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Abstract

Mass spectrometry–based proteomics has emerged as the leading method for detection, 

quantification, and characterization of proteins. Nearly all proteomic workflows rely on proteomic 

databases to identify peptides and proteins, but these databases typically contain a generic set of 

proteins that lack variations unique to a given sample, precluding their detection. Fortunately, 

proteogenomics enables the detection of such proteomic variations and can be defined, broadly, as 

the use of nucleotide sequences to generate candidate protein sequences for mass spectrometry 

database searching. Proteogenomics is experiencing heightened significance due to two 

developments: (a) advances in DNA sequencing technologies that have made complete sequencing 

of human genomes and transcriptomes routine, and (b) the unveiling of the tremendous complexity 

of the human proteome as expressed at the levels of genes, cells, tissues, individuals, and 

populations. We review here the field of human proteogenomics, with an emphasis on its history, 

current implementations, the types of proteomic variations it reveals, and several important 

applications.
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1. Introduction

Mass spectrometry (MS)-based proteomics has become the leading method for 

comprehensive detection and characterization of proteins and is ubiquitous throughout 

biology and medicine (1). To identify peptides or proteins, most proteomics workflows rely 

on database searching in which experimental peptide mass spectra are scored against 

theoretical mass spectra derived from a generic protein database. Thus, proteins whose exact 

sequences are absent from the generic databases to which they are matched remain 

undetected. Frequently, these missing sequences are of fundamental biological significance

—novel or unannotated proteins, variations specific to individuals, mutations underlying 

disease—and their characterization is critical to an understanding of human biology.

Proteogenomics provides a solution to this detection problem. It may be defined as the use 

of genomic or transcriptomic nucleotide sequencing data to create customized or augmented 

proteomic databases for MS-based proteomics database searching, and as the employment of 

these databases to enable or improve the detection of protein variations unique to a sample. 

In the past decade, proteogenomics has experienced heightened significance due to two 

cumulative developments: (a) advances in DNA sequencing technologies, making complete 

sequencing of human genomes and transcriptomes routine, and (b) the realization of the 

tremendous complexity of the human proteome. Indeed, it is the unprecedented evolution of 

DNA sequencing technologies, which has been reviewed in detail elsewhere (2), that has 

been largely responsible for revealing the tremendous complexity encoded in the human 

proteome. Current proteogenomic strategies are now harnessing sequencing technologies, in 

the form of widely and easily accessible nucleotide sequence data, to maximize the potential 

of MS-based proteomics to characterize these variants at the protein level.

The benefits of proteogenomics are manifold. Proteogenomics can provide empirical 

evidence for the existence of proteins and protein variations, which can help delineate the set 

of protein-coding genes in the human genome. Though this has been a key goal of genome 

annotation, made evident by intensive efforts involving computational gene predictors (3), 

collection of troves of transcript data, and manual annotation, there is still no definitive set 

of protein-coding genes (4– 6). Proteogenomics can be used to study the effect of genetic 

variations on the ultimate proteins they encode, providing a richer understanding of 

genotype-phenotype relationships as proteins are more direct determinants of function. 

Proteogenomics can help us understand the underlying mechanisms of disease, discover 

therapeutic targets, or generate biomarkers for diagnosis or tailored therapies. And finally, 

proteogenomics can improve the efficiency and accuracy of both nucleotide and proteomics 

analyses. For example, an optimal protein database could in theory be adaptively constructed 

for each sample type for improved peptide identification accuracy.

Most proteogenomic workflows involve several main steps. First, nucleotide data relevant to 

the sample of interest are obtained, such as sequences corresponding to the human genome 

or sequences from a set of transcripts assembled from raw RNA-sequencing (RNA-Seq) 

reads. Second, the nucleotide sequence is translated into amino acid sequence. Translation is 

typically done in one (if the frame is known), three (if the strand is known), or six frames in 

order to create a customized protein database. Third, fragmentation mass spectra are 
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searched against the protein database. Finally, the peptide identifications are statistically 

validated and evaluated to annotate novel genes, detect disease variants, or systematically 

analyze protein variations.

In this review, we begin by providing a historical perspective on the long-standing 

relationship between nucleotide sequencing data and MS-based proteomics. Next, we 

outline sources of nucleotide data amenable to proteogenomic database construction, 

describe methods for construction of protein databases, and discuss issues relevant to 

proteogenomics. We enumerate human proteomic variation types thus far detected by 

proteogenomics, highlight emerging applications, and conclude with future directions of the 

field.

2. Proteomics and DNA Sequencing: A Historical Perspective

The use of nucleotide sequence data for proteomics database search has a rich history that 

can be traced back to the development of the first computer MS search algorithms in the 

early 1990s. Prior to that time, the main method used for protein analysis was Edman 

degradation, which sequences the N terminus of a polypeptide but requires large amounts of 

purified protein (7). MS was being employed in the analysis of peptides; however, the 

ionization modes used to introduce peptides into the mass analyzer were harsh and limited 

analysis to short or chemically derivatized peptides (8). Both methods were low-throughput 

and labor-intensive. Later development of soft ionization techniques such as plasma 

desorption enabled analysis of larger peptides and foreshadowed the potential of MS-based 

methods. This potential was realized when two soft ionization techniques, electrospray 

ionization (ESI) (9) and matrix-assisted laser desorption ionization (MALDI) (10), were 

invented, enabling the facile analysis of intact peptides and proteins at high-throughput. 

Shortly after, the elegant integration of liquid chromatography (LC), ESI, and mass 

spectrometry (LC-ESI/MS) enabled the collection of hundreds of peptide fragmentation 

mass spectra, a volume of data beyond what could be manually analyzed, thus precipitating 

a need for methods to rapidly and automatically identify peptides. In select cases, peptide 

sequences could be deduced de novo by extracting a peptide ladder, a series of peptide 

fragment peaks with spacing corresponding to the mass of amino acids in the original 

peptide (11). However, most mass spectra were noisy and lacked a definitive peptide ladder. 

Therefore, researchers quickly turned to a new method of peptide identification: protein 

database searching.

