.

The Inflamed subtype consisted of tumors with higher abun-
dance of proteins reflecting neutrophil/myeloid biology and MHC
proteins (Supplementary Fig. 11). Our findings suggest that this
class of tumors may have strong underlying biological mechan-
isms that recruit various immune cell types, which is relevant to
identifying combination immune therapies that eliminate the
tumor’s ability to evade the immune system. While the Inflamed
subtype was particularly obvious from the proteomic data, similar
suggestions have been made through more complex analyses of
multiple data types. Integrative genomic studies by TCGA and
Chen et al. suggested a combined basal and secretory subtype
consistent with our Inflamed subtype4,5.

Inflamed A had higher expression levels of proteins associated
with neutrophil/myeloid biology, adhesion, and migration. Nearly
half of Inflamed A samples (43%) corresponded to the basal
mRNA group, which was portrayed as a cell adhesion phenotype
in part due to elevated S100 family expression, but S100 protein
family members are also important in neutrophil adhesion and
chemotaxis19,55. Inflamed B had a significantly higher MHC II
protein expression and corresponded to 19% of our patient
population, strikingly similar to the 20% response rate of SCC
patients treated with the immune checkpoint inhibitor, Nivolu-
mab56. A majority of Inflamed B samples (75%) corresponded to
the secretory mRNA group. PD-1 and other immune checkpoints,
but not PD-L1, have been shown to have elevated gene expression
in the secretory group57. We confirmed significantly higher PD-1
RNA expression in the Inflamed subtype, which is potentially
indicative of exhausted T-cells58, but we did not detect PD-1 or
PD-L1 in our proteomics experiments. We identified significantly
higher infiltration of monocytes in the Inflamed subtype (Fig. 2f),
consistent with a recent observation that the secretory and basal
groups are highly enriched for and driven by monocytes59. Pro-
teins associated with the Inflamed subtype, especially Inflamed B
associated MHC proteins, may augment our understanding of
which SCCs are likely to respond to PD-1/PD-L1 immune
checkpoint therapy.

In our cohort, TLN were associated with less likelihood of
tumor recurrence and improved overall survival. Immunohis-
tochemistry confirmed strong CD20 staining in TLN indicative of
organized infiltrates of B-cells within our cohort. Similar TLN
structures have been identified in patients receiving therapeutic
HPV vaccines for cervical cancer and also in allografted kidneys
undergoing rejection25. Further studies are critical to understand
these structures and determine if treatment strategies can be
developed based on their function in immune surveillance.

The third subtype, Mixed, was the least prevalent subtype and
had reduced expression of both immunological and redox proteins.
A smaller third group consisting of all four Wilkerson et al. clas-
sifications was also identified in previous publications4,5. Our
findings show that proteomics can capture similar information to
these multi-platform genomic studies, and taken together, these
findings are supportive of the existence of this third obscure subtype
of SCC. Our results suggest a role for Wnt signaling biology in this
tumor (Supplementary Fig. 12), as we found elevated proteins
associated with Wnt biology, enrichment of APC mutations, and
the presence of an oncogenic mutation in CTNNB1.

We have produced a proteogenomic landscape that has inte-
grated the known changes in the genome and transcriptome with

proteome data; interpretation was enhanced by comprehensive
clinical and outcome data. Integration of different data types and
additional publicly available resources has enabled the identifi-
cation of molecular subtypes, which can be further explored to
implicate vulnerabilities that can be exploited using therapeutic
strategies. This resource provides important insights into the
biology of lung SCC and suggests that therapeutic efforts be
refocused on immune combinations, including those that address
tumor neutrophils, for Inflamed tumors or exploitation of
metabolic vulnerabilities within NRF2/KEAP1 mutant SCC in the
Redox subtype. Because the omics and clinical data are publicly
available, members of the lung cancer research community can
examine additional hypotheses to further elucidate the biology of
these tumors and derive additional benefits from this dataset.

Methods
Clinical samples. We identified 108 patients consented to the Total Cancer Car-
eTM protocol that had donated snap frozen lung squamous cell carcinoma tumor
tissues with linked molecular data as well as clinical history, tumor pathology, and
patient outcomes (Table 1, Supplementary Data 1, Supplementary Fig. 1). Samples
were collected under the Moffitt’s Total Cancer Care protocol (Liberty IRB #
12.11.0023) and Moffitt’s General Banking protocol (IRB #: USF 101642).
Described experiments were considered non-human subjects research and per-
formed under protocol MCC #50083. De-identified clinical attributes including
tumor cellularity, tumor necrosis, smoking status, and TNM staging can be found
in Supplementary Data 1. Cohort demographics not included in supplementary
data including age, race, and gender are available through dbGaP or by request to
authors. Frozen tissue samples were randomized with respect to stage, recurrence,
gender, vital status and age, were homogenized with a BioPulverizer (Biospec) in
liquid nitrogen, and split into two approximately equal aliquots for genomic and
proteomic analyses.

