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Summary  

Glioblastoma (GBM) is the most aggressive form of glioma, with poor prognosis exhibited by 

most patients, and a median survival time of less than two years. To examine survival-

associated patterns, we assembled a cohort of 87 GBM patients whose survival ranges from 

less than 3 months and up to 10 years, most of which are not bearing isocitrate-

dehyderogenase (IDH)-1 mutation and did not undergo prior treatment. We integrated high-

resolution mass-spectrometry proteomics and RNA-sequencing to examine the yet 

unresolved proteomic contribution to poor patient outcome, and compared it to the more 

established transcriptomic contribution and to published single-cell RNA-sequencing data. 

Discovering both layer-specific and shared processes, we found that immune, metabolic and 

developmental processes distinguish short and long survival periods. Additionally, we 

observed a significant discrepancy in tumor classification between expression layers. Overall, 

our integrative findings establish proteomic heterogeneity in GBM as a gateway to 

understanding poor patient survival. 
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Introduction 

Glioblastoma (GBM) is the most common high-grade adult brain tumor. Despite aggressive 

treatment combining radio- and chemotherapy, as well as gross-total resection of the tumor, 

disease usually progresses and the median survival time of patients is less than two years 

(Ostrom et al., 2015; Patel et al., 2019; Strobel et al., 2019; Stupp et al., 2017). A major 

challenge in GBM therapy is the tumor heterogeneity, which has been characterized on the 

genomic and transcriptomic levels. 

Several studies conducted by the Cancer Genome Atlas (TCGA) described the genomic 

landscape of GBM tumors, defined by tumors invariably bearing EGFR amplification, TP53 and 

NF1 mutations in addition to other genetic aberrations (Cancer Genome Atlas Research 

Network, 2008). GBM classification based on gene expression signatures has established 

transcriptional heterogeneity (Nutt et al., 2003; Phillips et al., 2006). The analyses identified 

molecular subtypes associated with prognosis, which were later on refined based on RNA-

sequencing (RNA-seq) (Verhaak et al., 2010) and more uniform sample selection (Wang et al., 

2017) to yield three subtypes termed Proneural (PN), Mesenchymal (MES) and Classical (Cla). 

More recent studies, however, found little to no association between subtypes and prognosis 

(Wang et al., 2017). This is in part due to elimination of IDH1-mutant patients from the 

analyzed cohorts, as they are known to harbor less aggressive tumors and were previously 

defined as part of the PN subgroup (Wang et al., 2017). 

Beyond bulk tumor analysis, single-cell RNA-seq studies have shown that several 

transcriptional signatures exist within single tumors, representing different biological 

processes such as hypoxia and cell cycle (Patel et al., 2014). Furthermore, Neftel et al. (2019) 

recently showed that transcriptional heterogeneity of GBM tumors converges to four 

signatures that resemble mesenchymal and normal brain lineage stages and represent four 

tumor cell subpopulations (Neftel et al., 2019). 

Omics-based studies have largely contributed to elucidation of these sources of 

heterogeneity. However, we hypothesized that tumor heterogeneity at the proteomic level 

should also be comprehensively evaluated, given that mass spectrometry (MS) based 

proteomics has become an integral part of cancer research, shedding light on the functional 

profile of the cancer cell (Coscia et al., 2018; Harel et al., 2019; Mertins et al., 2016; Pozniak 

et al., 2016; Tyanova et al., 2016a; Vasaikar et al., 2019; Yanovich et al., 2018; Zhang et al., 

2016). In GBM, early proteomic studies have mostly utilized MALDI-TOF technology and 

applied it to find secreted tumor biomarkers from either cell lines or patient samples (Gautam 
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et al., 2012; Kumar et al., 2010; Thirant et al., 2012). Other studies applied the technology to 

study the tumor cell proteome of GBM xenograft rat models (Rajcevic et al., 2009) or of cell 

lines undergoing different treatments (Puchades et al., 2007). More recent proteomic 

analyses of gliomas applied higher resolution MS techniques to study clinical samples of grade 

II-IV gliomas (Buser et al., 2019) and to identify proteomic differences between gliomas of 

various grades and genomic alterations (Djuric et al., 2019).  However, GBM represents a small 

fraction of the tumors analyzed in these studies. 

Integration of multiple omics-based methods further advances the comprehensive view of 

cancer. Specifically, proteogenomics combines MS-based proteomic data with whole exome 

and/or whole transcriptome sequencing in order to identify the functional outcome of genetic 

alterations and to evaluate the differences between expression layers. Recently published 

studies by the Clinical Proteomic Tumor Analysis Consortium (CPTAC) and others include 

proteogenomic analyses of ovarian, breast, colon, hepatocellular and gastric cancer (Gao et 

al., 2019; Mertins et al., 2016; Mun et al., 2019; Zhang et al., 2014; Zhang et al., 2016). Among 

other findings, these studies report the correlation between mRNA and protein levels of the 

same tumor tissues, and show a median correlation that is usually modest, ranging from 0.28 

in gastric cancer to 0.54 in hepatocellular carcinoma. This further supports the potential 

benefit that can be provided by the proteomic layer. 