In the protein database search approach, peptides are identified by matching experimental 

fragmentation spectra to theoretical mass spectra derived from a protein database. In 1994, 

this method was pioneered by Eng and coworkers (12) using a limited set of available human 

protein sequences. In the meantime, a large effort was under way to sequence human 

expressed sequence tags (ESTs)—Sanger-sequenced 5′ and 3′ ends of complementary 

DNAs created from reverse transcription of mRNAs—that represented a systematic survey 

of protein-coding transcripts (13). Taking advantage of this development, Yates and 

coworkers (14) performed a six-frame translation of available human ESTs (∼60,000) and 

used the candidate protein sequences for database searching against peptide fragmentation 

spectra. An analogous approach was developed for peptide mass fingerprinting data (15, 16).
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These studies of protein database searching against EST-translated protein databases were 

the start of a new interdependent relationship between nucleotide sequencing and MS-based 

proteomics technologies that still prevails today. Initially, nucleotide and amino acid 

sequences could be directly determined using analytical methods: nucleotides could be “read 

out” by Sanger chain termination (17); amino acids could be read out by Edman degradation 

(7). Both methods had similar throughput. However, in 1988, nucleotide sequencing 

technologies leapt forward upon the invention of automated Sanger sequencing by Smith 

and coworkers (18), enabling the interrogation of DNA and RNA sequences at a massive 

scale. Meanwhile, Edman degradation remained labor-intensive and was gradually replaced 

by MS-based proteomics (19). But MS operated in a different mode. It did not directly 

sequence proteins; rather, it measured the intact and fragment mass-to-charge ratios of 

polypeptides, where it was not straightforward to deduce the sequence solely from the data. 

However, mass spectra could be analyzed with the aid of a protein database derived from 

translation of widely available nucleotide-based sequences. It is this interdependency 

between nucleotide sequencing and MS-based proteomics technologies that set the 

foundation of proteogenomics.

During the 1990s and 2000s, shotgun proteomics became widespread and database 

searching against a protein database became standard, with the exception of a few 

proteogenomic-like studies that directly utilized EST or genomic sequence database 

searching. In 1998, Neubauer and coworkers (20) constructed protein databases from public 

ESTs to identify components of the human spliceosome complex. In 2001, Choudhary and 

coworkers (21) searched human MS data against translations of the draft human genome, 

showing that unbiased proteomic data sets could be used to discover new protein-coding 

regions in the human genome. Though the proteogenomics concept was in practice before, 

the term proteogenomics was officially coined in 2004 when Jaffe and coworkers searched a 

shotgun proteomics data set against a six-frame translation of the Mycoplasma genome. This 

genome-based proteogenomic search strategy was subsequently applied to increasingly 

complex organisms: Drosophila melanogaster (22), Arabidopsis thaliana (23), and 

Caenorhabditis elegans (24). Collectively, these studies showed that although these species 

had deep-coverage EST databases and were subject to intense gene annotation efforts, there 

were still many novel protein-coding genes and errors in the protein annotations that could 

be uncovered by genome-based proteogenomic strategies. Thus, in following the evolving 

definition of proteogenomics, here it meant that MS could provide valuable experimental 

evidence confirming the existence of the protein sequences that are expressed in an 

organism.

Another turning point in the evolution of proteogenomics coincided with the development of 

next-generation sequencing (NGS) methods. NGS platforms harnessed massively parallel 

sequencing to allow for the shotgun sequencing of millions of short fragments en masse. In 

2009, RNA-Seq, in which fragments from a eukaryotic transcriptome are sequenced to great 

depth, was invented (25). NGS data illuminated a newfound vastness of human proteomic 

variation encoded in the genome, such as variations arising from nucleotide polymorphisms 

(26) and alternative splicing (27, 28). It became clear that there were more proteomic 

variations than were cataloged in standard protein databases. Catalyzed by NGS, a new type 

of proteogenomics emerged, in which sample-specific nucleotide and proteomic data were 
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collected from the same sample to create customized protein databases for detection of novel 

variations (29). Today, this NGS-driven proteogenomic strategy is being increasingly applied 

to detect and study human protein variations in basic and disease biology.

Proteogenomics operates at the interface of genomics and proteomics and has evolved in the 

past two decades. From the first EST-derived database to genome-based searching to the 

latest NGS-based methods, proteogenomics will undoubtedly play a key role in the 

integration of genomic, transcriptomic, and proteomic data for the improved understanding 

of cellular biology.

3. Proteogenomic Database Construction

3.1. Standard Human Proteomic Databases

The main protein databases used in MS-based proteomics searching include UniProt, 

RefSeq, and Gencode. UniProt has become one of the leading proteomic databases because 

it provides manual human protein annotations supplemented with known functional 

information (30). RefSeq is a cDNA-centric database that aims to provide a conservative, 

manually annotated set of proteins (31). Gencode is another database and contains both 

manual annotation (Havana group) and all automatic annotations predicted by Ensembl (4). 

Gencode is a genome-centric database; all transcript and protein sequences can be directly 

mapped to the reference genome and there is perfect DNA-RNA-protein concordance.

Common to most protein databases is the idea of nonredundancy. In the early days of protein 

annotation, the high number of overlapping or similar sequences was a known problem, 

leading to efforts to remove redundant sequences. Though this solved the problem of 

redundancy, it also resulted in the loss of true biological variations. Whereas the concept of 

nonredundancy has been slowly reversing and databases such as UniProt and Gencode now 

strive to include known variations, such as isoforms or single-nucleotide polymorphisms 

(SNPs), the protein databases simply do not include all measured and yet-to-be measured 

protein variations extant in the human population.

3.2. DNA Sequencing Platforms and Sources of Nucleotide Sequence Data

Capillary-based Sanger sequencing was the main method for the initial sequencing of the 

human genome and transcriptome. With the development of NGS methods, many (millions 

to billions) short reads could be obtained at great depth (2). Although the exact mechanisms 

for sequencing differ between the platforms, what they have in common is the ability to 

produce millions to billions of short DNA reads, providing ample data from which to build 

proteomic databases.

The type of data relevant to proteogenomics can be defined as any nucleotide sequence that 

has the potential to encode a protein expressed in a sample, which includes sequences from 

the genome, exome, transcriptome, and translatome (Figure 1). Genome sequence contains 

predominantly noncoding regions but is comprehensive in that it contains the original 

backbone of all protein sequences. Exome sequence comprises the 1% of the genome that 

codes for protein. These sequences are obtained through exome sequencing where the exons 

of a genome are enriched through hybridization capture and sequenced (32). Transcriptome 
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sequence represents the cumulative output of gene transcription and can either be noncoding 

or coding. Most RNA-Seq data are derived from the 1–3% of protein-coding mRNAs 

remaining after removal of ribosomal RNA (25). Translatome sequence represents the 

portions of the transcriptome that are bound by ribosomes and thus have a high likelihood of 

coding for protein. These data sets are generated through ribosomal sequencing (Ribo-Seq), 

where the portions of the mRNAs that are bound by ribosomes are captured and sequenced 

to provide a global snapshot of transcripts actively being translated into protein (33).

3.3. Deriving Candidate Protein Sequences for Database Searches

As described above, there are different types of nucleotide data that can be used for 

proteogenomic database construction (Figure 1). Ultimately, the effectiveness of a protein 

database derived from nucleotide data depends on how closely the predicted protein 

sequences match the real protein sequences expressed in the sample under analysis. In the 

following sections, we discuss the different mechanisms through which protein databases 

can be generated and the pros and cons of each method.

