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Abstract

Proteogenomics is an area of research at the interface of proteomics and genomics. In this 

approach, customized protein sequence databases generated using genomic and transcriptomic 

information are used to help identify novel peptides (not present in reference protein sequence 

databases) from mass spectrometry-based proteomic data; in turn, the proteomic data can be used 

to provide protein-level evidence of gene expression and to help refine gene models. In recent 

years, owing to the emergence of next generation sequencing technologies such as RNA-Seq and 

dramatic improvements in the depths and throughput of mass spectrometry-based proteomics, the 

pace of proteogenomics research has greatly accelerated. Here I review the current state of 

proteogenomics methods and applications, including computational strategies for building and 

using customized protein sequence databases. I also draw attention to the challenge of false 

positives in proteogenomics, and provide guidelines for analyzing the data and reporting the 

results of proteogenomics studies.

Introduction

Proteomics is the comprehensive, integrative study of proteins and their biological functions. 

The goal of proteomics is often to produce a complete and quantitative map of the proteome 

of a species, including defining protein cellular localization, reconstructing their interaction 

networks and complexes, and delineating signaling pathways and regulatory post-

translational protein modifications 1.

Proteomic data is generally obtained using a combination of liquid chromatography (LC) 

and tandem mass spectrometry (MS/MS) 2, also referred to as shotgun proteomics. A key 

step in proteomics is how peptides are identified from acquired MS/MS spectra (Figure 1). 

Unlike genomics technologies, in which the DNA or RNA fragments are actually 

sequenced, in proteomics, peptides are most commonly identified by matching MS/MS 

spectra against theoretical spectra of all candidate peptides represented in a reference protein 
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sequence database 3. The underlying assumption is that all protein-coding sequences in the 

genome are known and accurately annotated as a collection of gene models, and that all 

protein products of these gene models are present in a reference protein sequence database 

such as Ensembl, RefSeq, or UniProtKB used for peptide identification (Box 1). Much of 

the subsequent data analysis and interpretation, including inference of the protein identity 4 

and protein quantification using the sequences and abundances of the identified peptides, are 

based on this assumption.

Box 1

Reference protein sequence databases

Ensembl

Ensembl is an automatic annotation system that generates gene models via integration of 

data from multiple sources, including gene prediction algorithms, comparative analysis of 

genomic sequences across multiple organisms, and mapping of transcriptional (cDNA) or 

translational evidence (protein sequence from UniProtKB categories 1 and 2, see below, 

and RefSeq) to the DNA sequence. In addition, annotations are imported from the 

organism-specific databases such as FlyBase, WormBase and SGD, each of which 

themselves provide reference protein sequences. The annotated gene models are divided 

into categories based on their functional potential and the type of supporting evidence 

available. The locus level categories (“biotypes”) include ‘protein-coding gene’, ‘long 

noncoding RNA (lncRNA) gene’, or ‘pseudogene’. At the transcript level, additional 

biotypes are introduced reflecting known or suspected functionality of that transcript (or 

lack of thereof), e.g. ‘protein-coding’ or ‘subject to nonsense mediated decay (NMD)’. In 

addition, a “status” is assigned at both the gene locus and transcript level: ‘known’ 

(represented in the HUGO Gene Nomenclature Committee (HGNC) database and 

RefSeq); ‘novel’ (not currently represented in HGNC or RefSeq databases, but supported 

by transcript evidence or evidence from a paralogous or orthologous locus); or ‘putative’ 

(i.e. supported by transcript evidence of lower confidence). For human and more recently 

mouse - the organisms with the high quality-finished genomes and where gene annotation 

efforts are most extensive - the GENCODE consortium provides refined gene annotations 

by integrating Ensembl automated predictions and the Human and Vertebrate Genome 

Analysis and Annotation (HAVANA) manual annotations. For these two organisms, the 

GENCODE annotations are steadily supplementing or replacing the Ensembl automatic 

annotations. Both Ensemble and GENCODE provide transcript and protein sequence 

databases available for download (in FASTA format supported by all MS/MS database 

search tools), along with annotation information and classification of entries into 

different categories.

RefSeq and Entrez Protein

The National Center for Biotechnology Information (NCBI) produces two databases 

suitable for MS-based proteomics: the Reference Sequence (RefSeq) database and Entrez 

Protein database. RefSeq is a result of manual curation of a collection of publicly 

available data for organisms with sufficient amount of data available, with an emphasis 

on cDNA data. It provides separate records for the genomic DNA, the transcripts, and the 
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proteins sequences corresponding to those transcripts. Entrez Protein is a much larger 

database containing sequences from multiple sources, including RefSeq and UniProtKB/

SwissProt protein sequences, but also translations of the GenBank transcripts and records 

from other sources.

UniProtKB

The UniProt Knowledgebase (UniProtKB) is an extensive effort to collect all sources of 

functional information on proteins. In addition to providing the database of protein 

sequences for each organism, it aims to supplement each sequence with rich annotation. 

This includes biological ontologies such as Gene Ontology, sequence classifications and 

annotation of the secondary structure, cross-references to other resources and databases 

(protein interaction data, biological pathways, etc.). It also uses a classification scheme to 

indicate five degree of evidence supporting each protein entry (1: evidence at protein 

level; 2: evidence at transcript level; 3: inferred from homology; 4: predicted; 5: 

uncertain). The database itself consists of two parts. The UniProtKB/Swiss-Prot subset 

contains manually-annotated records, whereas UniProtKB/TrEMBL subset contains 

automatically annotated records awaiting manual analysis. In generating the Swiss-Prot 

database, protein sequences arising from the same gene are merged into a single 

UniProtKB/Swiss-Prot entry (‘canonical sequence’). The extended database that 

includes, in addition to Swiss-Prot and TrEMBL, manually reviewed isoform sequences 

(e.g. alternative splice forms, polymorphisms, or sequence conflicts) can be also be 

downloaded in FASTA format.

A problem with this assumption is that many peptides are not present in a particular 

reference protein sequence database, or any reference database. Peptides may contain 

mutations and may represent novel protein-coding loci and alternative splice forms. One 

strategy to account for peptides with mutations is to use sequence tag-based database 

searching, where several short peptide sequence tags are extracted from the spectrum, and 

the list of candidate peptides is restricted to those peptides only that contain one of the 

extracted sequence tags 5. This allows for mutations in the sequences of candidate database 

peptides. Another strategy is to perform de novo sequencing 6, but this approach is 

computationally inefficient and error prone for large-scale studies.