In the current work, we present the first proteogenomic dataset of GBM clinical samples to 

date. We have assembled a cohort of 87 GBM patients of varying survival rates and performed 

MS-based proteomics analysis as well as RNA-seq in order to identify the molecular 

differences associated with survival and examine the contribution of each layer to GBM 

landscape. We show that the protein layer is more significantly associated with patient 

survival, but in addition, RNA-protein integration identifies clear patterns of layer-specific and 

layer-common processes specifically contributing to either short-term or long-term survival 

periods of patients. Furthermore, we compare our data to published single-cell RNA-seq of 

GBM tumors and evaluate the RNA-protein variability within single-cell based tumor 

subpopulations. We found that while all signatures of the four subpopulations tend to have 

high RNA-protein correlation, each signature is associated differently with survival. 

Altogether, these results highlight the potential of proteogenomics to further stratify 

heterogeneity in GBM tumors and identify processes contributing to poorer survival. 

 

Results 

Proteogenomic association with GBM clinical parameters 
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To examine the proteogenomic association with patient survival, we carefully selected 

samples to encompass a relatively large range of survival rates, from under three months to 

over ten years. We collected tumor specimens from 87 patients that were all pathologically 

defined as GBM, for which we generated either MS-based proteomics data, RNA-seq data or 

both (Figure 1A). After quality filtration, we continued the analysis with 84 samples out of 

which 54 had high-resolution proteomic data, 65 had RNA-seq data and 32 had both (Figure 

1B). Using TMT-10plex chemical labeling, we identified 7096 proteins in total, out of which 

4567 were used for downstream analyses (see Experimental Procedures). To account for 

stromal contamination of the transcriptomic samples, we filtered the RNA-seq gene list 

according to a bona-fide glioma (BFG) gene list generated by Wang et al. (2017), and 

performed the downstream analyses  with the resulting 11,459 genes (see Experimental 

Procedures). To minimize sample variation, we took mostly IDH1-WT, untreated primary 

tumors. To initially increase the number of samples with IDH1 mutation annotation, we 

classified the samples using a published RNA-seq based signature (Baysan et al., 2012), and 

found eight samples to be IDH1-mutant, out of which only one had both RNA and proteomic 

data (Figure 1C, Figure S1A, and Table S1).  

Our main aim was to associate between RNA and protein profiles and the patient clinical 

parameters: survival, prior treatment, recurrence, gender and age. To find functionally related 

genes and their clinical associations, we performed weighted gene correlation network 

analysis (WGCNA) independently for transcriptomics and for proteomics, and used only 

primary IDH-WT tumors (n=52 proteomics, n=56 transcriptomics). We found 41 and 34 

modules in proteomics and transcriptomics data, respectively. We then calculated the 

correlation between each module's eigengene and clinical traits of interest and retained only 

significant (p<0.05) correlations. In both expression layers we identified modules that 

correlate significantly to age, gender and treatment. The major difference was observed in 

survival correlating modules: while six proteomic modules correlated with survival (three of 

them positively and three of them negatively), none of the RNA modules did (Figure 2A). It is 

worth noting that while some of these survival-associated modules correlated only with 

survival, the long-survival modules also presented a significant and opposite correlation to 

treatment. However, exclusion of treated samples resulted in similar long-survival correlating 

modules (Figure S2A and Table S2). It also yielded a single RNA survival module that contains 

32 genes and was not enriched for any biological processes. Interestingly, when including 

IDH1-mut samples in the RNA WGCNA, we do find modules associated with survival. However, 

each of these modules is also significantly correlated to IDH1 status, indicating that 
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transcriptomic expression profiles do not inform survival beyond IDH1 status (Figure S2B). To 

confirm the proteomic association with survival, we calculated the correlation with survival of 

each gene in each survival-correlating module (from Figure 2A; gene significance), and 

selected the top two proteins in each module. Kaplan-Meier analysis of these 12 proteins (two 

per each of the six survival-related modules) showed that they are all significantly associated 

with patient survival (Figures 2B and 2C). Interestingly, one of the long survival modules is 

represented by two immune proteins (CD5L and IGHM). Other than these, this module 

consists of multiple complement system components, implying a potential anti-tumorigenic 

role (for full details regarding module membership and functional enrichments see Table S2). 

 

Unsupervised clustering of samples differs between the proteomic and transcriptomic levels 

In order to further compare the RNA and protein layers, we performed unsupervised 

classification independently on the proteomic data (54 samples) and transcriptomic data (65 

samples) using consensus clustering algorithm (Monti et al., 2003). In a separate analysis, we 

classified the tumors in our cohort according to established RNA-based signatures (Wang et 

al., 2017). Out of 65 analyzed RNA samples, 19 were defined as the classical (Cla) subtype, 16 

as mesenchymal (MES) and 17 as proneural (PN, hypergeometric p-value < 0.05, see 

Experimental Procedures). The transcriptomic consensus clustering resulted in three robust 

clusters that match the transcriptional subtypes (group 1 is Cla, group 2 is PN and group 3 is 

MES) (Figure 3A and Figure S2C). The proteomic classification also resulted in three groups 

(Figure 3B and Figure S2D), however with only 25% of the overlapping samples clustering 

similarly in both layers. In order to try and match between the groups identified in each layer, 

we looked for differentially expressed genes or proteins in each classification (ANOVA test 