3.3.1. Three- or six-frame expressed sequence tag translation—A majority of the 

predicted protein sequences that populate current protein databases have been derived from 

ESTs, full or partial sequences of mRNAs. ESTs can be translated in three—if the original 

5′-3′ orientation is known—or six frames. There are currently 9 million human ESTs 

present in GenBank ranging in size from 100–2,000 bases (13). The first direct use of 

nucleotide sequence data to identify proteins from MS data utilized publicly available ESTs. 

This includes the pioneering studies by Yates and coworkers (14), who searched six-frame 

translated data against a proteomic data set, and Neubauer and coworkers (20), who did 

similar searches but using a tag-based peptide search method. These studies were motivated 

by the incompleteness of the protein databases at the time. Later, after protein databases 

became more complete, ESTs were primarily used to detect variations [e.g., single amino 

acid variants (SAVs), splice variants] that may not have been included in the generic protein 

databases. Two groups accomplished this by collapsing ESTs into a compact splice graph 

structure, where exons are represented as nodes and the junctions are represented as edges, 

and translating unique nucleotide stretches within the splice graph (34, 35).

3.3.2. Six-frame genome translation—The genome of an organism can be translated in 

six frames to create an all-inclusive set of possible protein-coding sequences. The six-frame 

genome proteogenomic method was first comprehensively demonstrated for Mycoplasma, 

where shotgun proteomics data were searched against translated sequences and identified 

peptides were mapped back to the genome to delineate protein-coding genes (36, 37). 

Though demonstrably successful, Mycoplasma is a prokaryote with a small genome and 

uninterrupted ORFs. The six-frame search is more challenging for the human genome, 

which has a higher proportion of noncoding sequence and genes with complex exon-intron 

structures. Nevertheless, the method has been applied to humans in several studies. The 

initial proof of concept was demonstrated in 2001 in two studies that identified and mapped 

peptides to the draft human genome (38, 39). In 2006, Fermin and coworkers (39) used the 

growing plasma proteome data sets provided by the Human Plasma Project to discover novel 

plasma-specific genes. More recent studies have combatted the issue of high false positives 
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in six-frame genome searches by first searching mass spectra against a protein and translated 

transcriptome database and searching the remaining unidentified spectra against the genome. 

Using this multitiered search on an ENCODE cell line proteomics dataset, Khatun and 

coworkers (40) detected peptides supporting the existence of novel translational start sites 

and even the translation of sequences annotated as untranslated regions (UTRs). Similarly, 

Kim and coworkers (5) detected unannotated protein sequences from data representing a 

draft map of the human proteome. Overall, despite the large size and higher false positive 

rate associated with six-frame genome searches, this strategy enables identification of novel 

peptides that may be missing from protein or transcriptome-based databases.

3.3.3. Protein databases from RNA sequencing—Similarly to ESTs, RNA-Seq reads 

represent fragments of transcript sequences, but at much greater depth due to the 

unprecedented throughput of NGS. As RNA-Seq read lengths are typically much shorter 

(50–250 bp) than the lengths of ESTs (500–800 bp), reads must be assembled into the longer 

transcripts from which they originated. Assembly is accomplished in two main ways, either 

through alignment-based methods or de novo assembly. In alignment-based methods, the 

RNA-Seq reads are aligned to the human reference genome, which acts as a scaffold so that 

reads derived from the same transcript are essentially pieced back together. In de novo 

assembly, the RNA-Seq reads themselves are used to assemble a full-length transcript, 

relying on many partially overlapping reads to build a contig. As the human reference 

genome is of high quality, virtually all RNA-Seq methods utilize alignment-based transcript 

reconstruction.

RNA-Seq provides information on the abundance of and nucleotide variations encoded 

within transcripts. Of significance for the implementation of proteogenomic studies, this 

information may be classified into three areas: transcript abundance, nucleotide-level 

variations (SNPs, small indels, etc.), and large structural variations (alternative splicing, 

large insertions, etc.). How this information is utilized in protein database construction and 

in augmentation differs; therefore, we consider them separately. In addition, we discuss the 

databases created from de novo assembled RNA sequences.

3.3.3.1. Transcriptional expression: RNA-Seq can provide an estimate of transcript 

abundance as the number of reads sequenced for each transcript is proportional to that 

transcript's concentration. Assuming that transcript expression is a prerequisite for protein 

expression, some proteogenomic studies have created reduced protein databases comprising 

only proteins with transcriptional evidence. Theoretically, this has the beneficial effect of 

removing noise, that is, protein sequences that are in the database but not present in the 

sample. Indeed, reduced databases have been shown to increase the peptide identification 

rate by 5% for moderate-coverage proteomic data sets (29). However, this improvement 

vanishes for deeper-coverage proteomic data (41). In fact, there may be danger of removing 

proteins with low RNA-protein abundance correlations or with transcripts that are 

undersampled in RNA-Seq, such as mRNAs without polyA tails (42).

A promising use of transcriptional abundance data in proteomics is the incorporation of 

isoform expression to improve protein inference. In protein inference, peptides identified 

from a shotgun proteomics experiment are mapped to all annotated protein isoforms for a 
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gene, and the identities of the expressed proteins are inferred through such mappings (43). 

Frequently, peptides map to more than one protein isoform because isoforms of the same 

gene share many exons. Knowledge of which isoforms are expressed at the transcript level 

can help eliminate unlikely protein isoforms during protein inference, leading to a less 

ambiguous or more accurate set of protein isoform identifications.

3.3.3.2. Small nucleotide variations extracted from the RNA-Seq reads: RNA-Seq data 

represent global sampling of the sequences encoded in a particular transcriptome. These 

sequences can be aligned to the reference genome, and the RNA sequences can be compared 

to the reference genome sequences to identify small sequence differences, specifically SNPs 

and short indels. These variations can be directly translated into protein and appended to a 

protein database, or the information about the variations can be used to guide amendment or 

alternation of the standard protein database. For example, nonsynonymous SNPs identified 

from sample-matched RNA-Seq data were translated into polypeptide sequences containing 

the amino acid polymorphisms and appended to a protein database for MS database 

searching to identify variant-containing peptides (29, 44).