An alternative, more comprehensive approach to identify novel peptides is termed 

proteogenomics. The term was first introduced in the literature in 2004 7, and was initially 

used to describe studies in which proteomic data is used for improved genome annotation 

and characterization of the protein-coding potential. The term has since been broadened to 

include any type of application where a proteogenomics-like approach is used to interpret 

MS/MS spectra. In a proteogenomics approach, novel peptides are identified by searching 

MS/MS spectra against customized protein sequence databases containing predicted novel 

protein sequences and sequence variants; such databases are generated using genomic and 

transcriptomic sequence information. Proteogenomics therefore not only provides protein-

level validation of gene expression and gene model refinement, but also enables the 

improvement of protein sequence databases (Figure 2).
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In recent years, the pace of proteogenomics research has greatly accelerated. Substantial 

improvements in the depth and throughput of mass spectrometry-based proteomics 

technologies have been achieved. The development of proteomics data repositories (Box 2) 

has also improved access to published large-scale proteomic datasets. Additionally, next 

generation sequencing technologies have dramatically changed the genome characterization 

landscape. As a result, proteogenomics is being increasingly applied to organisms with 

previously unsequenced or partially sequenced genomes – organisms for which proteomic 

and next generation DNA sequencing data can now be acquired in rapid and cost-effective 

manner. For many organisms, especially human and model organisms, a tremendous amount 

of the next generation transcriptome sequencing (RNA-Seq) 8 data is now available in the 

public domain. More recently, RNA-Seq technology has been extended to global analysis of 

translational products (ribosome profiling) 9. These data suggest the presence of thousands 

of novel transcripts on top of the reference transcripts defined by the ongoing genome 

annotation efforts such as RefSeq or GENCODE (Ensembl). Publicly available proteomic 

data may be mined to obtain protein-level evidence of expression of the novel transcripts 

nominated by genomics and transcriptomics technologies 10. Furthermore, as generation of 

both transcriptomic and proteomic data in parallel is becoming increasingly common, there 

is an emerging trend of identifying peptides and proteins using proteomic data by matching 

MS/MS spectra against sample-specific protein sequence databases generated with the help 

of RNA-Seq (and/or ribosome profiling data) from the same samples11–16.

Box 2

Mass spectrometry data repositories

An increasing number of proteomic datasets are now available in public repositories such 

as PRIDE (http://www.ebi.ac.uk/pride/archive/) and PeptideAtlas 

(www.peptideatlas.org), the two major repositories within the larger ProteomeXchange 

consortium (proteomexchange.org). Other existing data repositories include Proteomics 

DB (https://www.proteomicsdb.org), MassIVE (proteomics.ucsd.edu/ProteoSAFe) which 

includes data rescued after the collapse of the previously commonly used Tranche data 

repository, and Chorus (chorusproject.org). CPTAC data is released through a dedicated 

data portal (https://cptac-data-portal.georgetown.edu/cptacPublic/). PeptideAtlas and also 

GPMdb (thegpm.org) provide results of a uniform re-analyzes of raw data submitted to 

proteomics data repositories, including data generated as part of the cHPP project (http://

www.peptideatlas.org/hupo/c-hpp/). While GPMdb itself does not store raw data, it 

serves as a useful resource for identifying relevant datasets available in the public 

domain.

Proteogenomic approaches have been brought into the spotlight with recent large-scale 

human proteome studies reporting high numbers of identification of novel peptides and 

peptide variants 17–19. At the same time, there is a growing concern that the scale of these 

studies challenges our ability to accurately process the data and to estimate false discovery 

rates (FDR), especially for novel peptides. It is therefore an opportune time to review the 

current state of proteogenomics, including the computational strategies and error rate 

estimation methods that are central to this area of research.

Nesvizhskii Page 4

Nat Methods. Author manuscript; available in PMC 2015 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.ebi.ac.uk/pride/archive/
https://www.proteomicsdb.org
https://cptac-data-portal.georgetown.edu/cptacPublic/
http://www.peptideatlas.org/hupo/c-hpp/
http://www.peptideatlas.org/hupo/c-hpp/


Proteogenomics technology

Type of peptides identified in proteogenomics

Different classes of peptides identified in proteogenomics map to different locations on the 

genome (Figure 3). Peptides can be classified into intergenic (i.e. mapping to regions located 

between annotated gene models) or intragenic (mapping to genomic regions contained 

within or in close proximity to an annotated gene model). Intragenic peptides can be further 

categorized based on the annotation of the corresponding gene model (e.g. ‘protein-coding 

gene’, ‘long noncoding RNA (lncRNA) gene’, and ‘pseudogene’ 20 when using Ensembl 

(GENCODE) as reference; see Box 1). The majority of peptides identified in 

proteogenomics studies (at least for commonly studied, well annotated organisms) are 

known peptides that map to a protein coding gene. In eukaryotes (with an intron-exon 

structure of genes), most of these peptides are localized within an exon, and the remaining 

peptides - typically less than twenty percent - span an exon-exon junction. Novel peptides 

not found in any reference protein database include those that identify previously 

undiscovered protein-coding loci (intergenic peptides) and variant peptides (e.g. single 

amino acid variants, SAVs). Depending on the organism, these may also include peptides 

mapping to untranslated regions (3′ or 5′ UTR) or introns, peptides spanning the boundary 

between the coding region and the neighboring intron region (exon extensions), peptides 

spanning un-annotated (alternative) splice junctions, and out of frame peptides. Novel 

peptides may also provide evidence of protein expression for chimeric transcripts, 

transcripts thought to be non-coding RNAs, gene fusions, and RNA editing events, although 

such events are expected to be rare in proteomic datasets.

Generation of customized protein sequence databases

The key step in proteogenomics is peptide identification by matching acquired MS/MS 

spectra against a customized protein sequence database. Here we describe in more detail 

different strategies and data sources used to generate such databases. The final database is 

typically created by combining predicted protein sequences with an equal number of decoy 

sequences for subsequent FDR analysis, then appending known sequences (i.e. a reference 

protein sequence database) and the corresponding set of decoys. As a note of caution, 

proteogenomics users need to balance database comprehensiveness with the increased 

search time and elevated FDR that comes by searching larger databases (see below). The 

optimal choice is dependent on the goals of the experiments, and more specifically on the 

type(s) of novel peptides the study seeks to identify.