FDR<0.01), and examined their enriched functionalities. Hierarchical clustering showed that 

the differentially expressed features in each layer divide into three clusters. The functional 

enrichment in the RNA clusters mostly recapitulated the known gene expression signatures 

for each of the subtypes (Verhaak et al., 2010) (Fisher’s exact test, FDR<0.02; Figure 3C). Two 

clusters in each classification have distinct biological processes, such as NF-ᴋB signaling and 

epigenetic regulation in RNA clusters, or proteasomal regulation and translation in protein 

clusters (Figures 3C and 3D). Intriguingly, one cluster was functionally similar in RNA and 

protein, displaying a neuronal profile and enriched for processes such as synaptic transmission 

and neuron generation. This cluster corresponds to protein group 3, and to RNA group 2, 

which consists of mostly PN samples. However, only two of the shared samples overlapped 

between these two groups, even though protein networks associated with these enrichments 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 6, 2020. ; https://doi.org/10.1101/2020.04.28.20083501doi: medRxiv preprint 

https://doi.org/10.1101/2020.04.28.20083501
http://creativecommons.org/licenses/by-nc-nd/4.0/


6 

 

include overlapping and inter-connected members, such as guanine nucleotide-binding 

proteins (GNGs) and the neuronal calcium sensor NCALD. Beyond these, each cluster has 

layer-specific members, such as several subunits of the glutamate receptor (GRIK genes) in 

the RNA network and protein transport-associated proteins of the AP2 complex in the protein 

network (Figure 3E). These results show that neuronal features appear in both layers, but are 

apparent in a different set of tumors. This discrepancy may partially result from internal tumor 

heterogeneity. Nevertheless, it highlights proteomics as another layer of tumor heterogeneity 

in GBM (see Tables S3A-S3D for lists of differentiating features and significantly enriched 

processes).  

Given the profound differences in the clustering analyses, we examined the global RNA-

protein agreement of processes, and specifically the processes observed in the classification 

analysis. To that end, we combined the two datasets and calculated the Spearman rank 

correlation between RNA and protein expression over 4,514 genes quantified in both layers 

of the 32 shared samples. The median Spearman correlation was rather modest (r=0.16 for 

67% positive correlations, Figure 3F), compared to published proteogenomic studies (Mertins 

et al., 2016; Zhang et al., 2016), and we assume that the lower correlation results from the 

different tumor blocks used for each analysis. Nevertheless, the biological processes enriched 

in each extreme of the RNA-protein agreement axis (1D annotation enrichment test, 

Benjamini-Hochberg FDR<0.05) recapitulate known findings regarding shared and layer-

specific processes (Mertins et al., 2016; Zhang et al., 2014; Zhang et al., 2016). For example, 

ribosome and translation processes are enriched within the negatively correlating genes, 

which may explain the identification of these processes only in the proteomic classification 

(Figure 3D). Processes such as proteasome and extracellular matrix appear to be enriched 

with positively correlating genes (Figures 3G and 3H, Table S3E).  

 

Integrating RNA and protein to identify layer-specific contribution to survival 

The global correlation analysis as well as the layer-specific classification show that the 

differences between RNA and protein potentially represent yet another layer of inter-tumor 

heterogeneity in GBM, in the gene expression level. To evaluate the contribution of each layer 

to survival, we filtered the data to retain only genes whose expression was quantified in both 

layers (n=3407) and then calculated the correlation between patient survival, and the gene's 

protein or RNA expression across all patients. Next, using the correlation coefficients, we 

clustered the significantly correlating genes in either layer (permutation based adjusted p-

value<0.1, Figure 4A). For each of the resulting seven clusters, we checked whether it was 
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enriched for protein-significant correlations, RNA-significant correlations or both (Fisher exact 

test Benjamini-Hochberg FDR<0.02), and whether it is associated with short or long-term 

survival (Figure 4B). We termed the clusters according to their layer enrichment and to their 

association with long or short survival: while some genes correlated highly and negatively with 

survival in both RNA and protein (common-short), some correlated highly and positively in 

both layers (common-long). Interestingly, the latter is the smallest cluster, indicating that RNA 

and protein correlate similarly to survival mostly when survival is shorter, and suggesting that 

longer survival is defined by layer-specific processes. Furthermore, several clusters contain 

genes correlating to survival only in one layer, and one cluster was enriched for genes whose 

survival-related behavior was altogether opposite in the two layers. Controlling for IDH1 

mutation status produced similar results except for several common correlations and 

processes (Figure S3). 

Gene ontology (GO) enrichment analysis showed that enriched processes in the common-

short cluster include glycolytic metabolism, inflammatory response and lysosomal activity. 

These processes recapitulate known biological aspects of GBM tumor aggressiveness (Murat 

et al., 2009; Reynes et al., 2011; Stettner et al., 2005; Wolf et al., 2011; Yeung et al., 2013). 

We did not find enriched processes in the common-long cluster, presumably due to its small 

size.  

Long-survival processes in the RNA level include neurotrophin signaling pathway and neuron 

projection, and the genes belonging to these processes are MAPK signaling related genes such 

as KRAS, MAPK8, MAP2 and CRKL. MAPK8 is known for its role in neuronal development 

(Chang et al., 2003; Westerlund et al., 2011), as well as MAP2. 

