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Abstract
While genome sequencing efforts reveal the basic building blocks of life, a genome sequence alone is insufficient
for elucidating biological function. Genome annotationçthe process of identifying genes and assigning function to
each gene in a genome sequenceçprovides the means to elucidate biological function from sequence.Current state-
of-the-art high-throughput genome annotation uses a combination of comparative (sequence similarity data) and
non-comparative (ab initio gene prediction algorithms) methods to identify protein-coding genes in genome
sequences. Because approaches used to validate the presence of predicted protein-coding genes are typically based
on expressed RNA sequences, they cannot independently and unequivocally determine whether a predicted
protein-coding gene is translated into a protein. With the ability to directly measure peptides arising from
expressed proteins, high-throughput liquid chromatography-tandem mass spectrometry-based proteomics
approaches can be used to verify coding regions of a genomic sequence. Here, we highlight several ways in which
high-throughput tandem mass spectrometry-based proteomics can improve the quality of genome annotations and
suggest that it could be efficiently applied during the gene calling process so that the improvements are propagated
through the subsequent functional annotation process.

Keywords: proteogenomics; genome annotation; proteomics; mass spectrometry

INTRODUCTION
Over the past decade and half, the process of com-

pleting a genome sequence has transitioned from

being a challenging endeavour to being a relatively

routine process for both microbial and eukaryotic

species. The first complete genome sequence from a

free-living organism (Haemophilus influenzae Rd.)
was reported in 1995 [1], and was rapidly followed

by sequences for other microbial genomes (Myco-
plasma genitalium, Mycobacterium tuberculosis) [2, 3].

Since then, numerous archeal (�41), bacterial

(�468) and eukaryotic (�49) genomes, including

those of model organisms such as Saccharomyces cerevi-
siae (yeast) [4], Caenorhabditis. elegans (worm) [5],

Drosophila melanogaster (fruit fly) [6], Arabidopisis thali-
ana (plant) [7], mouse [8], rat [9] and sea urchin

[10] have been sequenced. Sequencing of the human

genome was auspiciously completed in 2004, laying

a foundation for advances in medical and biological

research that would benefit human health [11–13].

Today, sequencing efforts continue for a myriad of

other genomes of biological interest.

The completion of a genome sequencing

effort represents a milestone for understanding the
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genetic blueprint of any particular organism.

However, to realize the full biological value of the

sequenced genome requires accurate identification of

the protein-coding genes in each genome, as well as

the nature of the functional protein products. This

understanding has shifted attention from genome

sequencing to genome annotation. Mass spectrom-

etry (MS)-based proteomics approaches [14–16]

directly measure peptides arising from expressed

proteins, which allows for direct verification of

coding regions of a genomic sequence. In addition to

verifying protein-coding genes, these analyses

can also benefit genome annotation by helping to

identify missed protein-coding genes, confirm the

expression of alternative splice variants in eukaryotic

genomes, and correct overestimated protein-coding

potentials, particularly in microbial genomes, for

example. As such, proteomics represents a potentially

important tool for integrating protein-level informa-

tion into the genome annotation process and

improving genome annotation quality [17].

In this review, we highlight several ways in which

high-throughput liquid chromatography-tandem

mass spectrometry (LC-MS/MS)-based proteomics

can improve the quality of genome annotations, with

emphasis on microbial genomes. Additionally, we

highlight the value that could be gained by accom-

panying genome sequencing projects with even a

modest set of high-throughput tandem mass spectro-

metry (MS/MS)-based proteomics experiments.

THEGENOMEANNOTATION
PROCESSAND ITS CHALLENGES
The collective process of identifying genes (structural

annotation) and assigning function to each gene

(functional annotation) is commonly referred to as

genome annotation. Protein-coding genes, which

for the most part dictate biological function,

comprise a small fraction of higher eukaryotic

genomes, <25% of the fly and worm genome and

an even smaller fraction of the human genome

(<5%), making the identification of coding

sequences against the ubiquitous background of

non-coding sequences difficult. Further complicating

the identification of protein-coding genes and their

correct genomic structure is the high frequency of

alternative splicing in most eukaryotic genes.

Structural annotation in prokaryotes is far from

being a trivial matter in spite of the compact nature

of prokaryotic genomes and the usual absence of

introns. While the identification of all possible open

reading frames (ORFs) longer than a chosen thresh-

old in a DNA sequence is a straightforward exercise,

the decision as to which ORFs represent true coding

genes that are expressed and code for proteins is not

an insignificant endeavour with challenges in funda-

mental areas such as determining the precise start and

stop site of a gene, accurately predicting short genes

and determining a stop codon that represents an

alternative amino acid rather than a true stop site, to

name a few. Such challenges are only exacerbated

and compounded when dealing with the annotation

of the often larger and more complex genomes of

eukaryotic organisms.