3.3.3.3. Large structural variations inferred from RNA-Seq data: RNA-Seq data contain 

information about large structural variations such as gene fusions and alternative splice 

junctions; however, to get this information, the read alignment and interpretation is different 

from the extraction of smaller nucleotide variations. When RNA-Seq reads are aligned to the 

genome, reads that span fusions or splice junctions must be split across the breakpoints and 

thus be aligned using a splice-aware aligner. Once aligned, the locations of the junctions are 

then compared to the locations of known junctions or fusions and novel sites are retained for 

database construction. Regions of the aligned RNA-Seq reads that contain the nucleotide 

breakpoint are then translated into protein sequences, using one, three, or six frames 

depending on prior knowledge. Using this strategy, the identification of peptides spanning 

novel splice junctions (45, 46) and chimeric transcripts (47) has been demonstrated. In some 

cases, splice junctions detected from RNA-Seq data can be converted into a splice graph 

representation to create a compact splice database for MS searching (48, 49).

3.3.3.4. Three-frame translation of assembled RNA-Seq reads: Though RNA-Seq reads 

are short, they can still be aligned to the genome or assembled de novo to produce contigs, 

inferred sequences of partial or full-length transcripts. These sequences can then be 

translated in three frames to produce candidate proteins that may harbor many variation 

types, from SAVs to splice junctions. Such protein sequences are directly utilized in MS 

searching. Examples of this strategy include those employing RNA-Seq data that underwent 

transcript reconstruction (50) or de novo assembly (51).

3.3.4. Ribosomal sequencing-guided database construction—Ribo-Seq is a 

method for sequencing portions of mRNA molecules bound by ribosomes, providing a 

global picture of the actively translated components of the transcriptome. Ribo-Seq provides 

information about the mRNA locations that are subject to translation, including novel 

translational start sites and coding regions, so that the underlying RNA sequence for these 

regions may be translated to create a highly specific proteogenomic database. Such a 
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strategy has been demonstrated to enable discovery of novel translation initiation sites (TISs) 

using noncanonical (CTG instead of ATG) initiation codons, novel short peptides residing 

within 5′ UTRs, and unannotated proteins (52, 53).

3.3.5. Protein databases from exhaustive combinations of all possible 
variations—Another way to create databases that encode putative variations is to include 

all theoretical combinations of the variants, such as all possible SAVs or splice junctions. As 

all these methods suffer from a large search space that includes inordinately high numbers of 

specious sequences unlikely to be expressed in the sample, they have been replaced by 

newer proteogenomic methods. Early MS search algorithms, such as X!Tandem and Mascot, 

allowed for the searching of spectra against all possible SNP combinations (54, 55). Early 

studies in splice detection created “exhaustive” exon-exon and exon-intron databases that 

created polypeptide sequences spanning all possible junctions from known or predicted 

exons (56–60).

3.3.6. Specialized databases focused on variation types—Beyond standard 

proteomic databases, several specialized databases have been created that focus on a 

particular variation type, such as SNPs (61–67), splice variants (68–70), or chimeric 

transcripts (47, 71). In many cases, these databases were designed so that the relevant amino 

acid sequences corresponding to the variation could be downloaded in a format amenable to 

MS database searching. Nucleotide databases of note for characterization of human 

variations include dbSNP, a catalog of all detected human SNPs (72); dbVar, a catalog of 

human structural variations, such as large insertions and deletions (73); COSMIC (Catalogue 

of Somatic Mutations in Cancer), a database of cancer-specific variants (67); and HGMD 

(Human Gene Mutation Database), a database of human disease variants.

3.3.7. Cases where protein variations can be directly extracted from the MS 
data—In some cases, protein variations can be detected directly from features in the mass 

spectra, given that the spectra are of high enough quality. For example, error-tolerant search 

methods detect variations directly from the MS data. Peptide sequence tag–based database 

search algorithms make allowances for mass shifts corresponding to amino acid 

polymorphisms, and thus provide a partial de novo approach for finding amino acid 

variations without prior knowledge of their identities (74, 75). A similar concept is the use of 

template proteogenomics (76), where spectra that represent partial matches to the protein 

database are subject to de novo sequencing techniques to “fill in” the rest of the sequence 

that does not match the database, thus enabling the identification of amino acid or splice 

variants that may not be directly encoded by the database. In these methods, multiple 

enzymatic digests can be performed to supply multiple spectra overlapping the same 

variation-containing region. This method was recently used to fully regenerate an antibody 

sequence de novo without knowledge of the DNA sequence (77). We note that although 

there are cases of de novo and partial de novo sequencing methods that can utilize MS data 

for the detection of variations, they are limited to specialized cases, require high-quality 

spectra, and are in efficient compared to database searching.
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4. Key Proteogenomics Issues Relevant to Human Proteomics

4.1. Controlling for False Positive Identifications

Most proteogenomic databases contain many more protein candidate sequences than 

traditional protein databases; the computational aspects of this are reviewed in detail in 

Reference 78. Given such large protein search spaces with many more protein sequences in 

the database but not necessarily in the sample, there is a higher chance of false positive 

identifications (79). However, because proteogenomics enables the detection of unannotated 

proteins and those unique to an individual or disease, there is undeniable value to the 

strategy and several approaches have been described to improve the quality of 

proteogenomic search results.

4.2. Reducing Nucleotide/Peptide Candidates

How can we improve the specificity and accuracy of proteogenomic identifications? One 

clear solution is database reduction: the use of outside knowledge beyond the raw nucleotide 

sequences to pinpoint the sequences most likely translated and thus remove random 

sequence unlikely to code for protein (80). This can be accomplished on either the 

nucleotide side or the MS-based proteomics side. On the nucleotide side, extrinsic and 

intrinsic information can be used to reduce the set of amino acid candidates to those most 

likely to code for protein. Similarly, on the MS side, extrinsic and intrinsic information can 

be used to either reduce the protein candidate space or provide increased confidence for 

certain peptide identifications.

The use of transcriptome sequence dramatically reduces the proteogenomic search space; 

instead of translating a 3 Gb genome, one can translate the processed transcriptome, which 

is less than 1% of the size of the human genome. Further, though the transcriptome is a 

much smaller portion of the genome, it still contains both noncoding RNAs and coding 

RNAs, which have UTRs. Thus, an even further reduction in search space can be attained if 

there is knowledge of the actively translated portions of the transcriptome. Ribo-Seq data, 

which show which transcripts are actively translated, can be employed to this end. And 

lastly, if there is knowledge of the abundances of the transcripts, this information can be 

used to increase confidence in sequences with higher RNA-Seq read coverage.

Strategies to reduce the search space in proteogenomic databases are not limited to the 

nucleotide side. Adjustments in the way MS database searching is performed can help 

reduce the number of false positives. For instance, instead of searching mass spectra against 

the entire proteogenomic database, a series of first-pass searches can be performed to reduce 

the initially large list of candidate proteins. This multitiered search strategy was applied to a 

six-frame human genome translation (81). Methods have been published that describe how 

to accomplish this in a target-decoy search framework (81, 82). An even more common 

strategy is to first search higher-confidence protein databases and subsequently search the 

remaining unmatched spectra against proteogenomic databases (83, 84). For example, 

ordered searches against a generic protein database, three-frame translation of a 

transcriptome, and lastly, six-frame translation of the genome, where the unmatched spectra 
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are carried through to the next level of search, has been implemented in the most recent 

human proteogenomic studies (5, 40).