The protein-long cluster, in addition to gene expression and chromatin regulation processes, 

is enriched for oxidative phosphorylation and the electron transport chain. This could be 

interpreted as a metabolic mirror image of the short-term survival glycolytic metabolism, 

suggesting an attenuated Warburg effect in less aggressive GBM tumors. 

Layer specific processes are also found in association with short-term survival. The RNA-short 

cluster is enriched for T-cell immunity and NF-ᴋB signaling, and thus further supports the 

immune activation observed in the common-short cluster. The protein-short cluster is 

enriched for stem cell maintenance, known to be a marker for poorer prognosis in GBM. It 

also reveals a metabolic profile that goes beyond glycolysis, and includes β-oxidation and 

ketone body metabolism (Figure 4C, see Table S4 for all significantly enriched processes). 

Despite relying primarily on glucose metabolism, fatty acid oxidation also has a potential role 

in glioma cell growth (Lin et al., 2017, see Discussion). 
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Interestingly, we found a cluster of 101 genes that correlate oppositely to survival. This cluster 

includes a group of genes related to cell-extracellular matrix interaction (ECM1, COL4A1, NID2 

and ITGA1), and the NF-ᴋB2-RELA transcription factor complex. Out of the 101 genes, 32 have 

an opposite and significant correlation in both RNA and protein (Figure 4D).  Among these 

genes, we found the Wnt pathway member β-catenin (CTNNB1), which is known to be 

primarily regulated by protein degradation. β-catenin is mostly located in the cytoplasm or 

membrane in GBM, and rarely in the nucleus (Denysenko et al., 2016; Liu et al., 2011; Yano et 

al., 2000), which may explain its association with longer survival. Another interesting gene is 

the melanoma cell adhesion molecule MCAM (CD146), which was found to be highly 

expressed in glioma stem cells (Yawata et al., 2019). However, its role in GBM is yet to be fully 

understood. 

 

Validating survival related processes by integrating single-cell RNA data  

Given the reported intra-tumor heterogeneity in GBM, and the single cell populations 

identified by single cell RNA-seq (Neftel et al. Cell 2019), we next examined whether 

integration with the bulk proteogenomic data can add the clinical relevance to the 

identification of tumor cell subpopulations. Neftel et al. identified four different tumor 

subpopulations: mesenchymal (MES), astrocytic (AC), neural progenitor cell-like (NPC) and 

oligodendrocytic precursor cell-like (OPC) that are shared between patients, but have 

different relative frequencies in each tumor. For each subpopulation, they established a gene 

signature that enables calculation of the population fraction in bulk tumor analyses, and to 

further associate these with clinical features. Applying these signatures to our proteogenomic 

data, we examined whether different subpopulations could be associated with long or short-

term survival. We ranked all the genes/proteins in our dataset according to the RNA/protein 

correlation with survival, and examined the enrichment of each of the four signatures in the 

positively or negatively correlating genes with survival (see Experimental Procedures). 

Analysis of the bulk RNA data showed significant association of AC and MES signature genes 

with shorter survival, and of OPC and NPC signature genes with longer survival (Figure 5A). 

Only the MES signature was also significantly enriched in the protein data, and lower 

significance of the protein level is expected given that the single-cell signatures were based 

on RNA analyses.  

Next, we examined whether individual population-specific genes can serve as survival markers 

in each expression layer. For the longer survival subpopulations (NPC and OPC), we took the 

top five ranks (positive correlations), and for the shorter survival subpopulations (AC and 
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MES), we took the lowest five ranks (negative correlations). This formed a list of 40 genes, out 

of which seven genes were common to RNA and protein (Table S5). Kaplan-Meier survival 

analysis found four genes to be significantly associated with survival (log-rank test p-value < 

0.05): three in the RNA level (DBN1, PFN2 and NFIX), and one in the protein level (NDRG1) 

(Figure 5B). Altogether, these results enabled us to link between cell subpopulation and 

survival, and identify potential prognostic markers.  

 

Discussion 

In this work, we investigated the proteomic contribution to GBM tumor heterogeneity, and 

its association with patient survival. When performing the two “omic” WGCNA analyses 

separately, we found proteomic expression profiles that correlate with survival in IDH1-WT 

tumors, but could not find such profiles in RNA data. This finding recapitulates other studies 

that utilized RNA-seq on IDH1-WT tumors and also did not observe a clear association with 

prognosis (Wang et al., 2017). However, when we applied an integrative approach that 

combined protein expression, RNA expression and survival correlation, we were able to 

identify survival patterns in both layers, and define whether they are shared between 

expression layers or layer-specific. Since our proteomic cohort included only one IDH1-mut 

sample, follow-up studies could refine this analysis by comparing the IDH1-WT and mutant 

proteomic profiles of GBM, as recent evidence suggests a prominent proteomic difference 

between these groups in lower grade gliomas (Djuric et al., 2019). 

Our analyses highlight three main mechanisms to be associated with survival: Immune 

processes, metabolic processes and developmental processes. We found short survival to be 

associated with inflammation and glycolytic metabolism, both with established roles in tumor 

growth and aggressiveness in GBM (Reynes et al., 2011; Waters et al., 2019; Yeung et al., 

2013). Interestingly, while NF-ᴋB signaling and T cell immunity negatively correlate with 

survival and reflect a pro-tumorigenic inflammatory response, the WGCNA results show a 

positive association between immunity and survival in the form of immunoglobulins and 

complement system components, suggesting a potential anti-tumorigenic immune response. 