Likely protein-coding genes in genomic DNA

sequences are identified using a range of computa-

tional tools referred to as automated genome

annotation ‘pipelines’ that combine information

from non-comparative (ab initio) and comparative

(sequence similarity) methods. The TIGR CMR

[18], GenDB [19] and BASys [20] represent

commonly used pipelines in prokaryotic genome

annotation. In a typical microbial genome annota-

tion, raw DNA sequence is searched with ab
initio microbial gene prediction programs such as

GLIMMER [21, 22] or CRITICA [23] to predict

protein-coding sequences. Ab initio gene prediction

programs are designed to use statistical properties of

ORFs such as GþC rich regions, codon usage and

splice site consensus sequences to identify genes. In

addition, the DNA sequence is also searched against

the non-redundant database of publicly available

proteins using the BLAST algorithm [24–26]. Integ-

ration of evidence from both methods leads to

identification of the set of predicted protein-coding

genes. For functional assignment predicted protein

sequences are subjected to series of similarity searches

and sequence analysis. These include searches against

the COG database [27] to find putative orthologs in

other completed genomes, against the TIGRFAM

[28] and PFAM [29] databases for protein family

analysis, against PROSITE [30] for sequence motif

analysis, and against the protein localization predic-

tion software PSORT [31]. Query sequence analysis

with SignalIP [32] for signal peptide prediction,

TMHMM [33] for the prediction of alpha helical

trans-membrane regions and PSIPRED [34] for

predicted secondary structure is also included.

The Ensembl [35], NCBI [36] and USCS [37]

‘pipelines’ are commonly used in eukaryotic genome

annotation. In a typical mammalian genome annota-

tion, known protein sequences from the genome of

Proteogenomic annotation 51
D

ow
nloaded from

 https://academ
ic.oup.com

/bfg/article/7/1/50/235313 by guest on 16 August 2022



interest or evolutionarily close relatives are aligned

against the genome towards predicting protein-

coding genes and their genomic structure. Addition-

ally, for genomes with rich expressed sequence

libraries, such as the human genome, cDNA derived

for the genome of interest are aligned against the

genome towards predicting protein-coding genes and

their genomic structure. In the majority of sequenced

genomes where expressed sequence libraries are not as

well developed as those for the human genome,

cDNA and protein alignments against the genome are

often complemented by dual-genome de novo gene

predictors such as SGP2 [38] and TWINSCAN [39].

These use results of alignments between two

evolutionarily related genomes to modify the gene

prediction scores produced by underlying single-

genome ab initio/de novo gene prediction programs,

under the assumption that regions conserved in the

sequence will tend to correspond to protein-coding

regions from homologous genes. Single-genome

abinitio gene prediction programs such as GENSCAN

[40] and GENEID [41] typically play important roles

in annotation on occasions where no appropriate

homologous genome exists and expressed sequence

libraries offer minimal coverage of the expressed

genome, by complementing cDNA and protein

alignment methods.

The overwhelming majority of both prokaryotic

and eukaryotic sequenced genomes lack the rich

cDNA libraries associated with the human genome

and are not as well curated. Thus, predictions of

protein-coding regions for the majority of annotated

genomes are heavily weighted on de novo gene

prediction programs. Even in the human genome,

with its deep expressed sequence libraries, while

cDNA and protein alignment methods may identify

protein-coding genes and provide verification for

their transcription, and translation, respectively.

These methods are likely to be biased against predic-

ting genes expressed in a restricted manner or at very

low levels, providing an incomplete picture of the

coding sequences of the human genome. This is

filled in using computational gene prediction tools

whose results require experimental validation.

While de novo gene prediction programs have

proven useful in eukaryotic genome annotation, in

the human genome for example, they are estimated

to predict the correct gene structure only 50% of

the time [42]. This number is modestly higher in

eukaryotes with compact genomes such as that of

A. thaliana, where up to two-thirds of the time

they are estimated to predict the correct gene

structure [43]. In light of this, the need to verify

the protein-coding gene predictions made by these

computational tools in the eukaryotic annotation

process becomes clear.