Six-frame translation of the genome—Predicted protein sequences can be generated 

using six-frame translation of the genomic sequence 21–25 using e.g., the getorf program in 

the EMBOSS package. Limitations of this strategy are the extremely large size of the 

resulting database (consisting of mostly artificially created non-existing protein sequences) 

and failure to capture exon-exon junction peptides (in eukaryotes). For example, direct 

translation of the human genome (UCSC v 19) results in a ~ 3.2 Gb protein sequence 

database 23, a 70 fold increase compared to ~ 45 Mb size of the corresponding Ensembl 

reference protein sequence database. Several computational strategies can be used to 

eliminate less likely sequences, including selection of the most likely frame based on 
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homology to known coding sequences, using predictions of the coding potential, and 

possibly excluding translated sequence that are shorter than a certain minimum length (e.g. 

30 amino acids) 26.

Ab initio gene prediction—Instead of direct six-frame translation of the genome, protein 

coding regions can be identified with the help of ab initio gene prediction algorithms, e.g. 

Augustus or Gene-ID, as was done in e.g. 25, 27, 28. Empirical information such as cDNA 

sequence data can be utilized as part of the gene prediction process as well 25 (for a review 

of gene prediction algorithms see 29). One advantage of using predicted exons is the 

knowledge of the reading frame. Identification of exon-exon junction peptides (including 

novel junction peptides) is also possible by generating theoretical junction peptides 

connecting all predicted exon sequences within a gene 27. The resulting protein sequence 

databases can still be very large, e.g. a 10 fold increase (selecting the gene prediction 

parameters allowing for maximum sensitivity) over the size of a typical reference protein 

sequence database 27. With the knowledge of the genomic coordinates of predicted exons, 

the computational efficiency of the peptide identification process can be improved by 

creating a compact representation of all possible splice junctions using the exon splice graph 

approach 25, 28, 30. This process merges transcripts with shared sequence, so that every 

predicted exon appears only once in the graph.

EST data—Protein sequences can be predicted using six-frame translation of EST data, 

which provides experimental evidence of transcription, including information about intron-

exon structure and splicing. While EST data is already used as part of gene annotation 

pipelines, it can be re-analyzed independently to predict a larger set of protein 

sequences 28, 31–33. Compared to the ab initio gene prediction strategy, ESTs provide a more 

direct way to generate peptide sequence candidates, including novel junction peptides and 

SAVs. The drawback is again a substantial increase in the size of the resulting database 

(~300 times the size of the reference protein sequence databases in human 32) due to 

unknown translation frame and the number of accumulated ESTs (e.g. almost nine million 

sequences in the human dbEST database at this time). For more efficient computational 

analysis, ESTs can be processed to generate a compressed protein sequence database, 

effectively eliminating most of the redundant sequences 32. Several additional filtering steps 

can be applied such as requiring that the ESTs map to the vicinity of a known gene, keeping 

only translated peptide sequence of a certain minimum length, and requiring that all peptide 

sequences are confirmed by multiple ESTs (to minimize sequencing errors). ESTs can also 

be clustered to generate a set of putative exons and introns, followed by generation of a 

compact protein sequence database using the splice graph approach 28.

Annotated RNA transcripts—Protein sequences can be generated using three-frame 

translation of annotated RNA transcripts from e.g. Ensembl (GENCODE) or RefSeq, i.e. 

going beyond the annotated coding sequence and translation frame. This allows 

identification of alternative translation initiation sites (TIS) and out-of-frame peptides, but 

without the sequence space explosion typical of other strategies. For example, translation of 

the human GENCODE v 7 annotated transcripts (mRNA of 84,408 annotated protein 

sequences), results in a ~200 MB database size 23, i.e. only 4.5 fold increase compared to the 
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size of the corresponding reference protein sequence database. Customized protein sequence 

databases generated this way can include translations of RNA transcripts annotated as 

pseudogenes or lncRNAs 34. Given the explicit knowledge of the exon-intron structure, 

mRNA transcript annotations can be used to generate theoretical peptides corresponding to 

all combinatorial exon-exon junction possibilities.

RNA-Seq data—Customized protein sequence databases can be generated based on 

transcript information from RNA-Seq data. Transcript reconstruction using RNA-Seq data 

starts with read mapping, i.e. alignment of short reads to the reference genome using e.g. a 

popular Bowtie/TopHat combination or ultra-fast aligners such as STAR (reviewed in 35). 

The splice junctions reported by the aligner (keeping junctions supported by a certain 

minimum number of reads only) can be extended into the exon regions on both sides of the 

junction and then translated to generate a comprehensive database of splice junction peptide 

sequences 11, 13. Full transcriptome reconstruction (assembly) can be achieved using e.g. 

Cufflinks (for a review of transcriptome assemblers see 36). Genome-guided assembly 

approach is recommended for organisms with referenced genomes, whereas genome-

independent (de novo) strategy can be applied to any organism but requires more advanced 

expertise and bioinformatics infrastructure (evaluated for proteogenomics applications 

in 37). Reconstructed transcripts are aligned using BLAST or compared using genomic 

coordinates to the reference transcripts to remove redundant sequence, and additionally 

filtered requiring a certain minimum level of abundance (estimated using mapped read 

counts). Remaining transcript are translated, again optionally keeping predicted protein 

sequences of a certain minimum length 15. Ribosome profiling data can be used in 

essentially the same way 12. The process can be automated using several recently described 

bioinformatics tools. Using Galaxy-P system the users can convert input RNA-Seq data into 

three types of protein sequence databases suitable for proteogenomics analysis: databases 

containing novel single amino acid polymorphisms, databases containing novel splice 

junction sequences, and reduced databases only containing proteins corresponding to 

transcripts above a certain minimum level of expression 38. CustomProDB 39 performs 

similar tasks and also incorporates variant sequences extracted from public databases (see 

below). Protein sequence databases can also be generated from large scale RNA-Seq data 

aggregated from multiple studies using the splice graph approach 25, 40.