Expression proteomics. Homogenized tissue samples were resuspended in lysis
buffer containing 20 mM HEPES, pH 8.0, 9 M urea, 1 mM sodium orthovanadate,
2.5 mM sodium pyrophosphate, and 1 mM β-glycerophosphate (Supplementary
Fig. 13). After brief sonication, the lysate was cleared by centrifugation at 10,000 × g
at 15 °C for 30 min. Protein concentration was determined by Bradford Assay
(Coomassie Plus, Pierce), and 1 mg of total protein was digested for each sample
(Supplementary Fig. 14). The proteins were reduced with 4.5 mM DTT at 60 °C for
20 min followed by alkylation with 11 mM iodoacetamide at room temperature for
15 min in the dark. The sample was then diluted 4-fold to a final concentration of
2 M urea, 20 mM HEPES, pH 8.0, and trypsin digestion was carried out overnight
at 37 °C with an enzyme/substrate w/w ratio of 1/25.

The digested peptide solution was acidified with 20% TFA to a final TFA
concentration of 1%. After incubation at room temperature for 10 min, the solution
was cleared by centrifugation at 10,000 × g at 15 °C for 15 min. Sep-Pak cartridges
were washed with 5 ml acetonitrile followed by 3 ml and 4 ml washes with Sep-Pak
solvent A (aqueous 0.1% TFA). After acidified peptides were loaded, the cartridge
was washed with 1, 5, and 6 ml of Sep-Pak solvent A. Elution was carried out three
times using 2 ml of Sep-Pak solvent B (aqueous 40% acetonitrile with 0.1% TFA).
After freezing, the peptides were lyophilized to dryness over 2 days. For DIA,
aliquots (500 ng) of total protein digest were injected for each sample. Two aliquots
(100 μg each) of total protein digest were retained for TMT labeling. The remaining
material was saved for future experiments (e.g., phosphoproteomics).

The same UPLC conditions were used as described above for the TMT
experiments. The mass spectrometry method utilized MS1 scans alternated with
looped 18 narrow window data independent acquisition (DIA) tandem mass
spectrometry scans covering the m/z range from 450 to 1080. The MS/MS isolation
windows from 450 to 900 were set at 5 Th and the isolation windows from 900 to
1080 were set at 8 Th. Resolution was set at 70,000 for MS1 and 17,500 for MS/MS.
Twenty-five femtomoles of standard peptides (PRTC) were spiked in each LC-MS/
MS analysis to monitor instrument performance. The acquisition sequence can be
found in Supplementary Data 3.

The tandem mass tag (TMT) experimental design, specifically how pools and
tumors were assigned in 29 batches, can be found in Supplementary Data 3. After
Sep-Pak, 100 μg aliquots of tryptic peptides were lyophilized overnight and
dissolved in 100 μg of aqueous 100 mM Triethylammonium bicarbonate (TEAB)
buffer. TMT reagents (0.8 mg) were equilibrated to room temperature and 41 μl of
anhydrous acetonitrile was added to each tube and vortexed for 5 min. The TMT
labeling was carried out by mixing the TMT reagent with peptide mixture and
incubating at room temperature for 1 h. The labeling was quenched by adding 8 μl
of 5% hydroxylamine and incubating for 15 min. For quality control, an aliquot
(1 μl) of the labeled digest was analyzed by LC-MS/MS to determine the
effectiveness of the labeling.

After chemical labeling, LC-MS/MS analysis was performed on each TMT
channel followed by Mascot/Sequest searches, and the results were summarized in
Scaffold. Spectral counting was used to calculate percentage of peptides labeled
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with TMT reagent (Supplementary Data 3). One tumor sample (batch 05, channel
126) required relabeling. For two experiments, the labels for channel 128 and
channel 129 were switched (batch 24 and batch 29), and the tumor identification
numbers were corrected prior to downstream analysis. In addition, MaxQuant
analysis was also performed on each TMT channel to verify correct TMT channel
was labeled for each sample and to examine the crosstalk between channels60

(Supplementary Data 3).
Dried peptides were reconstituted in 20 mM ammonium formate, pH 10.