De novo gene prediction programs are able to

predict protein-coding genes in a prokaryotic

genome with a much higher accuracy compared to

their performance on eukaryotic genomes, owing

to the lack of introns and high gene density in

prokaryotic genomes. However, challenges asso-

ciated with determining the precise start and stop site

of a gene, accurately predicting short genes and

determining a stop codon that represents an alter-

native amino acid rather than a true stop site, to

name a few, still remain. In a recent re-analysis

of 143 annotated prokaryotic genomes Nielsen and

Krogh [44] observed that in some genomes up to

60% of the genes may have been annotated with

a wrong start codon, especially in the GC-rich

genomes. They also observed that a significant

fraction of the genomes analysed had been over-

annotated due to a lack of discrimination between

short random ORFs and real genes. This highlights

the concern of propagating databases with inaccurate

gene predictions; an issue that is set to worsen with

the explosion in the number of prokaryotic sequenc-

ing efforts which will likely rely exclusively on

de novo prediction programs for subsequent annota-

tion. In light of these facts, the need to verify

the protein-coding gene predictions made by these

computational tools in the prokaryotic annotation

process becomes apparent.

Experimentally validating predicted protein-

coding genes ideally would entail isolating and

sequencing a full length cDNA for the prediction,

and then providing evidence that the cDNA is

translated into a protein. Current methods for verify-

ing the existence and genomic structure of predicted

protein-coding genes involve the systematic

RT-PCR and direct sequencing of gene predictions,

as described by Wu and colleagues [45], which

advanced techniques initially pioneered by Miyajima

et al. [46], Das et al. [47] and Guigo et al. [48]. These
expression-based validation techniques may be able

to predict that a possible protein-coding gene is

expressed or not; they importantly cannot provide the

evidence that an expressed gene is translated into a

protein. In addition, results of the RT-PCR can be

biased by the initial genome annotation. For example,

if the reading frame for a gene predicted from the
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annotation process is incorrect, then the PCR primer

designed is not going to target the correct and/or

complete gene sequence.

Currently, the best option for independently and

unambiguously identifying at least an important

subset of the protein-coding genes in a genome is

to perform a systematic analysis of the naturally

expressed protein complement of the genome

(the proteome) and then work backwards to

the parent genomic sequence. Until the advent of

high-throughput LC-MS/MS–based proteomics, this

option remained technically impractical to using low-

throughput and labour-intensive peptide sequence

analysis techniques/procedures (e.g. N-terminal

sequence analysis of peptides by Edman degrada-

tion or two-dimensional gel electrophoresis-based

approaches).

MS-BASED PROTEOMICSAPPLIED
TOWARDSGENOMEANNOTATION
In high-throughput LC-MS/MS-based proteomics,

protein mixtures are digested with proteases, and the

resulting peptides are typically first separated by

multidimensional LC and then analysed by MS/MS

[15, 16]. Each MS/MS spectrum is a measure

of fragment masses, ideally from a single peptide

sequence (�6–50 amino acids from an enzymatically

digested protein). This set of mass values is analog-

ous to a ‘fingerprint’ that identifies the peptide.

Interpretation of the MS/MS peptide spectra is

performed either (i) by using algorithms such as X!

tandem [49], SEQUEST [50] or Mascot [51] to

compare measured masses against a set of theoretical

masses of possible protein sequences or (ii) less

commonly, by de novo analysis, which does not

depend on any prior knowledge of the possible

sequences [15, 16]. Similar to searching MS/MS

spectra against a set of predicted protein sequences, it

is also possible to identify the protein-coding genes

in a genome by searching MS/MS spectra against a

six-frame translation of the genomic DNA sequence,

thereby precluding the inherent biases derived from

gene prediction methods. However, the exponential

increase in peptide search space generated by the six-

frame translation of large genomes results in

increased search times. The elapsed search time in

searching MS/MS spectra against a six–frame transla-

tion of the genomic DNA sequence is inversely

proportional to both the speed and number of

central processing units deployed, thus for efficient

searching a networked cluster of processors is

typically employed. A generalized strategy for

mapping peptides identified by MS onto an existing

annotated genome is outlined in Figure 1.

The idea of searching MS/MS spectra against

nucleic acid sequences was first demonstrated by

Yates and colleagues [52], in attempts to integrate

data obtained from cDNA and genomic sequencing

projects with biochemical studies. In this approach

the nucleic acid sequence representing the ‘genomic’