Furthermore, the proteomic layer provides an extended metabolic context for patient 

survival; linking increased fatty acid oxidation with short survival, and oxidative 

phosphorylation (OXPHOS) with longer survival time. These findings are supported by the 

identification of the role of fatty acid oxidation in tumor growth and oxidative stress mitigation 

(Duman et al., 2019; Pike et al., 2011) and the role of OXPHOS in tumor suppression and 

mitochondria-promoted apoptosis in GBM (Michelakis et al., 2010). Additionally, our 
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integrative analysis revealed that stemness-development axis is also evident in the protein 

level. Traditionally, cancer stem cell populations in gliomas have been shown to possess higher 

tumorigenic capacity, and as such were considered a promising therapeutic target (Berger et 

al., 2004; Galli et al., 2004; Suva et al., 2014). However, while the association between 

stemness and aggressiveness was observed in lower grade gliomas (Tirosh et al., 2016; 

Venteicher et al., 2017), it is not straightforward in GBM tumors, in which multiple cells 

invariably express stemness markers (Patel et al., 2014). In addition, the high plasticity of GBM 

cells enables differentiated tumor cells to undergo de-differentiation, regulated by the tumor 

microenvironment, epigenetics and other factors (Dirkse et al., 2019). For example, it was 

recently shown that differentiation-inducing treatment in GBM cell lines is mediated by 

elevated mitochondrial metabolism and specifically OXPHOS (Xing et al., 2017). Our findings 

reinforce the functional connection between stemness, metabolism and overall survival in 

GBM. This suggests that further investigation of the proteomic profiles associated with 

stemness in shorter and longer survival might benefit stemness-targeted clinical efforts. 

Internal tumor heterogeneity is an inherent limitation of omic data generated from bulk 

tissues. Indeed we performed some of the analyses by directly comparing the data types, 

however performing most analyses in a layer-independent examination and then comparing 

the results enabled us to overcome the partial overlap between RNA and protein samples. To 

address the constraint of samples not taken from the exact same tumor region, we further 

incorporated publically available single cell RNA-seq data. Our analyses show a similar trend 

for both expression layers (though as expected, significant in the RNA level only), wherein two 

single-cell subpopulations indicate short survival while two other subpopulations indicate 

longer survival. In order to substantiate the connection between RNA levels, internal tumor 

heterogeneity and patient outcome, it would be necessary to check whether the ratio 

between long and short subpopulations within a tumor reflects patient outcome, once single 

cell techniques enable the collection of larger patient cohorts. Furthermore, single cell 

proteomic analyses are expected to unravel whether the bulk inter-layer differences are also 

apparent in the individual cell populations.  

The association mentioned above was only evident in the signature level. Effectively, only four 

genes showed a significant association with survival. One of these genes is NDRG1 (N-myc 

downstream regulated gene 1), which is a member of the mesenchymal signature.  NDRG1 is 

a stress protein known to be induced in hypoxic conditions (Cangul, 2004) and to be 

downregulated in several cancer types while upregulated in others (Melotte et al., 2010). In 

brain tumors, while evidence was found for both good and bad prognostic effects (Sun et al., 
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2009; Weiler et al., 2014), it appears that NDRG1 is increased in GBM when compared to lower 

grade gliomas similarly in the RNA and protein levels (Said et al., 2009; Weiler et al., 2014), 

and that its upregulation confers chemotherapy resistance (Weiler et al., 2014). Our data 

support the role of NDRG1 as a poor survival marker, and propose it as a potential therapeutic 

target.  

The discrepancy between RNA and protein was largest in the tumor classification analyses. 

While some of these differences may be apparent due to the internal tumor heterogeneity, 

previous classifications of other tumor types (e.g. breast cancer (Mertins et al., 2016; Yanovich 

et al., 2018)) did not show such major differences, despite analyzing distinct regions/tumors. 

In contrast, in GBM we found minor concordance between the functionalities of the RNA and 

protein clusters.  

In conclusion, we presented here the first MS-based global characterization of protein 

expression in clinical samples of glioblastoma. Our proteogenomic analysis highlights the 

contribution of proteomic investigation to understanding cancer biology and association with 

patient survival. The identified proteomic and transcriptomic patterns shed light on the 

intriguing molecular heterogeneity of GBM tumors, by revealing novel functionalities related 

to patient survival and disentangling the contribution of each expression layer.  
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Figure titles and legends 

Figure 1: generation of proteogenomic cohort of glioblastoma patients (see also Figure S1). 

A) For the proteogenomic workflow, samples were collected from resected tumors and 

were subject to mass spectrometry analysis and RNA-sequencing. 

B) Number of samples in total and per data type. In each column, different color 

represents number of samples that have only the data type in the column specified. 

C) Heatmap describing samples collected from 87 GBM patients. Clinical parameters 

are indicated (R=Radiation therapy, RC=Radiation and chemotherapy, 

RCA=Radiation and chemotherapy combined with Avastin). Missing values in overall 

survival panel indicate precise survival days were not available. 

Figure 2: RNA and protein associations to clinical parameters (see also Figures S2A and S2B). 