bRPLC separation was carried out on Dionex Ultimate3000 RSLC UPLC using a
4.6 mm ID × 100 mm column (XBridge, Waters) packed with C18, 3.5 μm particle
size at a 0.6 ml/min flow rate. The gradient setting was: 100% bRPLC A (aqueous
2% acetonitrile with 5 mM ammonium formate, pH 10) for 9 min, then the
concentration of bRPLC solvent B (aqueous 90% acetonitrile with 5 mM
ammonium formate, pH 10) was increased to 6% over 4 min, to 28.5% over 50 min,
to 34% over 5.5 min, and to 60% over 13 min, and then kept constant for 8.5 min
prior to re-equilibration at the original conditions. Twelve concatenated fractions
were analyzed with LC-MS/MS for each TMT experiment (Supplementary Fig. 15).

A nanoflow ultra-high performance liquid chromatograph (RSLC, Dionex,
Sunnyvale, CA) interfaced with an electrospray quadrupole-orbital ion trap mass
spectrometer (Q Exactive Plus, Thermo, San Jose, CA) was used for tandem mass
spectrometry peptide sequencing experiments. The sample was first loaded onto a
pre-column (2 cm × 100 µm ID packed with C18 reversed-phase resin, 5 µm
particle size, 100 Å pore size) and washed for 8 min with aqueous 2% acetonitrile
and 0.04% TFA. The trapped peptides were eluted onto the analytical column,
(C18, 75 µm ID × 50 cm, 2 µm, 100 Å, Dionex, Sunnyvale, CA). The 90 min
gradient was programmed as: 95% solvent A (aqueous 2% acetonitrile+ 0.1%
formic acid) for 8 min, solvent B (aqueous 90% acetonitrile+ 0.1% formic acid)
from 5% to 38.5% in 60 min, then from 38.5 to 90% in 7 min, and held at 90% for
5 min, followed by solvent B from 90 to 5% in 1 min and re-equilibration for 10
min. The flow rate on analytical column was 300 nl/min. Sixteen tandem mass
spectra were collected in a data-dependent manner following each survey scan
using 60 sec exclusion for previously sampled peptide peaks using normalized
collision energy 30. Twenty-five femtomoles of PRTC was spiked in each LC-MS/
MS analysis to monitor instrument performance. Total LC-MS/MS time was
87 days. The acquisition sequence can be found in Supplementary Data 3
(Supplementary Fig. 16).

Molecular genomics. Qiagen’s AllPrep DNA/RNA Mini kit was used for the
simultaneous purification of genomic DNA and total RNA from the homogenized
tumor tissue aliquot.

RNAseq was performed using the NuGen Ovation Encore Complete RNAseq
kit, which generates strand-specific total RNAseq libraries (Nugen, Inc., San Carlos,
CA). Following quality control screening on the NanoDrop to assess 260 nm/230
nm and 260 nm/280 nm light absorbance ratios as a metric for sample purity, the
samples were screened on the Agilent BioAnalyzer RNA Nano chip to generate an
RNA Integrity Number (RIN) (Agilent Technologies, Santa Clara, CA). An aliquot
of DNase-treated total RNA (100 ng) was then used to generate double-stranded
cDNA, which was initiated with selective random priming allowing for the
sequencing of total RNA, while avoiding rRNA and mtRNA transcripts. After
primer annealing at 65 °C for 5 min, a first strand cDNA synthesis reaction was
performed at 40 °C for 30 min using kit-supplied reverse transcription reagents
(Nugen). Second-strand cDNA synthesis was performed in a 70 µl reaction volume
at 16 °C for 1 h and the reaction was stopped by adding 45 µl of stop solution. The
double-stranded cDNA was then fragmented to ~200 bp with the Covaris
M220 sonicator (Covaris, Inc., Woburn, MA), followed by purification with
Agencourt RNAClean XP (Beckman Coulter Life Sciences, Indianapolis, IN). The
fragmented DNA was suspended in 10 µl of nuclease-free water, and end-repair
was performed in a 13 µl volume for 30 min at 25 °C, followed by a heat
inactivation at 70 °C for 10 min. A sample-specific indexed adapter was ligated to
the end-repaired DNA for 30 min at 25 °C, followed by strand selection, a 1.8X
volume RNAClean XP bead purification, and a second round of strand selection.
Thirteen cycles of library amplification followed by a 1.2X volume RNAClean XP
purification of the strand-selected library was performed, and finally, the library
DNA was resuspended in 30 µl of nuclease-free water.