database is translated in all six reading frames, and

then queried with MS/MS spectra to identify

protein-coding genes. Early proteomic analysis of

the bacterium H. influenzae by Link and coworkers

[53] represents the first report of a whole bacterial

genomic sequence being queried with MS/MS

spectra in this manner to identify protein-coding

genes. The feasibility of querying MS/MS spectra

against large eukaryotic genomic sequences in similar

fashion was later demonstrated by Kuster [54] and

Choudary [55] for the A. thaliana and human

genomes, respectively. The results from these ana-

lyses produced a more confident annotation of

corresponding genomes through the confirmation

Protein recovery from organism

Trypsin digestion

LC-MS/MS data

Search against organism
genome sequence

Primary Role:
Validation of gene

calls

Secondary Role:
Correction of genome

stop and start sites and
reading frames

Tertiary Role:
Identification of

unannotated genes

Figure 1: Workflow of mass spectrometry-based pro-
teomics as applied to genome annotation. Following
protein extraction, proteins are subjected to tryptic
digestion, producing tryptic digest mixture. Tryptic
digest mixture is analysed by capillary liquid chromato-
graphy-tandem mass spectrometry (LC-MS/MS). MS/MS
peptide spectra searched against specific organism
genome sequence validating and correcting genomic
annotations, as well as identifying novel protein-coding
genes.
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of a set of predicted genes, identification of novel

genes, independent validation of hypothetical ORFs

and correction of erroneous gene predictions.

Current gold-standard expression-based techni-

ques employed to verify the existence of predicted

genes involve the systematic RT-PCR and direct

sequencing of predicted protein-coding genes.

While these methods can indicate that a predicted

gene is expressed, they are not able to determine

more importantly if the expressed gene is translated

into a protein. Only proteomics can unambiguously

determine if the expressed gene is translated into

a protein. High-throughput LC-MS/MS-based pro-

teomics directly measures protein fragments. The

resulting peptide sequences confirm the existence of

a subset of naturally occurring protein products

from a specific genome (in a fashion that is not

biased by genome annotation) and serve to validate

an annotation, i.e. a protein-coding gene. Thus

LC-MS/MS-based proteomics can facilitate genome

annotation efforts if adopted regularly. In addition,

the high-throughput nature of the LC-MS/MS-

based proteomics techniques makes this technology

cost-effective and readily applicable to the automated

genome annotation process.

VALIDATIONOF PREDICTED
GENESANDDETECTION
OF NOVELGENES
There are now several studies in the literature where

predicted genes have been validated at the protein

level. For example, Jaffe and coworkers [56] used

LC-MS/MS-based proteomics to validate a majority

of the predicted genes in the genome of the bacter-

ium Mycoplasma pneumoniae. In this work, peptides

detected in a whole-cell lysate of M.pneumoniae were
mapped onto its genome and these ‘peptide hits’

were extended to ORFs bound by traditional

genetic signals to generate what they referred to as

a ‘proteogenomic map’. Using this proteogenomic

annotation approach, the identity of many of

the protein-coding genes of the Mycoplasma mobile
genome [57] and the Mycobacterium smegmatis
genome [58] were validated. In addition to validating

predicted genes, this approach can be used to detect

novel genes. Peptides that map to genomic regions

outside the boundaries of previously annotated genes

represent evidence of novel genes (or exons)

or extensions of their predicted termini. LC-MS/

MS-based proteomics revealed the existence of

several new ORFs in the M. tuberculosis [59] and

M.pneumoniae [56] genomes that were not originally

predicted by genomic methods.

A number of studies have used LC-MS/

MS-based proteomics to validate predicted genes at

the translation level in plant (A. thaliana) [54], insect
(Anopheles gambiae) [60] and human [55, 61–63]

genomes. The complexities arising from the small

fraction of coding sequence within higher eukaryotic

genomes and the high frequency of alternative

splicing in most eukaryotic genes lead to an increased

rate of erroneous gene predictions, as such, there is

an even greater need for experimental verifica-

tion of the predicted protein-coding genes in

eukaryotic genomes. The ability to detect novel

genes in complex eukaryotic samples also has been

demonstrated in much the same way. For example,

LC-MS/MS-based proteomics has provided transla-

tional level evidence for several novel exons or genes

and the extension of known exons in the S. cerevisiae
[64], D. melanogaster [65], A. gambiae [60] and human

[63] genomes.

PROTEOMIC VALIDATIONOF
HYPOTHETICALOPEN
READING FRAMES
Hypothetical genes usually represent a significant

portion, i.e. �30–50%, of all genes in a genome, and

the rapidly growing number of hypothetical proteins

with each newly sequenced genome is one of the

emerging challenges of modern biology. Hypothet-

ical and conserved hypothetical genes are predicted

genes that either do not have any known homologs

or are homologous to other hypothetical genes in

other closely related organisms. Since the prediction

of these genes is based entirely on the presence of a

putative start, putative stop and upstream promoter

region, the likelihood that they are erroneous pre-

dictions is higher and consequently the need for

experimental validation is greater.