Variant sequences—Protein sequences in a reference database can be extended to 

include protein changing variants (SAVs, but also single amino acid deletions and 

insertions) catalogued in various public resources. For each variant, the reference sequence 

is modified accordingly and a larger sequence region covering the variant site is added as an 

independent entry to the customized database 41. SAVs can be downloaded from the NCBI 

dbSNP database, and supplemented with known disease mutations from the Online 

Mendelian Inheritance in Man (OMIM) and the Protein Mutant Database (PMD) 41. When 

building customized databases from RNA-Seq data, customProDB 35 can combine SAVs 

and short insertion and deletions (identified from RNA-Seq) with known SAVs extracted 

from the dbSNP database. RNA editing events can be detected via the bioinformatics 

comparison of RNA and DNA data from the same samples using publicly available tools 42.
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Other specialized databases—Reference RNA transcripts can also be supplemented 

with predicted transcripts from more specialized databases. These include: the ECgene 

database, which applies less stringent procedures for construction of gene models and 

transcript assembly to encompass a larger number of alternative splicing events (see e.g. 43); 

the Pseudogene Database (http://pseudogene.org/), the non-coding RNA sequence database 

NONCODE 44 (used in 17) or the Broad Institute collection of lincRNAs and transcripts of 

unknown coding potential (TUCPs) 45 (used in 18). The ChiTaRS database of chimeric 

RNAs transcripts 46 represents read-through events and gene fusions identified in the 

literature and using computational analysis of ESTs and RNA-Seq data (used in 47).

Peptide identification using customized protein sequence databases

In proteogenomics, and in proteomics in general, successful peptide identification depends 

on the completeness of the protein sequence database, the sensitivity and specificity (error 

rates) associated with a particular peptide identification strategy, the computational time and 

resources necessary for processing the data, and the ability to interpret the resulting findings 

in a biological context. Many of these issues I have reviewed previously 3; below, I focus on 

these aspects from a proteogenomics perspective.

Effect of the database size—The ability to identify the correct peptide sequence that 

generated an experimental MS/MS spectrum using the database search approach depends on 

multiple factors. First, it requires that the peptide sequence is present in the searched protein 

sequence database. However, the more candidates there are to be scored against an 

experimental MS/MS spectrum, the higher the likelihood of the best scoring match to the 

spectrum to be incorrect, and also the more difficult it becomes to distinguish between true 

and false identifications 3. As a result, while searching MS/MS spectra against large 

proteogenomic databases may result in a (relatively small) number of novel peptide 

identifications, the total number of identified peptides may drop substantially compared to 

conventional reference sequence database searching 26, 48 (e.g. 30% or higher when using 

six-frame genome translation 26). Searching larger databases also increases the 

computational time, and requires additional modifications to common data analysis 

workflows, e.g. splitting the searched database into multiple chunks 24. Thus, a key 

consideration in proteogenomics is the selection of the most optimal strategy for generating 

the custom sequence database, i.e. finding the right balance between the completeness of the 

database and its size.

Strategies for improving the sensitivity of peptide identification—Strategies 

known in proteomics to increase the number of identified peptides include application of 

multiple database search tools to the same dataset 49 and post-database search re-scoring of 

peptide identifications via combining multiple sources of information using machine 

learning techniques 3. One complementary strategy to reduce search space is to fractionate 

peptides prior to LC-MS/MS analysis based on a certain physico-chemical or sequence 

property of the peptides. For example, using isoelectric focusing (IEF), MS/MS spectra from 

a particular IEF fraction can be scored only against candidate peptides having a predicted pI 

value expected for that fraction (pI-restricted database search) 50.
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Improved sensitivity of peptide identification in proteogenomics can also be achieved using 

a multi-stage data analysis strategy. This type of analysis can start by searching a reference 

protein sequence database to interpret a majority of MS/MS spectra, and then proceed to 

searching larger databases to interpret the MS/MS spectra that remain unidentified after the 

initial search 33, 51, 52. In this manner, the results of the initial search are used to refine the 

customized database used in subsequent searches. For example, the most likely frame of 

translation can be inferred with the help of high scoring peptides identified in the initial 

search 26. Similarly, the search for alternative TIS can be restricted to genomic regions 

containing a protein coding gene identified by high confidence known peptides; a novel 

alternative splice junction can be considered only if both corresponding exons are supported 

by high scoring exon mapping peptides.

Estimating identification confidence—Accurate statistical assessment of the 

identification confidence for different classes of peptides is a crucial step in proteogenomics. 

As with proteomics in general, to prevent accumulation of error rates when going from 

peptide to spectrum match (PSM) level to unique peptide ion level 3, redundant PSMs 

should be collapsed and represented by the highest-scoring PSM. Identifications of the same 

peptide sequence from multiple peptide ions (e.g. doubly and triply charged ions) or in 

multiple forms (e.g. unmodified and oxidized methionine forms) should also be collapsed 

(as a conservation approach), or treated probabilistically 53. In multi-stage strategies, in 

which the searched protein sequence database is constructed based on the results of a 

previous search, it is imperative to generate and include in the customized database an 

appropriate number of decoy sequences at each stage of the analysis 3. In addition to the 

estimation of global error rates (FDR), it is important to estimate the confidence in each 

individual event (e.g. posterior probability of true peptide identification; for a discussion on 

this and related statistical concepts in MS based proteomics see e.g. 3). When a particular 

protein or, in proteogenomics, a particular ‘event’ (such as a novel coding region or a splice 

junction) is identified from multiple peptide ions and or multiple unique peptides, the 

posterior probabilities of the supporting identifications can in principle be combined to 

calculate the probability score for that event 53, 54. Such models, however, have not yet been 

tested on proteogenomics data.

Class-specific analysis and FDR estimation—When estimating the posterior 

probabilities for individual peptides and the specific events that they define (e.g. novel 

coding regions) it is necessary to take into consideration the difference in the likelihood of 

identifying different classes of peptides11, 50. The direct analogy in conventional proteomics 

data analysis is performing enzyme unconstrained MS/MS database searches (i.e. allowing 

non-tryptic peptides) when analyzing data generated from trypsin digested protein samples. 