Another strategy for the increase in peptide identification efficiency is to reduce the 

candidate peptide search space. This can be accomplished using extrinsic or intrinsic MS 

information. An example of extrinsic information is the use of experimental data regarding 

the physicochemical properties of the peptides, such as isoelectric point (pI) and protein 

molecular weight. For example, MS workflows that employed an initial fraction of the 

peptide digest separated by pI used this information about the peptide to reduce the 

candidate peptide search space during database search (85, 86). In these studies, the pI 

information of each peptide was used to eliminate peptide search candidates not falling 

within the expected pI range, which dramatically reduced the peptide search space. Methods 

of using intrinsic MS features for peptide candidate reduction center around extracting 

information from the mass spectra themselves. For example, peptide tags can be extracted 

from the mass spectra to filter out peptide candidates lacking the tag. This strategy was used 

in early six-frame genome searches to reduce candidate search spaces by orders of 

magnitude (87–89). Another example is to incorporate the intrinsic mass spectral qualities in 

the proteogenomic search as some spectra are of much higher quality and their peptide 

identifications could be more reliable (90). And lastly, a strategy to increase the overall 

quality (i.e., signal-to-noise ratios of fragment peaks) of mass spectra is to use clustering of 

related spectra either within an experiment or across spectral library databases (91).

5. Other Proteogenomic Issues

5.1. False Positives

A current practical strategy for handling proteogenomic search results is to require different 

score thresholds for different categories of peptides. In general, peptides matching to the 

generic protein database have, on average, higher scores than novel peptides. This means 

that the group of novel peptides contains a higher rate of false positives and should require a 

higher score cutoff. An understanding of the uniquely different positive and negative score 

distributions for different classes of peptides could help in building a framework for 

statistical validation of proteogenomic results.

Artifacts are another source of false positives, such as when a chemically modified peptide is 

misidentified as a biological variation. Sources of artifacts include abundant peptides that 

contain a chemical modification. A recent study found that a subset of the variant peptides 

identified in a cancer proteogenomic study was not a biological variation but an artifact 

resulting from conversion of methionine to isothreonine during iodoacetamide treatment of 

the peptides, a common processing step in most shotgun proteomics experiments (92). Other 

sources of artifacts may include common chemical modifications such as oxidation or 

deamidation of peptides. Therefore, an increasingly important requirement should be the 

validation of novel peptides using synthetic peptide standards or, at minimum, the careful 

consideration of known and possible sources of chemical artifacts.
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5.2. False Negatives

False negatives can also be a problem in proteogenomics, notably when the nucleotide data 

do not adequately reflect the protein content in the sample. This can occur for RNA-Seq data 

sets, which, though comprehensive, sometimes do not capture all protein sequences in a 

sample. For example, most RNA-Seq data sets that employ polyA enrichments before 

sequencing miss proteins derived from mRNAs lacking a polyA tail, such as histones and 

some zinc-finger proteins (42). False negatives can also result from transcripts that are out of 

phase with their protein counterparts in time or space. In time, RNA may be rapidly 

degraded or the protein may be unusually stable so that the transcript sequence is undetected 

while the protein is present. In space, secreted or extracellular proteins may be far from the 

original cell containing the genome or transcript sequence encoding the protein. For 

example, a recent proteogenomic study on Xenopus eggs showed that hundreds of proteins 

were transported into the egg during maturation, and these proteins were not detected in the 

RNA-Seq data (93). Similar scenarios occur for human samples, such as excreted proteins in 

serum or antibodies secreted by B cells. A solution to these issues is to identify sources of 

transcript-protein discrepancies and for cases in which the nucleotide data cannot capture all 

protein sequences, to supplement the database with these special proteins.

5.3. Challenges in Detecting Low-Abundance Novel Peptides

Another challenge in proteogenomics is that many novel protein variations may be of lower 

endogenous abundance or only expressed in certain tissues. This issue is exemplified by the 

difficulty in detecting alternatively spliced protein isoforms (94). The reference isoform may 

be many orders of magnitude higher in abundance than the alternative isoform and the high 

sequence overlap of the two isoforms makes unambiguous identification of the alternative 

isoform difficult. Some solutions to this problem include the use of multiple enzymatic 

digestions to produce a complementary set of peptides, as was recently demonstrated for 

HeLa cells (95); to rely on massive spectral clustering databases, which could group as-of-

yet unidentified peptides from unusual samples (96); or to employ targeted proteomics 

methods such as selected reaction monitoring (SRM) to detect possible peptide variants at 

higher sensitivity.

5.4. Need for Bioinformatic Tools in Proteogenomics

As the size and complexity of both NGS and MS-based proteomics data sets increase, there 

is a pressing need for efficient and easy-to-use tools for their bioinformatic analysis. In a 

proteogenomic workflow, the raw nucleotide data must be aligned or assembled, compared 

to existing gene annotations, and translated into polypeptide sequence. The proteomics data 

sets also require complex workflows, including database searching and proper interpretation 

of the statistical results. Several groups have developed tools to aid in proteogenomic 

database construction (41, 97–102) and visualization of peptides on the genome or in 

comparison to gene models (103–107). Both NGS and proteomic technologies and tools are 

rapidly evolving, requiring constant parallel efforts to develop adaptable bioinformatic tools 

for their analysis.
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6. Complexity of the Human Proteome

6.1. Human Protein Variations Encoded in the Primary Sequences of Proteins

The advent of NGS technologies has unlocked a trove of data leading to the realization of 

the tremendous complexity of the human transcriptome, and by proxy, the potential human 

proteome. Genetic variations that affect protein sequences can be encoded at the level of the 

genome, transcriptome, or translatome (ribosomal-bound portion of the RNA) (Figure 1). In 

addition, the annotation of the human proteome is incomplete, so there may still be proteins 

to discover. Here, we enumerate possible sources of human variation that can affect the 

primary sequence of proteins and describe studies that utilized proteogenomic strategies for 

their detection. Though posttranslational phenomena such as proteolytic cleavage and many 

posttranslational modifications (e.g., phosphorylation, glycosylation) are an important 

source of proteomic variations, we do not cover these variations in this review.

6.2. DNA-Level Human Variations

The human genome is the ultimate information carrier as it contains the raw sequence from 

which, after transcription and translation, proteins are derived. Thus, genomic nucleotide 

variations that change the sequence of the ultimate protein encoded have a direct effect on 

the composition of the human proteome. An understanding of how genome-encoded variants 

ultimately affect the proteome is crucial to understand human genetic variation and disease. 