The current crop of gene prediction algorithms

trained on proteobacteria datasets (as proteobacteria

genomes were the first to be sequenced) has enabled

relatively robust and accurate gene prediction in

proteobacteria; however, as more distantly related

organisms are sequenced, the level of accuracy for

the current programs trained on proteobacteria data-

sets will markedly decrease leading to an increase in

incorrect annotations of hypothetical genes. In light

of these factors, it is imperative to experimentally
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verify whether a hypothetical ORF is translated into

a protein.

Through its ability to directly measure proteins

LC-MS/MS-based proteomics can validate hypo-

thetical genes at the protein level. In a global analysis

of the Deinococcus radiodurans proteome, Lipton

and coworkers [66] confirmed the expression of

several genes previously annotated as hypothetical.

The expression of several hypothetical and conserved

hypothetical proteins has also been detected in a

number of other prokaryotic genomes, including

the H. influenzae [67], Salmonellosis typhimurium [14],

Salmonella typhi [68], Yersinia pestis genome [69] and

the Shewanella oneidensis MR-1 genome [70, 71],

which validates that these lower confidence gene

predictions are accurate. Extension of this to higher

order organisms with more complex eukaryotic

genomes was demonstrated by Tanner and cowork-

ers [63], who were able to confirm the translation

of 224 hypothetical human proteins.

DETERMINATIONOF PROTEIN
STARTANDTERMINATION SITES
Another challenge for current gene prediction

algorithms is determining the correct start position

of a gene. In a recent re-analysis of 143 annotated

prokaryotic genomes Nielsen and Krogh [44]

observed that in some genomes up to 60% of the

genes may have been annotated with a wrong start

codon, especially in the GC-rich genomes. Accurate

start site predictions better define intergenic spaces

that may encode promoters and regulatory binding

sites, which are critical elements in studies of trans-

criptional regulation. Cellular localization signals also

are contained in start sites, which makes accurate start

site predictions important for accurately determining

the localization of proteins within a cell. Predicted

translational start sites are typically confirmed by

N-terminal sequencing using the Edman method;

however, this is a low-throughput process, requiring

isolation and is not amenable to the majority of

proteins that have a ‘blocked N-terminus’.

LC-MS/MS-based proteomics represents an

approach for experimentally verifying predicted

translational start sites, as in studies with M. tuberculo-
sis [72], S. oneidensis MR-1 [17] and A. gambiae [60]

genomes. N-terminal peptide identifications are

able to confirm predicted start sites and correct

erroneously predicted start sites for multiple genes,

as well as to discover the presence of rare start

codons [17]. In a further advancement, Gevaert and

coworkers [73, 74] recently described a method for

employing a chemical modification strategy to enrich

all the N-terminal peptides. As such, they were able

to validate a large number of translational start sites in

a single experiment.

Selenoproteins are proteins that incorporate the

21st amino acid selenocysteine. Selenocysteine is

inserted into selenoproteins by a re-coding event

known as codon re-assignment where the triplet

codon Thymine-Guanine-Adenine (TGA), nor-

mally a stop codon, specifies selenocysteine insertion.

TGA thus differs from all other codons in that it

has a dual function, encoding selenocysteine and

terminating translation. The alternative decoding of

TGA is conferred by an mRNA stem-loop struc-

ture termed the selenocysteine insertion sequence

(SECIS) element [75, 76]. In eukaryotes and archaea

SECIS elements are located in 30 untranslated regions

[77, 78] and in bacteria are located immediately

downstream of selenocysteine TGA codons [79, 80].

Although TGA has dual role as a stop codon

or selenocysteine, available de novo gene prediction

programs only interpret TGA as a stop codon leading

to selenoprotein genes being misannotated or com-

pletely missed, and more broadly to the misannota-

tion of the 30 terminus of protein-coding genes.

Recently, various computational approaches have

been developed that have facilitated the prediction

of selenoprotein genes in many eukaryotic genomes

[81–87]. However, as yet no such comparable

approaches have been developed for characterizing

selenoproteins in prokaryotic genomes. LC-MS/MS

by directly measuring proteins can be used to pro-

vide protein-level evidence of ORFs that contain an

in-frame TGA codon representative of an alternative

amino acid, thus highlighting an erroneous transla-

tion prediction.