As non-tryptic peptides are required to have stronger supporting evidence (e.g. database 

search scores) compared to tryptic peptides to obtain the same level of confidence 3, novel 

peptides identified using proteogenomics approaches should be required to have stronger 

evidence compared to known peptides. Further, among the novel peptides, peptides 

identifying very rare events (e.g. intergenic peptides suggesting the presence of novel 

protein-coding loci) should require stronger supporting evidence than those identifying more 

common events (e.g. alternative TIS for known protein coding regions). Thus, when using 
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the target-decoy strategy for FDR estimation, the analysis should be done separately for 

each class of peptides (at least known vs. novel, but ideally also separately for different 

categories of novel peptides) to compute the class-specific FDR (Figure 4). Similarly, when 

using more advanced approaches involving computation of posterior probabilities using e.g. 

the model-based approach of PeptideProphet 3, the underlying statistical models should 

explicitly incorporate the peptide class. Note that in many published proteogenomics studies, 

including two recent large-scale studies in human 17, 18, the same database search score 

cutoffs were applied across all categories of peptides, known or novel. Thus, it is likely that 

the error rates among the novel peptides reported in these studies are substantially higher 

than acknowledged.

False peptide identifications of non-random nature—Incorrect peptide 

identifications result from two different sources: random high scoring matches of MS/MS 

spectra to unrelated sequences and matches to peptides homologous to the true peptides. 

Regardless of how the decoy database is generated (e.g. reversing or randomizing target 

protein sequences), false identifications of the second kind are likely to be underestimated3, 

especially when using large customized protein sequence databases. A common scenario is 

false identification of a novel peptide from an MS/MS spectrum acquired on a chemically 

modified, highly abundant peptide ion with a mass shift introduced by the chemical 

modification equaling the mass difference between the novel and the unmodified known 

peptide 33, 55. As a general guideline, it is advisable to compare, e.g. using BLAST, the 

sequence of each identified novel peptide against the sequences of all peptides in the 

reference database to detect and eliminate (or at least clearly mark) all identifications of 

novel peptides with a high degree of homology to a known sequence. When it is important 

to keep such peptides (e.g. when specifically searching for SAVs), it is necessary to check 

that the observed mass shift between the novel peptide and the closest homologue(s) in the 

reference database does not match the mass of one of the common chemical or post-

translational modifications (e.g. oxidation, deamidation, carbamylation, acetylation, 

etc.) 25, 33, 41, 50, 51, 55. The sample-specific list of the most common chemical modifications 

for a particular biological sample can be established using ‘blind’ modification search 

tools 56. Furthermore, I/L substitutions cannot be distinguished using mass spectrometry, 

and thus such peptides should not be included in the list of identified peptide variants.

Levels of data summarization and inference of novel events—In proteomics, 

results are typically presented as a list of identified proteins (protein-level summary), or 

genes (gene-level summary), along with a list of identified unique peptides, with FDR 

estimated at these levels. In proteogenomics, these levels of data summarization are not 

sufficient and should explicitly include the type(s) of events that a particular proteogenomics 

study seeks to identify. For example, ‘Novel coding region’ or ‘TIS’ identification events 

should be provided as separate lists, in addition to the protein/gene levels of data 

summarization and the supporting unique peptide evidence. The same peptide sequence may 

arise from multiple different genomic locations (e.g. gene paralogues, or a protein-coding 

gene and a pseudogene). Such ‘shared’ peptides (‘multi-mapped’ in the language used in the 

transcriptome literature) do not provide unambiguous evidence of protein expression at a 

particular locus 4. Furthermore, a novel peptide mapping to single location in the genome 
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could also have multiple (ambiguous) interpretations, e.g. as supporting one event type for 

one transcript of a gene and another even type for another transcript of the same gene (e.g. 

out of frame peptide and intronic/UTR peptide). Thus, the principle of parsimony in creating 

the summary lists described previously for proteomics 4, i.e. presenting multiple protein 

sequence database entries identified by the same peptides as indistinguishable groups, 

should be extended and applied to proteogenomics studies as well.

Defining novel peptides—The results of a proteogenomics analysis, and in particular the 

peptides reported as novel, depend on the choice of the reference database selected in that 

study, and even the specific version of that database. As discussed above, multiple reference 

protein sequence databases exist for many organisms, and these databases vary in terms of 

their completeness and annotation quality. Furthermore, all major reference databases are 

constantly updated, with new entries added and some removed with each new version. 

Therefore, in proteogenomics studies, peptides identified using customized protein sequence 

databases should be mapped to all major reference databases available for the organism 

under investigation and to most common sample contaminants, and protein annotations 

available for the closest matches in those databases should be reported as part of the final 

output.

Proteogenomics applications

The feasibility of various proteogenomics applications has been discussed and demonstrated 

in multiple studies in human and in many model organisms, including in Plasmodium 

falciparum 57, C. elegans 58, Drosophila melanogaster 22, Arabidopsis thaliana 21, 30, and 

Anopheles gambiae 59 (Supplementary Table 1). Only few of these studies, however, 

exhibited attributes of a directed, comprehensive proteogenomics project - a consistent and 

coordinated effort on the part of both genomics and proteomics groups, with a functioning 

feedback mechanism in which the sequences of the identified peptides are passed to (and 

used by) the genome annotators. The ENCODE project, and its sub-project GENCODE, 

made attempts to include proteomic data in their work on the improved annotation of the 

mouse 27 and human 23 genomes. The limited extent of these and other early 

proteogenomics studies could be attributed in part to a lack of sufficient amount of 

proteomics data, low sensitivity of the previous generations of proteomic technologies, and 

lack of understanding of proteomic data by the genomic community. As a result, most 

proteogenomics studies in human and model organisms, including recent large-scale 

studies 17, 18, focused on a less ambitious but nevertheless important task of providing 

protein-level ‘validation’, i.e. confirmation of the protein-level expression of putative gene 

models or sequence variants predicted from the genome sequence and often supported by 

transcriptional evidence.

Recent improvements in proteomics technologies, coupled with wide availability of next-

generation sequencing data, have led to a resurgence of proteogenomics studies. In human 

and mouse, the focus of many such studies has shifted toward detection of abnormal protein 

variants (e.g. SAVs) across cohorts of cancer tissue samples 60, exemplified by the recent 

publication from the Cancer Proteomic Tumor Analysis Consortium (CPTAC) 19. Several 
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common proteogenomics applications, and the type of new information they seek to obtain, 

are discussed in more detail below.