Final libraries were screened for library fragment size distribution using an
Agilent BioAnalyzer High-Sensitivity DNA Chip. Libraries were then quantitated
using the Kapa Library Quantification Kit (Roche Sequencing, Pleasanton, CA),
normalized to 4 nM, and then sequenced on an Illumina NextSeq 500 150-cycle
high-output flow cell in order to generate ~100 million paired-end reads of 75-
bases in length for each sample (Illumina, Inc., San Diego, CA).

In order to assess the somatic mutation status in the squamous cell carcinoma
samples, a custom Agilent SureSelect panel covering 154 total genes (151 genes
from the ClearSeq Comprehensive Cancer Panel plus KMT2D, KEAP1, and
NFE2L2) was designed and used for the enrichment of DNA libraries generated
using the 200 ng input protocol of the Agilent SureSelect XT Library Kit (Agilent
Technologies, Santa Clara, CA).

Genomic DNA samples were qualitatively assessed using the Agilent
TapeStation and Genomic DNA screentape and the Qubit dsDNA high-sensitivity
assay was used to quantify the samples (ThermoFisher, Waltham, MA). The
samples were diluted in nuclease-free water to a concentration of 4 ng/µl at a

volume of 50 µl and fragmented in 50 µl AFA Fiber screw-cap microtubes using a
Covaris M220 sonicator (Covaris, Woburn, MA). The M220 Covaris instrument
settings to fragment DNA to a target size of 150 to 200 bp were: Duty Factor (10%),
Peak Incident Power (175), Cycles per Burst (200), Treatment Time (360 s), and
water bath temperature (4 °C).

The fragmented DNA samples were then qualitatively assessed using a high-
sensitivity DNA chip on the Agilent BioAnalyzer, and the fragmented DNA
samples with an average size of 150–200 bp were then processed using the Agilent
SureSelect XT library kit. The fragmented DNA samples were end-repaired using
Klenow and T4 DNA polymerases along with a T4 polynucleotide kinase at 20 °C
for 30 min. The blunt-end product was purified using Ampure XP beads with a
1.8X bead slurry to sample ratio (Beckman Coulter Life Sciences, Indianapolis, IN).
Next, the 3’ ends of the blunt-end products were adenylated using dATP and
Klenow fragment without exonuclease activity at 37 °C for 30 min. Following the
adenylation reaction, another 1.8X ratio bead purification was performed. The
adenylated product was then ligated to an Illumina sequencing compatible paired-
end adapter using T4 DNA ligase at 20 °C for 15 min. The ligated product was
purified using Ampure XP beads with a 1.8X ratio and the adapter-tagged purified
product was then amplified using the Agilent Fusion Pfu-based DNA polymerase.
An adapter-specific forward primer and an Illumina indexing reverse primer
provided by Agilent were used for amplification. The cycling parameters were as
follows: 98 °C for 2 min, 10 cycles of the following temperature program (98 °C for
30 s, 65 °C for 30 s, and 72 °C for 1 min), followed by a final elongation step for
10 min at 72 °C. The amplified product was purified using Ampure XP beads with a
1.8X ratio.

The DNA libraries were assessed for size and quantity using the DNA 1000
assay on the BioAnalyzer, and each DNA library was verified to have an average
peak between 225 and 275 bp. The concentration generated from the QC report
was used to calculate the input into the hybridization and capture reactions. In
preparation for the hybridization and capture reactions, 750 ng of each DNA
library was concentrated to a volume of 3.4 µl, and hybridization buffer, a
SureSelect blocking mix, an RNase blocking mix, and a capture library
hybridization mix were prepared. The blocking mix (5.6 µl) and DNA library
(3.4 µl) were mixed by pipetting, carefully sealed, and transferred to a thermal
cycler running the following program: 95 °C for 5 min, 65 °C for 16 h. After 5 min
at 65 °C, the thermal cycler was paused and 20 µl of the capture library
hybridization mix was added to the denatured DNA library while on the thermal
cycler. The combined mixtures were mixed quickly by pipetting and carefully re-
sealed before resuming the incubation at 65 °C for 16 h.

In preparation of the capture purification, streptavidin-coated beads were
washed three times using a binding buffer and a magnetic separation device and a
water bath was set to 65 °C. The enriched target DNA was captured using 200 µl of
washed streptavidin-coated magnetic beads and mixed on a Jitterbug at 1600 rpm
for 30 min at room temperature (Boekel Scientific, Trevose, PA). The beads in each
sample were then pulled down by the magnetic separator and washed with 200 µl
of SureSelect Wash Buffer 1 and re-captured for 15 min. The target-bound beads
were washed three times at 65 °C with SureSelect Wash Buffer 2 and resuspended
in 30 µl of nuclease-free water.