Genomic variations range from small point mutations (e.g., SNPs) to large structural 

changes (e.g., gene fusions), and proteogenomic studies have shown the ability to detect the 

corresponding protein variations.

6.2.1. Single-nucleotide polymorphisms—The importance of point mutations that 

change the amino acid in the corresponding protein (single amino acid variant, or SAV) has 

been known ever since the discovery that sickle-cell anemia is caused by a glutamic acid to 

valine mutation in the beta subunit of hemoglobin (108). SNPs are found in the human 

genome at an average frequency of 1 every approximately 800 bp (26). SNPs residing in 

protein-coding regions of a gene can be nonsynonymous (changing the encoded amino acid) 

or nonsense (producing an early stop codon). Because SNPs are a major source of variation 

in human disease biology, there has been intense research in this area, and computational 

and experimental tools to predict the functional effects of SAVs (109, 110) have been 

developed. Proteogenomics enables the direct detection of proteins containing amino acid 

variations, which is crucial to the study of the functional effects of variants.

6.2.2. Nonsynonymous single-nucleotide polymorphisms—Information about 

nonsynonymous SNPs and their corresponding SAVs can be used to extend or amend 

existing protein databases, which can subsequently be used to identify peptides containing 

these amino acid variations. Though rarely used today, one of the earliest methods for SNP 

detection via MS-based proteomics was performed by exhaustively generating all possible 

DNA mutations and searching MS data against all possible peptide variants (111). Another 

approach commonly used is to convert nucleotide variant information cataloged in human 

SNP databases, such as the National Center for Biotechnology Information's dbSNP or 

COSMIC, into a SAV-containing database for MS search (61, 62, 112–114). In the most 
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recent SAV detection pipelines, variants that are specific to a cell line or cancer type are 

extracted from exome or RNA-Seq data to create a more specific, compact database of 

candidate SAVs (29, 44, 115, 116). These studies show the increased quality of variant 

peptides identified from the more compact, sample-specific SAV databases.

6.2.3. Allele-specific expression variations—As the human genome is diploid, 

heterozygous SNPs can result in the expression of two different protein variants from the 

same gene (117). Furthermore, the expression of the two variant proteins may differ due to 

cis-regulatory effects operating at the level of the genome or transcriptome. These 

differences in variant protein abundances are called allele-specific expression differences 

and have been measured via MS (44).

6.2.4. Nonsense single-nucleotide polymorphisms—Nonsense SNPs introduce an 

early stop codon in the middle of the protein, resulting in a so-called loss-of-function 

mutation, which is predicted to disrupt the function of the protein as it causes a truncated 

protein product that is unlikely to fold properly. Through genome-wide surveys, it was 

shown that each individual carries approximately 100 protein-disabling loss-of-function 

mutations (118). The predominant notion is that all nonsense SNPs are loss-of-function 

mutations, but a recent investigation into the mechanisms by which SNPs can disrupt 

transcript structure suggests a more complex picture (119). Thus, proteogenomic studies that 

attempt to measure the proteins corresponding to these mutations, including their 

quantitative levels, may provide a better understanding of their effects.

6.2.5. Large structural chromosomal variations—In contrast to point nucleotide 

differences, structural chromosomal variations affect large portions of the genome up to 

hundreds of megabases in length. Large regions of the genome can invert, translocate to 

another region of the chromosome or another chromosome, be amplified to produce multiple 

copies, or be deleted. These variations affect protein-coding genes by increasing or 

decreasing the copy numbers of the genes in integer increments [i.e., copy number variations 

(CNVs)] or causing one portion of a gene to be fused to another gene (i.e., gene fusion). 

Proteogenomic studies can measure the proteins corresponding to these variations. For 

example, in a quantitative proteomics study employing SILAC (stable isotope labeling by 

amino acids in cell culture)-labeled human cells, the effect of CNVs on the levels of protein 

abundances was measured, showing that although the number of CNVs roughly correlated 

with protein levels, this was not the case for proteins that were part of protein complexes that 

require strict stoichiometry of subunits (120). Gene fusions, especially those that occur 

during cancer progression (121), have been measured at the protein level through use of a 

database of gene fusions (122, 123). Proteins coded from the fusion of genes are referred to 

as either fusion or chimeric proteins. Customized fusion databases directly derived from 

NGS-derived genomic or transcriptomic sequence to detect gene fusions from RNA-Seq 

data have also been developed (124).

6.3. RNA-Level Human Variations

There are many variations encoded in the genome, but RNAs directly transcribed from the 

genome are variably processed, contributing to an even higher complexity of the 
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transcriptome. Alternative promoters could cause the N terminal ends of the proteins to 

differ; processing by the spliceosomal machinery produces multiple alternatively spliced 

mature RNAs; and in some unusual cases, there can even be trans-splicing to produce a 

chimeric transcript (125). And lastly, after the processed mRNA is formed, there is also the 

possibility of RNA editing events (126). All these sources of RNA variation that lie within 

the protein-coding regions will affect the protein sequence and are thus relevant to 

proteogenomic strategies.

6.3.1. Alternative splicing—Alternative splicing is a pervasive mechanism that creates 

multiple distinct mRNA molecules from a single genetic locus (27, 28). To identify protein 

isoforms, the generic protein database must include the relevant isoform sequences. In the 

case where an isoform is not in the database, one can use a comprehensive splice database 

such as ECGene or SpliceProt (68, 70) to identify peptides corresponding to novel isoforms 

specific to a sample or relevant to a disease (68–70, 105, 127). However, though the number 

and size of splice-specific databases is high, RNA-Seq data collected on hundreds of sample 

types have shown that the catalog of human isoforms is still incomplete (128). Therefore, 

proteogenomic strategies that use sample-specific or sample-related RNA-Seq data can be 

used to create both a compact and near complete—in terms of the sample of analysis—

database of candidate splice junction sequences for database searching and identification of 

splice junction peptides (46, 129). Another strength of proteomics data in analyzing spliced 

proteins is the ability to confirm the expression of aberrantly or out-of-frame spliced 

transcripts, which are typically thought to undergo nonsense-mediated decay.

6.3.2. RNA editing—The central dogma theorem assumes that the RNA sequence 

perfectly matches the genome sequence from which it came; however, the discovery of 

widespread RNA editing events reveals an exception to this rule. The transcripts can be 

subject to editing events that are catalyzed by enzymes that recode the underlying protein 

sequence. A recent survey of DNA-RNA discordances in humans aimed to provide estimates 

of RNA editing events, and peptides were identified that corresponded to both the unedited 

and edited versions of the transcripts (126). A proteogenomic study in two rat strains also 

detected variant peptides from RNA editing events, which were distinguished from SNPs by 

the joint analysis of genomic and transcriptomic sequences (130). As it is largely unknown 

what the functional effects of RNA editing are, proteogenomics can help by providing 

detection of the affected proteins.