Novel protein-coding regions—The possibility of using MS/MS proteomics data for 

discovery of novel protein-coding regions, and refinement of gene boundaries for previously 

annotated ones has been discussed since the early days of proteomics 31, 61. This is most 

commonly achieved by searching MS/MS spectra against customized databases generated 

using direct six-frame genome translation, three frame translations of protein coding 

sequences predicted using initio gene prediction algorithms, or using six-frame translation of 

the transcripts reconstructed from the EST or RNA-Seq data (three-frame if strand specific 

RNA-Seq). The efforts to discover novel protein-coding regions are likely to be most fruitful 

for less studied, non-model organisms 25, 30, 62 – the organisms that have not benefitted from 

extensive genome annotation efforts. Even for well annotated higher eukaryote organisms, 

recent studies report a substantial numbers of novel identifications. For example, a deep 

proteome profiling study (to the depth of 13,078 human and 10,637 mouse proteins) 

reported the identification of 98 and 52 previously undiscovered protein-coding loci in 

human and mouse, respectively, using the using six-frame genome translation approach 50.

Short open reading frames and new translation initiation sites—The 

computational prediction of short open reading frames (sORFs), and frames which use non-

AUG initiation codons, is particularly difficult 62. It has been suggested that sORFs may 

account for an additional 10% of the number of protein-coding elements in eukaryote 

genomes 63. These sORFs may be located within a genomic region of an annotated 

transcript, (e.g. in the 5′ UTR located upstream of a known open reading frame (uORFs) or 

can result from a frame-shift within the coding sequence of the ORF), or within unannotated 

transcripts or intergenic regions thought to be lacking protein-coding capacity. With the 

advent of ribosome profiling methods, strong experimental evidence for the existence of 

protein-coding sORFs and non-AUG translation initiation sites have emerged (reviewed 

in 62). While ribosome profiling and conventional RNA-Seq demonstrate the protein-coding 

potential of these sORFs, proteogenomics provides additional evidence for the production of 

a stable protein product encoded by them12, 64, 65. The search for peptides confirming 

sORFs and novel TIS is likely to be most fruitful with one or several additional sample 

preparation steps. The likelihood of identifying a peptide from a sORFs is greatly increased 

with fractionation of protein samples prior to LC-MS/MS analysis to enrich for low 

molecular weight proteins 65. Detection of novel TIS generally requires conclusive 

identification of N-terminal peptides which can be enriched prior to MS analysis using 

protein N-terminus labeling approaches (N-terminal proteomics 66).

In a recent study, N-terminal proteomics data was analyzed using a customized protein 

sequence database created using publicly available ribosome profiling data. The study 

revealed, via the identification of peptides mapping to 5′ UTR regions or to downstream in-

frame AUG codons, a large number of proteins or protein isoforms with different (compared 

to the reference annotation) N-terminal extensions or truncations 67. It has been noted that in 

human and mouse proteomes up to 20% of all identified protein N-termini point to 

alternative TIS, incorrect assignments of the translation start codon, the use of translation 
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initiation at near-cognate start codons, or alternative splicing events resulting in a different 

N terminal protein sequence 67.

Alternative splicing—Alternative splicing is a major source of cell-specific and tissue-

specific protein variation in higher eukaryotes 20, 68. Most early proteogenomics studies 

were based on the analysis of EST data, with MS/MS spectra searched either directly against 

six-frame translation of the EST sequences 32, or against customized databases of alternative 

splice transcripts, e.g. the ECgene database constructed using the EST data with a help of 

gene-modeling algorithms 69. In recent years, the analysis of alternative splicing using 

proteomic data has been increasingly relying on the availability of RNA-Seq transcriptome 

data for generation of customized databases from six-frame translations of reconstructed 

transcripts 14, 37 and predicted splice junctions 11, 13. A recent proteogenomic analysis of the 

HeLa cell line using a custom splice junction database created from the sample-specific 

RNA-Seq data resulted in the detection of 57 novel splice junction peptides (out of 24,834 

novel transcript junctions identified in RNA-Seq data), representing an array of different 

splicing events, including skipped exons and alternative donors and acceptors sites 13.

Sequence variants—Identification of sequence variants using genomics technologies, 

including disease associated variants, is a long standing area of research. As with alternative 

splicing, due to an overwhelming number of variants detected in the genome and 

transcriptome data, understanding which of those variants are functional is a challenging 

task 70. Detection of these variants at the protein level provides an opportunity to reduce the 

set of candidates for subsequent investigation of their functional role or clinical relevance. 

The ability to search for all possible amino-acid mutations using MS/MS data has been 

implemented in several commonly used database search tools (e.g. Mascot, X! Tandem), but 

such an approach is computationally inefficient (sequence-tag based database search 

strategies, also shown in Figure 1, allow minor speed improvement 5, 55). Even more 

important than search speed is that any strategy that considers all possible amino-acid 

mutations quickly loses the sensitivity due to a very large increase in the search space, and 

the error rates become a serious concern. Sequence variants can be identified in a more 

targeted way by searching against translated ESTs 32, but more commonly used approach 

now involves building customized databases of protein sequences explicitly incorporating 

known variant peptides.

In one such recent example, 81 distinct variant peptides were identified in proteomic data 

from three colon cancer cell lines, and 204 variants in three lung cancer tissues, by searching 

MS/MS spectra against a custom CanProVar database 41. As with other applications 

discussed above, when the same samples are profiled using both RNA-Seq and proteomics, 

the custom sequence database for variant peptide identification can be generated from the 

RNA-Seq data 14, 37, 71, 72. Using this strategy and one of the most comprehensive 

proteomic datasets to date, 38 and 88 nonsynonymous variants were detected at the peptide 

level in two different strains of rat 14. Furthermore, the identification of more than a 

thousand of variant peptides were reported in a recent comprehensive study using 

proteomics data from a large cohort of the Cancer Genome Atlas (TCGA) initiative cancer 
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tissue samples 19. While this number is impressive, it is necessary to keep in mind the 

difficulty with estimating FDR for variant peptides as discussed above.