The enriched DNA libraries were PCR amplified and indexed using sample-
specific and universal primers. Following a 2 min 98 °C denaturation, 16 cycles of
PCR were performed as described above except that 57 °C was used as the
annealing temperature. The amplified enriched libraries were Ampure XP purified
with a 1.8X ratio and suspended in 30 µl of nuclease-free water. After size
assessment on the high-sensitivity D1000 TapeStation DNA assay, the samples
were quantified by Qubit and with the quantitative PCR-based Kapa Library
Quantification kit (Roche Sequencing, Pleasanton, CA). Samples were diluted to
4 nM, pooled and prepared for sequencing on the NextSeq 500 sequencer. Two
paired-end 2 × 75 v2 mid-output sequencing runs were performed in order to
generate a target coverage of >150X of the genes in each sample.

In order to assess CNV and loss-of-heterozygosity (LOH) status, the Affymetrix
CytoScan HD Assay was performed. The CytoScan HD assay uses approximately
750,000 SNP probes and 1.9 million non-polymorphic probes to report genome-
wide copy number aberrations at a resolution of 25–50 kilobases.

Starting with 250 ng of tumor-derived DNA diluted at 50 ng/µl, an Nsp I
digestion was performed at 37 °C for two hours in the presence of 1X bovine serum
albumin (BSA). Following heat inactivation at for 20 min at 65 °C, vendor-supplied
Nsp I adaptors were ligated to the digested sample DNA for three hours at 16 °C,
followed by heat inactivation at 70 °C for 20 min. The ligated DNA samples were
diluted four-fold and ligation-mediated PCR was performed in quadruplicate using
an Affymetrix-specific TITANIUM Taq PCR kit (Clontech Laboratories, Inc.,
Mountain View, CA) following the CytoScan Assay User Manual.

After 30 cycles of PCR amplification, 3 µl of the amplified product was screened
on a 2% agarose gel, and the PCR replicates were pooled, bead-purified, and
quantitated according to the protocol. Amplified DNA samples were DNase I
fragmented at 37 °C for 35 min, and the DNase was heat inactivated at 95 °C for
15 min. Two µl of fragmented PCR product was screened on a 4% agarose gel, and
the fragmented DNA was end-labeled by terminal deoxynucleotidyltransferase in
the presence of biotin for four hours at 37 °C followed by heat inactivation at 95 °C
for 15 min.

A hybridization buffer was prepared and added to the fragmented and labeled
DNA; after a 10 minute 95 °C denaturation, CytoScan HD arrays were hybridized
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at 50 °C for 16 h in an Affymetrix GeneChip Hybridization Oven 640. The
following day, the hybridized arrays were washed and stained with biotinylated
anti-streptavidin and a streptavidin-R phycoerythrin (SAPE) conjugate on the
Affymetrix GeneChip Fluidics Station 450 according to the protocol. Finally, the
arrays were scanned on an Affymetrix GeneChip Scanner 3000 7 G with autoloader
and inspected for any chip defects or artifacts. The raw data generated from the
assay were normalized, copy number status was calculated, and the data were
reviewed for quality using the Affymetrix Chromosome Analysis Suite
(ChAS) v. 3.1.

RNAseq. Sequence reads were aligned to the human reference genome (hs37d5) in
a splice-aware fashion using Tophat261, allowing for accurate alignments of
sequences across introns. Aligned sequences were assigned to exons using the
HTseq package against RefSeq gene models to generate initial counts by region62.
Normalization, expression modeling, and difference testing were performed using
DESeq263. RNAseq quality control includes RSeqC to examine read count metrics,
alignment fraction, chromosomal alignment counts, expression distribution mea-
sures, and principal component analysis (PCA). PCA and hierarchical clustering
were used to examine the data for outliers and identify any concerns about
instrument performance or experimental design prior to further analysis64.
RNASeq abundances were log2 transformed, then de-batched with COMBAT to
correct for kit-related batch effect (kit lot #: 1511366-B, 1412465-C, 1604466)65.
We were able to quantify expression for 19,559 genes across the entire cohort.