6.4. Translation-Level Human Variations

Knowledge of the transcript sequences in a given sample is only the first step toward 

knowledge of the proteome. Although a simplistic model of translation assumes that the 

ribosome creates a polypeptide from the first occurring ATG to the first stop codon, there are 

many deviations from this model (131). For instance, the ribosome may exhibit leaky 

scanning and initiate translation from the second ATG, creating a new N terminus. Because 

ribosomes' initiation sites cannot be predicted reliably from transcript sequence, 

proteogenomics is invaluable in delineating the translated regions. Indeed, several recent 

proteogenomic studies, which we highlight below, have demonstrated unbiased detection of 

such translation-based variations.
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6.4.1. Alternative translation initiation sites—Variations in the N terminal ends of 

proteins can arise from the ribosomes' differential usage of TISs. These can include 

initiation sites either upstream or downstream of the annotated start ATG or even use of a 

noncanonical initiation site such as CTG. Proteogenomic studies that characterize TISs 

typically utilize MS data sets that specifically enrich for N terminal peptides [e.g., combined 

fractional diagonal chromatography (COFRADIC)] (132). A recent study using MS data 

from various human cell lines combined COFRADIC data with predicted TISs from a 

publically available Ribo-Seq data set and showed that 20% of all N terminal identifications 

were from alternative TISs (53). This result strongly suggests that the understanding of 

annotated protein start sites is largely incomplete and more experimental data is needed to 

explore the full N terminal landscape.

6.4.2. Short open reading frames—Short open reading frames (sORFs) can be defined 

as those protein-coding sequences that are shorter than 100 nucleotides or approximately 33 

amino acids (133). These sORFs are present at much higher frequencies than longer ORFs 

and are thus much harder to predict based on nucleotide sequences alone. Therefore, it came 

as a surprise when proteogenomic studies utilizing peptidomics data (i.e., the direct MS 

analysis of endogenous peptides) showed the widespread presence of translated sORFs 

(134–137). So far, peptides have been detected for (a) sORFs that lie upstream of known 

protein-coding regions, where they are thought to regulate the expression of the downstream 

protein; (b) sORFs that lie within RNAs annotated as noncoding (i.e., long noncoding 

RNAs); and (c) sORFs that lie in protein-coding transcripts but use an alternative frame of 

translation. The discovery of this new class of peptides has created a new line of 

investigation to elucidate their function.

6.4.3. Alternative open reading frames—It has been known for some time that 

bacterial genomes harbor overlapping ORFs, thus producing dually encoded proteins that are 

vastly different from each other in sequence. Only very recently has this phenomenon been 

shown to also exist in humans. A recent proteogenomic study focusing on the detection of 

peptides corresponding to alternative ORFs (altORFs) showed that there may be up to 

several hundred altORFs in different human cell types, especially for cells of the immune 

system (138, 139). As with the discovery of translated sORFs the functions of altORF 

products remain unknown. However, additional proteogenomic workflows that are designed 

to maximize the detection of peptides corresponding to altORFs can at least provide a global 

catalog of the tissue- and cell-specific products of these unique protein variations.

6.4.4. Ribosomal recoding events—During active translation of the mRNA message, 

the ribosome can deviate from the rules of the genetic code. Several dozen human proteins 

contain a stop codon to selenocysteine translational recoding event, where guided by special 

sequence signals in the 3′ UTR, the ribosome incorporates a selenocysteine at a UGA stop 

codon instead of terminating translation (4). Selenocysteine-containing peptides expressed in 

human cell lines have been detected by MS (140). Other translational recoding events 

include ribosomal frame shifting, which has been shown to occur for at least one human 

protein (141), and ribosomal read-through, where the ribosome continues translation after 
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the stop codon. These types of recoding events give rise to proteins that differ in sequence 

and that can be detected in a shotgun proteomics experiment.

6.5. Detecting Proteins that Contradict Annotations

One of the strengths of proteogenomic methods is that they produce an unbiased snapshot of 

expressed proteins, empirical evidence independent of existing protein annotations. In fact, 

previous studies using proteogenomic strategies have provided experimental support for the 

translation of unannotated genes, pseudogenes, and annotated noncoding RNAs. The 

translation of novel genes has been confirmed in large-scale proteogenomic studies (5, 86), a 

surprise given the assumed completeness of human genome annotations. Another study 

showed that certain annotated pseudogenes that are supposed to be dormant or nonfunctional 

actually produce protein product, contributing to the idea that what may have once been a 

pseudogene in the evolutionary past could be refunctionalized at a later time (142). And 

lastly, peptides have been detected that correspond to sORFs encoded in lncRNAs, creating 

new questions about their putative function (143–145). Common to all these studies are the 

use of protein databases derived from nucleotide sequence without discriminating between 

annotated and unannotated protein-coding regions. The only way to discover proteins 

without ascertainment bias or limitation is through such a proteogenomic technique that 

searches mass spectra against the entire genome or transcriptome.

7. Proteogenomic Applications

7.1. Genomic Effects on Protein Expression: Protein Quantitative Trait Loci, Allele-Specific 
Expression

Quantitative trait loci (QTL) mapping has been used to find associations between genetic 

variations and molecules upon which they have a regulatory effect. For example, in a cis-

QTL, the presence of a certain SNP within a promoter of a gene that disrupts a transcription 

factor binding site can be found to downregulate expression of the linked transcript. 

However, in many cases, the protein is the ultimate driver of phenotype. In some cases, the 

RNA is uncorrelated to protein levels. Other times, the protein levels are subject to a 

buffering effect not experienced by the mRNAs (146). Driven by advances in quantitative 

MS–based proteomics, the concept of QTL mapping has recently been extended to protein 

(147). The idea is to test for associations of genomic variations lying near genes, within 

5′/3′ UTRs, within introns, or within coding regions. Two large-scale protein quantitative 

trait loci (pQTL) studies looked for associations between genomic variants and the levels of 

protein expression in lymphoblast cell lines derived from a multiracial cohort. The pQTLs 

found tended to modulate splicing or lie in the UTRs, suggesting that genetic effects that 

exclusively influenced protein expression, but not transcript expression, may specifically 

modulate translation or the stability of proteins (148, 149).

In the special case where a gene is heterozygous for a nonsynonymous SNP, the gene 

produces two different proteins that differ by an amino acid. Proteogenomic databases that 

include such SAVs can enable identification of the variant peptides. Quantitative proteomics 

methods can be developed to measure the levels of the variant pair, thus estimating the effect 

of allele-specific variations on protein abundance. For example, SRM methods were 
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developed for pairs of SAV peptides corresponding to heterozygous alleles and used to 

quantify the relative allelic abundances of these genes across an Asian population (150). The 

feasibility of quantifying allelic expression was also demonstrated in a study that detected 

such variants from an RNA-Seq–derived SAV database (44).