Other sources of genome variation—There are multiple other sources of genome 

variation of high biological significance potentially resulting in novel or variant protein-

coding transcripts. These include RNA-editing, which occurs during post-translation 

processing and whose role and biological significance has yet to be fully understood. The 

extent to which these events are present in the transcriptome is being debated (reviewed 

in 73), but it is likely to be less than what was initially thought 74. Proteogenomics may 

provide valuable protein-level evidence for some of these putative RNA editing events 14. It 

may also provide evidence of protein expression for novel gene fusions and chimeric 

transcripts 47 and transcripts annotated as pseudogenes 27. The function and coding potential 

of transcripts annotated as long non-coding RNAs is another very active area of research 75. 

If expressed, these proteins are likely to be at a very low level, meaning that these events 

have a very low likelihood of being detected in a typical proteomic dataset 76. Thus, extra 

caution should always be applied with respect to FDR estimation when looking for evidence 

of such peptides in proteomic data.

Non-model organisms—While human and model organisms have received extensive 

attention regarding their genome annotation, this is clearly not the case for organisms with 

unsequenced or partially sequenced genomes where consistent gene annotation efforts are 

lacking. Thus, proteogenomics can be very impactful for non-model organisms. Until 

recently, the genome and cDNA sequencing data for non-model organisms were scarce. As a 

result, the reference protein sequence databases for these organisms were incomplete and 

poorly annotated. This gave rise to homology-based proteomic data analysis strategies - a 

combination of de novo peptide sequencing (Figure 1) and sequence similarity searching 

against protein databases of homologous organisms 77, 78.

More recently, with the advent of next-generation sequencing technologies, it has become 

possible to rapidly and cost-effectively determine the genome sequence of any species of 

interest. While these data can then be analyzed using computational gene annotation 

pipelines, automated approaches make a relatively high number of annotation errors. 

Importantly, in the absence of expert manual curation, especially for organisms for which 

related sequences are not available (e.g. many microorganisms) to allow homology-guided 

annotation, proteomic data often provides the only source of experimental evidence 

confirming the protein expression of computationally predicted gene models. The 

significance of proteogenomics for non-model organisms has been illustrated using 

microbial organisms and plants. These efforts have been recently reviewed in 79 (for an 

extended list of published proteogenomics efforts for a variety of organisms see 

Supplementary Table 1). Prokaryotes are particularly amenable to proteogenomics analysis 

due to their smaller genomes, single-cell organization (i.e. intraindividual and 

interindividual homogeneity), and lower dynamic range of their proteomes which allows 

generation of fairly complete proteome profiles with less effort. The benefits of performing 

simultaneous proteogenomics analysis of data from multiple related species, termed 

comparative proteogenomics, have also been discussed 80, 81.
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Metaproteomics—Proteogenomics has a potential to make substantial contributions in the 

analysis of community samples such as microbial communities studied in environmental 

genomics and microbiomics 82, 83. This area of research, referred to as metaproteomics or 

community proteogenomics 79, 84 is concerned with untangling the interplay between many 

different organisms contained within the analyzed communities. At the same time, 

metaproteomics presents great challenges. The organisms that constitute such communities 

are typically poorly annotated (and thus their known reference proteomes are very 

incomplete), but moreover, the presence of multiple highly homologous organisms presents 

a challenge for conclusive protein identification and quantification 85. Several recent studies 

highlighted the importance of the proper generation of customized protein sequences 

databases for metaproteomics 85–87 using next-generation sequencing data obtained for 

single microorganisms, along with protein sequences parsed from RefSeq and UniProtKB at 

different taxonomic levels. The large size of the customized protein sequence databases 

typical of metaproteomics studies requires very substantial computational resources, reduces 

the sensitivity of peptide identification, and increases the rate of misidentifications. 

Furthermore, because the ability to quantitative compare the abundances of proteins from 

different organisms within the community samples is very important, it is necessary to apply 

label-free protein quantification strategies designed to accurately deal with a large number 

of shared peptides mapping to multiple homologous proteins in different organisms 88.

Concluding remarks

Early proteogenomics efforts were hampered by technical challenges resulting from an 

overall low sensitivity of proteomics technology. The last several years, however, have 

witnessed great improvements in MS instrumentation, including new instrument types, 

alternative fragmentation mechanisms, and advanced data acquisition strategies 1, 2. These 

developments, coupled with improvements in protein separation and enrichment methods for 

proteomics applications, have resulted in a substantial increase in the depth of protein 

detection, approaching that of global transcriptome profiling studies 1. Significant advances 

have also been achieved in the area of top-down proteomics – a technology that offers 

complementary information useful for proteogenomic characterization 89. A substantial 

challenge in proteogenomics has been lack of a sufficient amount of proteomic data in the 

public domain necessary to make a significant contribution to genome annotation efforts, in 

part due to the “data hoarding” mentality prevalent in the proteomics community in the early 

days. There has been a clear shift toward more open data sharing in proteomics, further 

strengthen by new requirements from funding agencies 90. As a result, an increasing number 

of proteomic datasets are now available in public repositories 91.

Although the depth of RNA-Seq data is still greater than that of proteomic data, 

transcriptome data contains elements not expected to comprise mature proteins (e.g. a large 

number of nonfunctional transcripts) 92. Ribosome profiling data provides evidence of 

translational activity, and thus can be used to identify novel transcripts that are more likely 

to be protein-coding. Still, these data do not provide direct evidence of expression of a 

stable, functional protein. Thus, despite the clear success of RNA-Seq and related 

technologies in uncovering the previously uncharacterized diversity of the genome, 

proteomic data plays a critical role in identifying functional transcripts among the many 
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novel transcripts nominated by genomics and transcriptomics technologies. Joint analyses 

using multi-omics data should be particularly informative when done in close collaboration 

between the genomics and proteomics group, with biological experiments carefully designed 

to generate paired genomics/proteomics datasets.

Incorrect peptide and protein identifications have been a long standing problem in 

proteomics 3. In the early days, many datasets with very high FDR were published, 

prompting the calls for establishing robust data analysis and publication guidelines 93. 

Proteogenomics presents additional challenges that are not yet fully acknowledged. I have 

highlighted the most significant sources of false discoveries in proteogenomics, including 

application of the same filtering thresholds to both known and novel peptides, incorrect 

identification of novel peptides highly homologous to known sequences, and making 

unsupported conclusions based on shared peptides. Future efforts should focus on 

establishing data analysis guidelines for proteogenomic studies, extending some general 

guidelines I present here (Box 3).