A) Heatmap describing modules resulting from independent WGCNA analyses in 

protein (top) and RNA (bottom) (Treated_RC=treated with radiation and 

chemotherapy). Significant Pearson correlations (p<0.05) to clinical parameters are 

indicated in red to blue color, as indicated in the color bar below. Module 0 (grey 

module), which includes features below the module adjacency cutoff is not shown. 

B+C)  Kaplan-Meier plots of selected proteins from short (B) and long (C) survival modules  

show significant association with survival (log rank p<0.05). 

Figure 3: comparing unsupervised clustering of each expression layer (see also Figures S2C 

and S2D). 

A+B)   Consensus clustering heatmap showing three clusters found in either transcriptomic 

(A) or proteomic (B) data. Blue color represents sample consensus score. Cluster 

annotations are indicated. 
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C+D) Enriched biological processes and pathways in each cluster in each classification 

(Fisher exact test, FDR < 0.02). 

E) Protein-protein interaction network of the “synaptic transmission” category in 

protein and RNA. Edge width represents level of confidence for the interaction 

evidence. Color represents layer (purple=protein, turquoise=RNA, dark blue = both). 

  F)  Global RNA-protein correlation based on 32 overlapping samples.  

G+H) Enriched biological processes within positively- (G) or negatively- (H) correlating 

genes. Circle size stands for GO category size and p-values are indicated by 

respective colorbars. 

Figure 4: Integrated analysis of survival (see also Figure S3). 

A) Hierarchical clustering of correlation coefficients of 1320 genes significantly 

correlating to survival in either RNA or protein (adjusted p-value<0.1) identifies 

seven clusters. 

B) Each of the seven identified clusters is enriched for layer-specific significant 

correlations. Common and opposite clusters are enriched for genes significantly 

correlating to survival in both RNA and protein. Shape type indicates expression 

layer and shape size corresponds to enrichment factor. 

C) Boxplots of proteins taken from the “Protein-short” pattern and belong to the Beta-

oxidation GO category. We divided the samples to two groups based on survival 

(short survival = less than 6 months, long survival = more than 1.5 years). 

D) 32 genes of the "opposite" cluster that have opposite and significant correlations to 

survival, and represent mostly cell-ECM interaction. 

Figure 5: Integrating single-cell RNA-seq subpopulations and survival 

A) Barcode plot showing the rank of each single-cell subpopulation signature in a 

scale of correlation to survival in either protein (right) or RNA (left). High rank 

indicates positive correlation to survival, while low rank indicates negative 

correlation. AC-astrocytic, MES-mesenchymal, NPC- neural progenitor cell-like, 

OPC- oligodendrocytic precursor cell-like. 

B) Kaplan-Meier plots of signature genes found to be significantly associated with 

survival in either RNA (NFIX, PFN2, DBN1) or protein (NDRG1). 

 

Experimental Procedures 

Clinical samples acquisition  
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Frozen tissue blocks and formalin-fixed paraffin-embedded (FFPE) tissues were obtained from 

the Neurosurgery and Pathology departments of Tel Aviv Sourasky Medical Center, Tel Aviv, 

Israel. We acquired tumor samples from 87 patients, all taken from tumor resection surgery; 

69 were pathologically defined as primary glioblastoma (GBM), one sample was secondary 

GBM and for 17 patients recurrence information was not available. Only eight patients were 

given treatment (radiotherapy and chemotherapy) prior to surgery. For two patients (L18 and 

L19), we had samples from two different foci. The cohort included tumors from 29 females, 

49 males and 9 without gender information, with age range of 19 to 85 (median 62). 

Additionally, in order to perform a molecular analysis of patient survival, samples were 

specifically selected to have varying survival rates, ranging from less than three months to 

over 10 years (median ~5 months). All samples were obtained upon ethical approval from the 

IRB committee of the Tel Aviv Sourasky Medical Center.  

 

RNA extraction and sequencing 

RNA was extracted from fresh frozen GB tissues of human patients using EZ RNAII isolation kit 

(Biological Industries, Bet Haemek, Israel) according to manufacturer’s instructions. Samples 

were homogenized in Denaturing Solution (0.5ml/50-100mg tissue) using GentleMACS 

homogenizer (Miltenyi Biotech, USA) program RNA-02. Homogenates were stored for 5 

minutes at room temperature, then 0.4ml Water-saturated phenol was added followed by 

0.09ml 1-Bromo-3-chloropropane (BCP) and vigorous shaking for 15 seconds. The resulting 

mixture was stored at room temperature for 10 minutes and then centrifuged at 12,000g for 

15 minutes at 4°C. The aqueous colorless (upper) phase was transferred to a fresh tube 

followed by addition of 0.5ml isopropanol. Mixture was stored for 30 minutes at -20°C and 

then centrifuged at 12,000g for 8 minutes at 4°C. Supernatant was removed and RNA pellet 

was washed (by vortexing) with 1ml 75% ethanol, then centrifuged at 7,500g for 5 minutes at 

4°C. Ethanol was removed, RNA pellet was air-dried for 20-30 minutes and then dissolved in 

100μl of DNAse RNAse-free water (Biological Industries, Bet Haemek, Israel) by incubating for 

10-15 minutes at 55°C. RNA samples were kept at -80°C until sequencing. RNA Integrity 

Number (RIN) was determined for each sample using the 2200 TapeStation system (Agilent, 

CA, USA). RNA libraries were prepared according to Illumina protocols. Paired-end RNA 

sequencing data (read length 100 base pairs, designated 20 million reads per sample) was 

generated on the Illumina HiSeq 2500 at Otogenetics Corporation, Atlanta, GA USA. 