APPLICATION TO COMPARATIVE
BACTERIALGENOMICS
The explosion in the number of available bacterial

genome sequences, >450 and counting, has enabled

the realization of the concept of comparative

bacterial genomics. Comparative genomics is based

on the idea that DNA sequences conserved between

species are often those that encode functional and

regulatory elements preserved from a common

ancestor responsible for the essential biological

processes of this common ancestor. Conversely,
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inter-species differences in the comparative analysis

may indicate DNA sequences that encode functional

and regulatory elements driving functional adapta-

tion [88, 89]. Consequently comparative bacterial

genomics has been used to gain insights into the

evolution of bacterial species and identification of

potentially important novel genes [90]. However,

given the fact that a gene will not always produce a

gene product, i.e. protein, due to for example post-

transcriptional regulatory mechanisms [91] and

evolutionary silencing mechanisms [92] it is impor-

tant that the expression of genes identified in

comparative genomic studies be verified at the

protein level. This however, is rarely done due to

the low-throughput, labour-intensive and resource-

heavy methods required to do so. High-throughput

LC-MS/MS-based proteomic measurements provide

a means to experimentally demonstrate the existence

of genes identified in comparative genomic studies at

the level of translation in a manner that alleviates

most of the above limitations.

VERIFICATIONOF EXISTENCE
OF SPLICE VARIANTSAT
THE PROTEIN LEVEL
Alternative splicing is an important molecular mecha-

nism that allows a single gene to produce multiple

protein isoforms, thereby playing a major role in the

production of complex proteomes with a broad range

of functional diversity. The resulting changes in

amino acid sequence generated by alternative splicing

allow a single gene to produce proteins that have

different binding properties, cellular localization,

stability and enzymatic activity [93]. The biological

importance of this phenomenon is demonstrated in

the regulation of programmed cell death, where a

number of apoptotic genes are alternatively spliced

generating protein isoforms often with either pro- or

anti-apoptotic effects [94]. It is estimated that up to

70% of human genes undergo alternative splicing

[93, 95, 96]. Given the importance and preponder-

ance of alternative splicing events, alternative splicing

detection cannot be neglected in the annotation

process of a new genome. Current ab initio and

sequence similarity methods used in structural gene

prediction, however, face challenges in accurately

predicting alternatively spliced gene structures. For

example ab initio programs, which define predicted

gene structures as an optimal prediction that is most

probable according to its underlying probabilistic

model, identify alternative splicing by searching

for suboptimal predictions with probabilities very

close to the optimal. This approach however is very

debatable as alternatively spliced gene structures can

be very different from the initial predicted gene

structure. In addition there is need to distinguish

between real splice variants and false positives,

as many alternative predictions can always be made

for any sequence, a specificity issue that can

be resolved using orthogonal validation methods

[97]. Alignment-based methods identify alternative

splicing by aligning expressed sequence tags (ESTs)

and cDNAs to the genomic sequence. This however

is limited by the availability of transcribed sequences,

non-uniformity of protocols and the labour-intensive

and expensive nature of the procedures required

[97–99]. Current high-throughput techniques for

the validation of alternative splicing predictions by

ab initio/bioinformatic methods involve the use of

DNA microarray experiments to detect alterna-

tive splicing, followed by further validation using

RT-PCR. These expression-based methods, how-

ever, only reveal that the splice variant it expressed,

and provide no information on whether the

expressed spliced variant is translated into a protein.

By directly measuring protein fragments, with the

resulting peptide sequences confirming the existence

of a subset of naturally occurring protein products

from a specific genome (in a fashion that is not biased

by genome annotation), LC-MS/MS-based proteo-

mics can verify the existence of splice variants at the

protein level. For example, Tanner and colleagues

[63] using LC-MS/MS were able to discover or

confirm at the translation level over 40 alternative

splicing events in the human genome.

HOWTO INTEGRATE
PROTEOMICSWITH GENOME
ANNOTATION
The initial annotation of the prokaryotic Shewanella
balticaOS195 genome can be used to further illustrate

the effectiveness of using proteomics data integrated

with genomic annotation. Likely protein-coding

DNA sequences in S. baltica OS185 were computa-

tionally predicted (identified) using either Glimmer

or Critica. Overall protein-coding genes predicted

by both algorithms are similar; however, a small,

yet significant number of protein-coding genes are

predicted by one algorithm and not the other,

which demonstrates the potential ambiguity in the
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annotation process. This situation highlights the

problem of contradictory gene predictions that

result from the use of different gene prediction

algorithms providing even for a simple prokaryotic

genome. The situation is magnified several fold for

more complex eukaryotic genomes, where gene

predictions are further complicated by the presence

of introns and exons.

LC-MS/MS-based proteomics data provides

an excellent opportunity to resolve these disparities

by validating gene predictions and correcting

over-predictions from the aggregated results of

multiple gene prediction algorithms. Figure 2 illus-

trates the use of proteomic data for confirming/

validating S. baltica OS185 genes predicted by

both Critica and Glimmer. In cases where gene

calls by Critica and Glimmer are identical, only

the Critica representation is shown for clarity.