7.2. Cancer Proteogenomics

Cancer is a disease characterized by a progression of somatic genomic mutations. Generally 

speaking, it is the gradual or punctuated accumulation of mutations such as SNPs, insertions, 

deletions, and myriad gross chromosomal rearrangements or CNVs that rewire normal 

cellular networks to be tumorigenic. The subfield of onco-proteogenomics is the application 

of proteogenomics toward characterizing cancer proteomes and has been reviewed recently 

(151). The abundance of genomic and transcriptomic sequencing data and specialized cancer 

databases (152, 153) that have created catalogs of cancer-specific mutations has provided a 

wealth of information about the possible protein mutations expressed in cancer samples. For 

example, The Cancer Genome Atlas consortium is an ongoing effort to sequence the exomes 

and transcriptomes of hundreds of ovarian and breast cancer tumors; the Clinical Proteomic 

Tumor Analysis Consortium is another effort to collect proteomics data from the same 

samples, which provides information about how the genomic alterations affect the proteome 

(154). By using proteogenomics to create sample-specific or cancer-specific databases for 

MS search, the corresponding variations can be detected at the protein level. Proteomic 

detection of cancer-associated somatic mutations can help define the mutations expressed as 

protein, provide estimates of the stability of the mutant proteins, and facilitate identification 

of clinical biomarkers or actionable drug targets. Recent onco-proteogenomics studies have 

used custom databases to detect proteins arising from SNPs (116, 155–157), aberrant 

splicing (158, 159), and gene fusions (122, 123).

7.3. Biomarkers

Biomarkers are molecules measured, typically, in easily available patient samples, such as 

blood, plasma, saliva, and urine, and that give an indication of a patient's health or disease 

state or reflect the course of therapy response. Many diseases such as cancer are 

characterized by highly individualized mutations; though similar proteins or pathways may 

be affected, the precise set of mutations that affect an individual may vary. Thus, 

proteogenomics has played an increasingly significant role in the specification of 

biomarkers, potentially increasing the sensitivity and accuracy with which one can diagnose 

a patient.

In recent years, the use of patient-specific protein databases derived from nucleotide 

sequencing data to enable highly-targeted monitoring of mutant peptides has shown promise 

in the field of personalized medicine. Serving as one of the earliest proofs of concept, Wang 

and coworkers (160) demonstrated the quantification of immuno-enriched KRAS (Kirsten 

rat sarcoma) mutants from colorectal and pancreatic tumor samples using an SRM method 

that monitored the corresponding mutant peptides. Other studies that measure cancer-

specific mutant peptides have also been published (156, 161). Mathivanan and coworkers 

(162) later demonstrated the detection of mutant peptides excreted from colon cells in 

culture. Proteogenomics has shown the most potential for the detection of peptides highly 
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specific to patients. For example, Barnidge and coworkers (163) generated patient-specific 

protein databases to detect and monitor monoclonal immunoglobulins (i.e., M-proteins) 

secreted by plasma cells in multiple myeloma, and as M-proteins differ from patient to 

patient, the proteogenomic approach enabled the specific monitoring of patient response to 

treatment. Using a similar concept, Dasari and coworkers (164) monitored clonotypic light 

chain peptide sequences in patients with amyloidosis, and as these sequences are distinct for 

each patient, there were no other methods besides proteogenomics that allow for such 

detection. In this new era of personalized medicine, we predict that proteogenomic strategies 

will experience new prominence in translational and drug research.

7.4. Antibody Characterization

The use of proteogenomics for improved characterization of antibodies has been extensively 

reviewed elsewhere (165); however, we briefly mention that, driven by the pharmaceutical 

industry and developments in NGS, B cell receptor sequencing (BCR-Seq) has been used 

increasingly to create antibody-specific or template databases for detection of 

immunoglobulin peptides. Some of the earliest proteogenomic methods for sequencing 

antibodies have used a so-called template-based approach, where the antibody protein 

database employed for MS searching is not a perfect match with the sample of analysis, but 

through the use of partial spectral matches and extracted peptide sequence tags to fill in the 

missing sequence, the antibody protein sequence can be inferred. Now, with the 

development of BCR-Seq, several studies (described above in Section 7.3) have employed 

highly customized antibody databases containing all candidate antibody sequences.

8. Future of Proteogenomics

Much has been learned about human proteomic variations from the integration of NGS and 

MS-based proteomics, but as these complementary technologies evolve, there is even more 

potential for unbiased proteomic discovery. Current proteogenomic strategies have relied 

heavily on data sets derived from deep, shotgun-like sampling of the transcriptome and 

proteome. RNA-Seq is a sampling of transcript fragments, and MS-based proteomics is a 

sampling of enzymatically digested peptides. Though both techniques can deeply sample 

fragments, a major drawback is the inability to know with certainty the sequence of the 

intact transcript or protein from which these fragments were derived (166). However, both 

techniques are experiencing nascent, but tangible, improvements in the ability to sequence or 

detect intact transcripts and proteins, the de facto biological unit. Improvements in third-

generation DNA sequencing from platforms such as PacBio have enabled the sequencing of 

full-length transcripts (167). Similarly, improvements in top-down proteomics, which 

includes advances in sample fractionation as well as MS instrumentation, have enabled more 

widespread detection of intact proteins (168). In fact, the ability to measure intact proteins 

has uncovered myriad protein forms resulting from both posttranscriptional processing (e.g., 

splicing) and posttranslational modifications (e.g., phosphorylations, proteolytic cleavage), 

leading to the coining of the word proteoform to describe each molecularly distinct protein 

arising from the unique combination of such variations (169). The twin improvements in 

third-generation sequencing and top-down proteomics hint at the future of proteogenomics, 

where transcriptomes and proteomes could be interrogated at both high sensitivity and 
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resolution. For instance, with third-generation sequencing data on a human transcriptome, an 

entire sample-specific, full-length protein database could be predicted, imparting greater 

clarity about which precise protein isoforms may be expressed in a sample. Undoubtedly, the 

synergistic relationship between nucleotide sequencing and proteomics will continue to 

evolve and will be key for the complete characterization of the human proteome in the 

coming decades.
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Figure 1. 
Schematic of the sources of nucleotide data for proteogenomics, database construction 

methods, and discoverable variations. Shown are noncoding regions (black lines), exons 

(dark blue boxes), and 5′ and 3′ untranslated regions (light blue boxes). Asterisks represent 

small nucleotide variations, such as single-nucleotide polymorphisms (SNPs) or indels.
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