 

Protein extraction 
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54 FFPE blocks were macro-dissected from tissue slices by overlaying H&E staining, in order 

to enrich for cellular areas and exclude stromal components. Dissected samples were lysed in 

50% 2-2-2 trifluoroethanol (TFE) in 25mM ammonium bi-carbonate (ABC), incubated with 

5mM Dithiothreitol (DTT) and alkylated with 15mM Iodoacetamide (IAA). Prior to protein 

digestion, samples were diluted 1:10 with 5mM ABC, and then digested overnight with 

LysC/Trp mix and Trypsin in an enzyme to protein ratio of 1:100 and 1:50, respectively. Prior 

to labeling, clean-up of digested peptides was performed using C18 Stage-Tips. We proceeded 

to tandem-mass-tags (TMT) 10plex labeling according to the manufacturer's instructions 

(Pierce). The 54 samples were divided into six sets of 10plex-TMT, while the tenth sample in 

each set consisted of a tumor-mix to be used as a quantification standard between different 

sets. Following labeling, samples were combined and vacuum-concentrated, and then 

resuspended in 0.1% trifluoroacetic acid (TFA). Resuspended samples were loaded onto high-

pH reverse phase columns (Thermo Scientific) for sample fractionation. Each 10plex-TMT set 

was fractionated into eight fractions according to the manufacturer's instructions. Resulting 

fractions were then vacuum-concentrated and resuspended in MS loading buffer (2% 

acetonitrile, 0.1% formic acid). 

 

Liquid Chromatography – Mass Spectrometry (LC-MS) Analysis 

Peptides were separated in the Easy-nLC 1000 nano-HPLC system (Thermo Fisher Scientific) 

using reverse phase chromatography on a C18 Easy-Spray column; and loaded to the Q-

Exactive HF mass spectrometer (Thermo Fisher Scientific). Each sample ran for a 128-min 

gradient of water and 80% acetonitrile, with an MS resolution of 120,000 (scan range 350-

1400 m/z, ion target value of 3e6 and maximum injection time of 100 ms) and MS/MS 

resolution of 60,000 (scan range 200-2000 m/z, ion target value of 1e5 and maximum injection 

time of 60 ms). In every MS scan, the top 15 most abundant peaks were selected for higher-

energy collision dissociation (HCD) fragmentation. 

 

Protein Identification and Quantification 

MS raw files were analyzed using MaxQuant software version 1.6.2.6 (Cox and Mann, 2008; 

Tyanova et al., 2016b). Peptide search was performed using the Andromeda search engine 

(Cox et al., 2011) against the Uniprot human protein database release April 2018, with 1% 

false discovery rate (FDR) at the  PSM and protein levels. MS level mass tolerance was set to 

4.5 ppm. Peptides were allowed to have methionine oxidation and N-terminal acetylation as 

variable modifications and cysteine carbimdomethyl as a fixed modification. Quantification 
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was defined based on MS2 reporter ion intensity with TMT channels correction factors 

supplied by the manufacturer. 

 

Multiomic data analysis 

RNA-sequencing data acquisition and analysis 

Resulting reads in FASTQ format were trimmed and quality filtered using Trimmomatic (Bolger 

et al., 2014). We used Salmon quasi-mapping tool (Patro et al., 2017) for expression 

quantification against the transcriptome compiled from the Ensembl human hg38 genome 

assembly. We used the R package DESeq2 (Love et al., 2014) to convert transcripts per million 

(TPM) quantifications to gene level, as well as to perform log2 transformation and variance 

stabilizing transformations (VST) normalization of the counts for downstream analysis. Three 

samples were removed from downstream analysis due to low alignment rates. To account for 

stromal contamination of the samples, we filtered the RNA-Seq gene list according the bona-

fide glioma (BFG) gene list generated by Wang et al. (2017), and performed all downstream 

analyses (except for the global protein-RNA correlation) with the resulting 11,459 genes.  

 

Proteomic data pre-processing and statistics 

We identified 7096 proteins in total in 54 patient samples and 6 control channels (5422 per 

sample on average). In order to retain high-quality quantifications, we filtered the data to 

contain only proteins that were quantified in all six standard channels. This resulted in 4567 

proteins, for which missing value imputation was performed sample-wise by drawing values 

from a normal distribution with a width of 1.5 and down shift of 0.5 standard deviations of 

the specific sample. Unless otherwise specified, downstream analyses were then performed 

on calculated protein ratio between each sample and its corresponding standard. As samples 

of different survival rates were evenly distributed between TMT sets, we performed linear 

modelling to eliminate small TMT batch effects using R limma package (Ritchie et al., 2015). 

(Figure S1B). 