The overlaying of experimentally observed pep-

tides from the predicted coding regions shows

good agreement in the various panels of Figure 2,

this information could be used in a relatively

automated fashion with the development of new

tools.

Figure 2: Illustrations depicting the use of LC-MS/MS data to validate computationally predicted genes viewedwith
the program artemis. Numbered light grey rectangles represent gene calls made by the program Critica and the
numbered black rectangles represent gene calls made by the program Glimmer. The smaller blocks associated with
the overlaying lightgreyor black numberedrectangles are peptide sequences obtained through tandemmass spectro-
metry, i.e. proteomics observed sequences. In cases where gene calls by Critica and Glimmer are identical, only the
Critica representation is shown for clarity. Externally numbered dialogue boxes are used to highlight specific type of
observations. Illustration of three likely operons including small ORFs with multiple peptides observed by LC-MS/MS.
Illustratesboth an operon andmultiple singleORF proteins including smallORFs. An illustration ofGlimmer’s only calls
an isolated peptide identifications. Isolated peptide identifications without associated gene predictions may be novel
ORFs or falsely identified peptides. AGlimmer’s only identification has multiple mass spectrometry-derived peptides
(small blocks)mapped onto gene on forward strandpredictedbyGlimmer butnonemapped to gene onreverse strand
predicted by Critica. A high resolution color version of this figure is available on request (proteomics@pnl.gov).
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Small ORFs are among the most difficult genomic

features to predict and are often either missed in

the annotation process due to conservative calls or

over-represented due to over-calling. By providing

direct evidence of expression, proteomics data con-

firms the existence of these small proteins without

introducing extraneous coding regions as shown in

Figure 2A and B. Figure 2C illustrates a scenario

whereby proteomics resolved an apparent disparity

between gene predictions made by Critica and

Glimmer. The region between 868 800 and 869 600

is predicted by Glimmer to be a protein-coding DNA

sequence (gene 4361); however, this region is missed

by Critica. Three peptides identified by LC-MS/MS

match this gene, thus confirming the prediction by

Glimmer. Another example is shown in Figure 2D.

Here, Critica predicts a protein-coding region

between 1 612 800 and 1 614 400 (gene 1378).

Glimmer also predicts a protein-coding region

between 1 612 800 and 1 614 400 (gene 4372), but

on the opposite strand. As depicted, the multiple small

blocks that represent peptide sequences obtained

through LC-MS/MS map onto the gene in the

forward direction between 1 612 800 and 1 614 400,

i.e. the gene predicted by Glimmer and represented

by the black rectangle 4372. This observation

confirms the gene prediction by Glimmer and

indicates that the prediction made by Critica was

likely an over-prediction, a chronic problem with

most gene prediction algorithms.

Previous studies have shown that different sources

of gene evidence can be combined to improve a final

genome annotation [42]. Similarly, additional data

obtained from LC-MS/MS analyses can be integ-

rated with genome annotation pipelines to validate

ambiguous gene calls, start sites and coding frames.

For example, by incorporating MS/MS data as an

additional line of evidence in the gene prediction

program GENEID [41], Tanner and coworkers [63]

added an additional 863 correctly identified human

exons to their predictions.

METAGENOMEANNOTATIONOF
MICROBIAL COMMUNITIES
Microbial organisms play key roles in a variety of

processes that range from balancing the composition

of the atmosphere to fighting disease. In their natural

environment, these organisms rarely function in

isolation, but rather in the context of diverse

microbial communities. Thus, an understanding of

the structure and activities in microbial communities

depends on the ability to sample genomic informa-

tion from all member organisms. However, currently

unculturable microbial organisms comprise the

majority of organisms in most environments on

earth. In light of this fact, culture-independent

methods are essential to understand the genetic

diversity, population structure and ecological roles of

the majority of member organisms of microbial

communities [100, 101].

Metagenomics has emerged as a powerful tool for

culture-independent genomic analysis of a popula-

tion of microbial organisms. In metagenomics,

the genomic DNA is extracted directly from micro-

bial communities in environmental samples, which

negates the need to culture organisms under

study and maintains potentially critical community

and environmental interactions [101]. However,

community sequencing efforts are hampered by the

complexity introduced from a combination of many

organisms in a single sample. This complexity creates

challenges in assembling community genomes due to

the increased size of the genome compared to single

microbes and the redundancy of metabolic pathways

within a community of organisms.

The value of LC-MS/MS-based proteomics to

metagenomics was initially highlighted in a study

by Ram and coworkers [102] that used LC-MS/

MS-based proteomic methods to evaluate gene

expression, identify key activities, and examine parti-

tioning of metabolic functions in a natural acid mine

drainage (AMD) microbial biofilm community;

an environment with relatively limited complexity.