Targeted exome sequencing. Sequence reads were aligned to the reference
human genome (hs37d5) with the Burrows-Wheeler Aligner (BWA)66, and
duplicate identification, insertion/deletion realignment, quality score recalibration,
and variant identification were performed with PICARD (http://broadinstitute.
github.io/picard/) and the Genome Analysis ToolKit (GATK)67. All genotypes
(even reference) were determined across all samples at variant positions using
GATK. We also sequenced 12 normal blood samples using the same procedures in
order to remove artifacts and other false positives common to both tumor and
normal samples68. Various quality control measures were applied to determine
depth of coverage in each sample across the targeted genes. Sequence variants were
annotated using ANNOVAR69, and summarized using spreadsheets and a genomic
data visualization tool, VarSifter70. Additional contextual information was incor-
porated, including allele frequency from other studies such as 1000 Genomes
Project and the NHLBI Exome Sequence Project, in silico functional impact pre-
dictions, and observed impacts on function from databases such as ClinVar71.

Copy number analysis. The Affymetrix CytoScan HD microarray was used for the
identification of CNVs and Chromosome Analysis Suite (ChAS) software was
utilized for analysis. The array consists of 2,696,550 probes that include 743,304
SNPs and 1,953,246 non-polymorphic probes at an average spacing of 1 probe per
every 800 bp throughout the entire human genome. The average spacing of sam-
pling for RefSeq genes is 1 probe per 880 bp and 96% of genes are represented. To
infer ancestry of the samples, we used 395 HapMap samples (350,000+ common
SNPs with >95% call rates) as reference for four ethnically diverse populations.
SNP array data quality was assessed with Affymetrix “Median of the Absolute
Values of all Pairwise Differences” (MAPD), which estimates the variability of log2
ratios over the complete array with robustness to overcome high biological
variability as frequently found in tumor DNA samples. MAPD values below 0.25
were considered to be indicative for good quality. To calculate the CNV, the data
were normalized to baseline reference intensities using 270 HapMap samples and
90 healthy normal individuals included in ChAS. The copy number states were
determined by the Hidden Markov Model (HMM) algorithm using the human
genome (hg19/NCBI build 37). To prevent the detection of false-positive CNVs
arising due to array noise, only alterations that involved at least 50 consecutive
probes and alterations >400 kb in length were considered in the analysis of gains or
losses. Amplifications and deletions were analyzed separately. The detected CNVs
were evaluated separately in terms of frequency and length.

LC-MS/MS processing. Protein identification was performed using the RefSeq
human protein sequence database (version 78) supplemented with bovine and
porcine trypsin sequences. Thermo.RAW files were converted to mzML peaklists
using ProteoWizard msConvert72. We used three separate search engines, Myr-
iMatch (version 2.2.10165)73, MS-GF+ (version 20160629)74, and Comet (version
2016.01rev1)75 to assign peptide sequences to tandem mass spectra. Precursor
tolerance was set at 10 p.p.m. and fragment tolerance at 0.5m/z, allowing semi-
tryptic peptides using forward and reverse peptide sequences. Static modifications
of 229 Da on lysine and N-terminal (TMT label) and 57 Da on cysteines (car-
boamidomethylation) were specified; while dynamic modifications of 16 Da on
methionine (oxidation) and −17 Da on N-terminal Glutamine residues (pyr-
oglutamine) were included.

Protein assembly. Spectral identification files from Myrimatch, MS-GF+ and
Comet (2088 files total) were converted to IDPicker 3 index files (idpXML) using
IDPicker 3 (www.idpicker.org) and summarized in a single IDPicker database
file76. This assembly was filtered at a stringent 0.1% peptide-to-spectrum (PSM)

FDR while requiring a minimum of 2 distinct peptides per protein, as described
previously10. To increase the number of high-quality PSMs, we limited the
assembly to this set of proteins while relaxing the PSM to 1%. This process resulted
in the identification of 2,954,487 spectra representing 158,160 distinct peptides
corresponding to 8300 protein groups with a protein FDR of 4.75%. We further
limited the number of proteins to those observed in at least 10% of the tumors,
which resulted in a total of 4880 protein groups with a protein FDR of 1.3%. TMT
reporter ion intensities were normalized across each peptide to correct for mixing
variability and exported from IDP3 for further processing.