Box 3

Minimum guidelines for proteogenomics studies

Here, I suggest some guidelines for reporting novel peptides identified in a 

proteogenomics analysis.

• Customized protein sequence databases used to identify novel peptides should 

be made available upon publication.

• Peptides identified using customized protein database should be queried against 

all major reference databases available for the organism of interest (e.g. RefSeq, 

UniProtKB, and Ensembl, and also common sample contaminants). For each 

peptide reported as novel, the closest reference peptide sequence(s) should be 

listed, along with the accession numbers of the corresponding proteins.

• FDR estimation procedure applied to novel peptides, and how it is different than 

that applied to known peptides, should be clearly described. To the degree 

possible, different categories of novel peptides should be analyzed separately.

• When reporting novel peptides homologous to a reference sequence, efforts 

taken to eliminate the most likely sources of false positives (e.g. common post-

translational and chemical modifications, errors in mass measurements, etc.) 

should be described.

• Peptides mapping to multiple genome locations should be clearly marked. The 

same peptide(s) should not be used as evidence for multiple different proteins/ 

protein forms.

Proteogenomics is playing a central role in two ongoing large-scale initiatives. The 

community-driven, chromosome-centric Human Proteome Project (cHPP) has a broad goal 

of characterizing the parts list of the human proteome 94, whereas the NIH funded 

CPTAC 95 project specifically aims to improve the understanding of the molecular basis of 
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cancer via proteomics characterization of common cancer specimens obtained though the 

TCGA initiative. These initiatives provide not only rich proteomic datasets for 

proteogenomic analysis, but also present an opportunity for the development of advanced 

data integration and modeling strategies across the entire spectrum of omics data. There is a 

need for making proteomics data in general, and the results of proteogenomics analyses in 

particular, more accessible and useful to a broader scientific community. A good start would 

be the development of a computational infrastructure for querying specific novel peptides of 

interest to a particular laboratory across a large collection of publicly available proteomic 

data, including cHPP and CPTAC data, with a goal to obtain and visualize protein-level 

evidence of their expression.

Looking at proteogenomics in a broader context, questions remain as to what fraction of 

novel alternative splice forms are translated into stable functional proteins vs. those that are 

prone to nonsense mediated decay or protein degradation immediately following translation. 

Further analysis can help identify the differences between confirmed (at the protein level) 

and unconfirmed splice forms in terms of their secondary structure and sequence 

properties 96, 97. Recent studies also suggest that SAVs could affect protein stability 14, 

possibly explaining the lower than expected rate of detection of such variants in proteomic 

data 41. Furthermore, somatic variants have been found to have reduced protein abundance 

compared to germline variants 19. These and other recent studies 98–100 involving 

quantitative analysis of transcripts and protein expression data and integration with DNA 

variation provide valuable insights into how the proteome is regulated using genetic effects. 

In summary, there is every indication that the field of proteogenomics will remain an active 

area of research for the foreseeable future.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Peptide and protein identification in shotgun proteomics
A) Overview of shotgun proteomics. Proteins are digested into peptides, then separated 

using liquid chromatography coupled online to a mass spectrometer, then analyzed by the 

mass spectrometer which generates tandem mass (MS/MS) spectra. B) Peptides are most 

commonly identified using a sequence database search approach. Traditionally, 

experimental MS/MS spectra are matched with theoretical spectra predicted for each peptide 

contained in a protein sequence database. Sequence tag-assisted database searching starts 

with extraction of short tags followed by database searching in which the list of candidate 

peptides is restricted to those peptides only that contain one of the extracted sequence tags, 

allowing for mutations in the sequences of candidate database peptides. Peptide sequence 

can also be extracted directly from the spectrum using de novo sequencing (extracted 

sequences can then be searched in a protein sequence database to find the exact or a 

homologous peptide).
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Figure 2. The concept of proteogenomics
In a proteogenomics approach, genomics (DNA sequencing, expressed sequence tags 

(ESTs) and transcriptomics (RNA-Seq, ribosome profiling) data is used to generate 

customized protein sequence databases to help interpret proteomics (LC-MS/MS) data. In 

turn, the proteomics data provides protein-level validation of the gene expression data, as 

well as helping to refine gene models. The enhanced gene models can help improve protein 

sequence databases for traditional proteomics analysis.
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Figure 3. Type of peptides identified in proteogenomics
Peptides identified by searching customized protein sequence databases are mapped on the 

genome. Intergenic peptides map to regions located between annotated gene models, 

whereas intragenic peptides map to genomic regions contained within or in close proximity 

to an annotated gene model. Intragenic peptides can be further categorized based on the 

annotation of the corresponding gene model (e.g. ‘protein-coding gene’, ‘long noncoding 

RNA (lncRNA) gene’, and ‘pseudogene’). The majority of peptides map to a protein coding 

gene, and can be divided into Exon and exon-exon junction (Junction) peptides. Novel 

peptides include peptides mapping to untranslated regions (3′ or 5′ UTR peptides) or Intron 

peptides, peptides spanning the boundary between the coding sequence region and the 

neighboring UTR or intron region (Exon boundary), peptides spanning un-annotated 

(alternative) splice junctions (Alt junction), and out of frame peptides (Alt frame).
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Figure 4. Statistical assessment of peptide identifications in proteogenomics
MS/MS spectra are searched against a customized protein sequence database that includes 

target sequences for the organism of interest, i.e. a reference protein database and predicted 

protein sequences (containing novel peptides). In addition, two decoy databases (e.g. 

reversed sequences) of the same sizes as the target reference and predicted databases are 

appended to the target databases. The best database peptide match for each spectrum is 

selected for further analysis. Peptide identifications are classified as known or novel (for a 

decoy peptide the class - ‘known’ or ‘novel’ – is determined based on the class of the 

corresponding target sequence from which the decoy was generated). When using simple 

database search score based filtering, the numbers of target and decoy peptide identifications 

passing a certain score threshold are counted and used to estimate FDR corresponding to 

that threshold. FDR analysis should be done separately for known and novel peptides (class-

specific FDR) due to difference in the number of known and novel sequences in the 

searched customized sequence database, and due to lower likelihood of correctly identifying 

a novel peptide than known peptide. When using more advanced methods based on 

computing posterior peptide probabilities, both the database search scores and the peptide 

class (known or novel) should be taken into consideration.
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