A recent [103] LC-MS/MS-based proteomics study

that helped reveal the importance of inter-population

genetic exchange towards adapting to environmental

conditions in an AMDmicrobial biofilm community,

further demonstrated the potential of integrated

community genomics and proteomics.

SUMMARYAND FUTURE
DIRECTIONS/CHALLENGES
As the post-genomic era gains momentum, it has

become increasingly clear that a DNA sequence

alone is insufficient to provide an understanding

of complex molecular and cellular biological pro-

cesses. The fact that the bulk of current validation

methods use information derived from an annotated

genome and that not all ORFs are translated, i.e.

one cannot independently and unambiguously
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determine whether a predicted ORF is translated

into a protein, represents an untenable situation for

genome sequencing/annotation.

LC-MS/MS-based proteomics measures proteins

directly, providing a high-throughput means of

verifying at the level of translation the existence

of a subset of naturally occurring protein products

from a raw DNA sequence. In addition to vali-

dating predicted genes at the level of translation,

MS/MS data also can be used to detect novel

genes, confirm translation of hypothetical proteins,

accurately determine translational start and stop sites,

verify the existence of splice variants at the level

of translation, correct erroneous annotations and

provide information for incorporation into gene

prediction algorithms to enhance gene prediction.

In light of these tangible benefits and facts,

we strongly recommend that every genome sequen-

cing/annotation project be complemented with a

standard proteomics effort.

In looking towards the future, the need for

improved data mining and informatics tools and

instrumentation is recognized as a key challenge that

confronts the application of proteogenomic methods

to genome annotation. As genome sequencing/

annotation projects begin to include high-throughput

LC-MS/MS datasets as a necessary complement to

results from gene prediction programs, it is imperative

that new functionalities be built into both current and

new data mining and informatics tools that take full

advantage of the value-added information provided

by MS/MS datasets. For example, there is a need for

visualization tools with the ability to display start sites

only in the context of overlaid MS/MS data to

accurately define and correct erroneously predicted

translational start sites. Another example of an area of

need is auto-detection of non-standard features, such

as peptides that map over stop sites, which would

enhance the efficiency of annotating unusual codon

usage. With development, these tools will more

intelligently use data that are available from proteo-

mics experiments to fully annotate the questions that

arise during annotation.

While the principle of searching tandem MS

spectra data against six-frame translated genomes to

experimentally validate predicted protein-coding

genes has been demonstrated in both prokaryotes

and eukaryotes, as previously described, at the

present the technique faces technical challenges in

its application to complex eukaryotic genomes. One

challenge arises from the enormous database size of

six-frame translated complex eukaryotic genomes

which are orders of magnitude larger than the

protein sequence databases traditionally employed in

MS/MS peptide spectra analysis. For example, the

human proteome has an estimated size of 25Mb

residues in comparison to six-frame translation of the

human genome estimated to be 6Gb residues [63].

Scaling up to larger databases in the context of the

current search strategy employed in proteogenomic

annotation methods makes searches extremely long

to the point of being impractical. In addition, it also

results in increased false-positive counts as the false

discovery rate scales with the increasing database size,

greatly decreasing sensitivity. Key to meeting these

challenges are improved informatics and instrumen-

tation that when combined, can improve search

speed and the accuracy/sensitivity of the existing

methods. The current method of choice to over-

come the twin challenges of decreased search

speeds and decreased sensitivity has been to reduce

or restrict the peptide search space. Tanner and

colleagues [63] created the exon graph database,

a compact representation of all human putative

exons, splice variants and polymorphisms constructed

from the EST database and GENEID exon predic-

tions, and searched this database instead of searching

a six-frame translated genome directly. Significantly

reducing their database size to 134Mb residues and

resulting in increased search speeds and sensitivity.

Sevinsky and colleagues [104] developed the

GENQUEST technique which uses isoelectric

focusing and accurate mass to reduce the peptide

search space in searching tandem MS spectra data

against six-frame translated human genomes. This

produced search times and sensitivity that appeared

comparable to searching protein sequence databases

with tandem MS spectra data.

While the above examples represent advances

towards enabling efficient searching of tandem MS

spectra data against raw genomic sequences from

complex eukaryotes, further improvements are still

needed to make this search routine less problematic

and more widely applicable. In contrast, searching

tandem MS spectra data against six-frame translated

genomes of prokaryotes and certain simple eukar-

yotes remains a robust and efficient search routine

that offers immediate benefits to improving genome

annotation, and we advocate that whenever

possible each genome sequencing project be com-

plemented by a set of LC-MS/MS-based proteomics

experiments.
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