We used a method similar to internal reference scaling to derive protein group
expression values that were comparable across TMT 6-plex experiments77. Each of
the 29 TMT 6-plexes contained four tumors and two tumor pool replicates, totaling
174 samples (116 tumors, 58 pool replicates). The pools were assayed on every
TMT 6-plex to allow for controlling for variability between TMT experiments,
with one pool fixed in channel 126 and the other varying channel between
TMT experiments. Within each 6-plex injection replicate, spectral abundances
for each channel were normalized with IRON (using the console command
iron_generic --proteomics) against the m/z 126 reporter ion (ch-126 pool)78. For
each spectrum, log ratios were calculated vs. the ch-126 pool. Protein-level rollup of
log ratios (log ratioprotein) were calculated by averaging the individual spectral log
ratios within each protein group. Initial individual ch-126 protein-level abundance
estimates were calculated as the geometric mean of the unlogged spectral
abundances within each protein group.

Protein-level abundance estimates for all individual ch-126 pools were then
IRON normalized against the median ch-126 pool (“TMT-126 TMT13_01”;
Supplementary Data 3) across all injection replicates. Abundance scales
(Scaleprotein) for each protein group were then calculated as the geometric mean of
the normalized unlogged ch-126 protein-level abundances. Normalized protein-
level abundances for each injection replicate were then calculated by multiplying
the protein-level abundance scales times the protein-level ratio [Scaleprotein × exp
(log ratioprotein)]. Abundances were then log2 transformed and injection replicates
averaged to yield the dataset used for all further downstream proteomics analyses.

Consensus clustering. The top 1000 most variable proteins by median absolute
deviation were clustered using Consensus Cluster Plus with missing values ignored
(treated as “NA”)14. Consensus Cluster Plus parameters were pItem= 0.8, pFea-
ture= 1, clusterAlg= “hc”, distance= “pearson”, seed= 1234, innerLinkage
= “complete”, finalLinkage= “complete”, and corUse= “pairwise.complete.obs”.
Consensus clustering output provides cluster assignments and stability evidence for
the identified k clusters. The process is repeated for multiple values of k. The
purpose of the CDF plot (Supplementary Fig. 4A) is to find the smallest k at which
the change of the area under the CDF curve (Supplementary Fig. 4B) is small,
suggesting that there is not much benefit to further divisions. Here, we chose k=
5 since it was the first point which corresponded to less than 10% change in area,
and larger k would have only given small additional increases in area. For our
RNAseq-based assignments, we followed a similar strategy and took the top 1000
most variable genes by median absolute deviation (also observed in >90% of the
samples) and clustered with identical parameters.

Gene-based sample classification. Wilkerson et al. predictor centroids were used
to classify our RNAseq expression data according to the Wilkerson classification
scheme (classical, basal, secretory, and primitive)6.

Unless otherwise noted, missing values were ignored (treated as “NA”). We
tested for differential expression of genes/proteins using a nonparametric Wilcoxon
rank-sum tests, and we defined significantly differentially expressed as having at
least ±1.5 fold-change and a Benjamini-Hochberg adjusted P-value (Padj) less than
or equal to 0.05. Unless otherwise noted, these comparisons and others were made
for a given subtype or group vs. the rest of the cohort. For mutation and copy
number comparisons, we report the results of two-sided Fisher exact test P-values
for a given group compared to the rest of the population unless otherwise noted.
We used Spearman’s correlations for correlating copy number, RNA, and protein
expression with the “pairwise.complete.obs” argument in R, and we required at
least 10% non-missing values in both sets of values being correlated. Pathway
enrichment was assessed using Enrichr and MSigDB16,17. Principal component
analysis utilized the 4880 protein groups that were observed in >90% of the samples
with missing values imputed to 0.

Deconvolution approaches. The ESTIMATE R package was used to calculate
immune infiltration on RNAseq expression data18. RNAseq data were unlogged
and missing values imputed with 0 for the purpose of running CIBERSORT to
assess relative abundance of immune cell types7. CIBERSORT was run in relative
mode with the LM22 signature gene file, 100 permutations, and quantile nor-
malization disabled. Seventy five tumors passed the CIBERSORT goodness of fit
threshold P-value < 0.05 for subsequent analysis. xCell was run using the default
“N= 64” gene signature with the “RNA-seq?” option selected20.

Gene and protein nomenclature. We refer to genes and their protein products by
the official symbol provided by the Human Genome Organization’s Gene
Nomenclature Committee (HGNC). If a gene’s synonym is more commonly used,
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for example “NRF2” instead of the official “NFE2L2”, then we provide both. We
have referred to protein groups consisting of two or more similar gene symbols
(e.g., “DEFA1 DEFA1B”) as the first entry (e.g., “DEFA1”) to improve readability
and avoid confusion. Complete protein group information including naming is
provided in proteomics Supplementary Data 3.

Survival analysis. Cox regression for overall survival (OS) and recurrence-free
survival (RFS) was fitted to gene-level CNV, RNAseq expression, and protein
expression data. Time-to-event for OS was time in years from date of sample
collection to date of death and censored at date of last contact, and time-to-event
for RFS was time in years from date of sample collection to date of first clinically
confirmed recurrence if a patient recurred or died and censored at the date of last
contact. The event for OS was death and for RFS was recurrence or death.

Meta-analysis. Meta-analysis was performed using the metaphor R package79 on
gene-level CNV, RNAseq expression, and protein expression data. Three thousand
four hundred eighty-four genes and their corresponding proteins present in all
three datasets were used. When mapping gene symbols across datasets, in the few
cases of duplicated gene symbols in protein expression data (due to protein
grouping), one gene (protein group) was arbitrarily chosen to be included. A meta-
analytic random-effects model was fitted using empirical Bayes as the heterogeneity
estimator. The Storey q-value method was used to adjust p-values, and 15 genes
were found with a q-value less than or equal to 0.3. Hazard ratios with 95%
confidence intervals were plotted, and the upper limit of the confidence intervals
were truncated at 3.5 for better visualization.

Pathology. Tertiary lymph nodes (TLN) were scored using H&E slides from our
patient tumor samples (Supplementary Data 1). TLN scoring was 0—no TLN
identified, 1—few TLN identified, 2—many TLN identified, 3—a single outlier
sample with so many TLN that it was given its own score.

CD20 Immunohistochemistry assays (IHC) were run on the automated
Ventana Discovery XT platform (Supplementary Data 1). Anti-CD20 (Ventana
760–2531), a mouse monoclonal (L26) was used at predilute concentration (0.3 μg/
ml) with Cell Conditioning 1 solution for antigen retrieval along with a heated 16
min primary incubation. OmniMap anti-Ms-HRP for 16 min was used for
secondary incubation. Slides were counterstained with Ventana hematoxylin
(760–2021) and Bluing Reagent (760–2037) for 4 min each. Ventana Ms IgG
(760–2014) was used as the mouse IgG control and run under same conditions.
Human tonsil tissue sections were used as both a positive and Ms IgG control.

CD8/CD33 was run as dual IHC stain on the automated Ventana Discovery XT
platform (Supplementary Data 1). Anti-CD8 (Ventana 790–4460, predilute, 0.3 ug/
ml) a rabbit monoclonal (SP57) was diluted 1:15 with Dako antibody diluent
(S0809) to a final concentration of 0.02 ug/ml and anti-CD33 (Leica PA0555,
predilute, 10 mg/ml), a mouse monoclonal (PWS44). The combined antibodies
used Cell Conditioning 1 for antigen retrieval and a primary antibody heated
incubation time of 40 min. Anti-CD8 was visualized using OmniMap DAB and
anti-CD33 was stained with Ultra Map-Red. OmniMap DAB secondary
incubations were reacted for 4 min while UltraMap Red for 16 min. Ventana (Rb
IgG) (760–1029) was used as the rabbit IgG control and Ventana (Ms IgG)
(760–2014) was used as the mouse IgG control and run under same conditions.
Human tonsil tissue sections were used as the positive control for CD8/
CD33 staining.

The scoring of CD33+ intratumoral neutrophils (T-CD-33); and CD33+
stromal neutrophils (S-CD-33) were based on criteria for semiquantitative
assessment of TILs, described by Schalper et al. (Supplementary Data 1)80. A score
of 0 indicated the virtual absence of positive neutrophils in evaluation of either T-
CD-33 or S-CD-33; a score of 1+ indicated a relatively low amount of T-CD-33
compared against all nucleated cells in the tumor area or of S-CD-33 compared
against all nucleated cells in the stromal area (<30%); a score of 2+ corresponded
with a relatively moderate amount of positive neutrophils (30–60%); and a score of
3+ corresponded with a high amount of CD33+ neutrophils (>60%).

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
Proteomic data have been uploaded to PRIDE (https://www.ebi.ac.uk/pride/archive/).
The DIA QC data have been deposited under the accession code PXD010357 (https://doi.
org/10.6019/PXD010357). The TMT data have been deposited under the accession code
PXD010429 (https://doi.org/10.6019/PXD010429). Genomic and transcriptomic data
were uploaded to dbGaP with the accession code phs001781.v1.p1. Cohort demographics
not included in supplementary data including age, race, and gender are available through
dbGaP or by request to authors.

Code availability
The code used for the primary analyses can be found here: https://github.com/pstew/
proteogenomics_scc.
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