 

Protein-RNA correlation 

Out of a total of 84 samples, 32 had both proteomic and transcriptomic data, while 20 had 

only proteomic data and 32 had only RNA data. To calculate the protein-RNA correlation we 

used only the 32 samples for which we had data in both layers. We then matched between 

proteomic and transcriptomic data based on gene names and calculated the Spearman rank 

correlation coefficient between gene and protein expression for 4514 genes. To calculate the 
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biological enrichments of either negatively or positively correlating genes we used 1D 

annotation analysis in which genes are ranked in ascending order according to their 

correlation, and genes of each biological category are tested for having significantly high or 

low ranks, as described (Cox and Mann, 2012). 

 

Weighted gene correlation network analysis (WGCNA) and unsupervised clustering  

WGCNA was performed using the WGCNA R package (Langfelder and Horvath, 2008) and 

WGCNA implementation in Perseus software (Rudolph and Cox, 2019). We used a soft-

threshold beta power=16 to create a robust signed network. Network was then clustered 

using the algorithm default parameters. We used Pearson correlation to calculate the 

correlation between the module eigengene and clinical annotations.  

For unsupervised classification of the RNA and the proteomics data we used consensus 

clustering algorithm implemented in ConsensusClusterPlus R package (Monti et al., 2003; 

Wilkerson and Hayes, 2010), with subsampling of 80% of the samples and 10 as maximum k 

(number of clusters). Before classification, samples were z-score normalized followed by 

protein/gene expression z-score normalization. Clustering results were evaluated visually in 

the resulting consensus matrix (one matrix per each k) as well as quantitatively using the 

cumulative distribution function of the area under the curve for each k (Figures S2C and S2D). 

 

Integrated Pattern analysis 

For the integration of proteomic and transcriptomic datasets we matched the two matrices 

based on gene names, filtered out genes that were not quantified at all in each one of the two 

datasets (n=3407) and merged genes based on gene name (n=3354). For the correlation 

analysis, we only kept the samples for which we had survival information (n=52 in protein, 

n=56 in RNA) and calculated Pearson correlation twice for each gene: between protein 

expression and survival, and between gene expression and survival. We also calculated a 

permutation based p-value for each correlation, by scrambling the expression data within 

samples and repeating the procedure 1000 times. For downstream analysis we kept genes 

with a significant correlation to survival (permutation based adjusted p-value<0.1) for either 

RNA or protein. The resulting 1426 genes, represented by their correlation to survival in each 

layer, were then hierarchically clustered. Each cluster was then evaluated based on the 

correlation pattern of its genes. Fisher enrichment test (FDR=0.02) tested whether each 

cluster was enriched for significant survival-protein correlations or survival-RNA correlations. 

Together with the directionality of the correlation, we were able to name each cluster as 
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either "protein", "RNA" or "both"; and as associated with either long-term or short-term 

survival. 

 

Integration of published single cell data 

Single cell RNA signatures were downloaded from Neftel et al. (2019). We determined the 

dominant single cell-based subpopulation as described (Neftel et al., 2019). Briefly, we 

calculated the average expression of each subpopulation's signature genes. We compared it 

to background expression, created by randomly drawing 100 genes from the gene's 

expression bin, for each gene in the signature. This resulted in four scores for each sample, 

one for each subpopulation. The subpopulation that received the highest score was 

considered as most dominant in that sample. Before this calculation, the genes in each 

signature were filtered to adjust for bulk tumor analysis, as described (Neftel et al., 2019). 

Kaplan-Meier analysis and logrank test were performed using R's survival (https://CRAN.R-

project.org/package=survival) and survminer (https://cran.r-

project.org/web/packages/survminer/index.html) packages. 

 

All analyses were performed using the Perseus software (Tyanova et al., 2016c), R and Python. 

Biological annotations were taken from Gene Ontology (GO) and Kyoto Encyclopedia of Genes 

and Genomes (KEGG). 

 

Data availability 

The mass spectrometry proteomics data have been deposited to the ProteomeXchange 

Consortium via the PRIDE partner repository with the dataset identifier PXD018024.  

The RNA-seq data have been deposited in NCBI's Gene Expression Omnibus (Edgar et al., 

2002) and are accessible through GEO Series accession number GSE149009 

(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE149009). 

 

Supplementary Tables 

Supplementary Table S1: cohort details and clinical information. 

Supplementary Table S2: module membership and functional enrichments of WGCNA 

- Table S2A: module membership of each WGCNA analysis 

- Table S2B: Functional enrichments in protein modules with significant correlations (Fisher 

Exact test, FDR<0.02) 
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- Table S2C: Functional enrichments in RNA modules correlating to clinical traits  (Fisher 

Exact test, FDR<0.02) 

Supplementary Table S3: significant features and functional enrichments within RNA and 

protein consensus clusters and RNA-protein correlation 

- Table S3A: significantly differentiating proteins (protein consensus clusters, ANOVA test 

FDR<0.01) 

- Table S3B: significantly differentiating genes (RNA consensus clusters, ANOVA test 

FDR<0.01) 

- Table S3C: Functional enrichments in protein consensus clusters  (Fisher Exact test, 

FDR<0.02) 

- Table S3D: Functional enrichments in RNA consensus clusters  (Fisher Exact test, 

FDR<0.02) 

- Table S3E: Functional enrichments within RNA-protein correlated and anti-correlated 

genes (1D Annotation enrichment test, FDR<0.02) 

Supplementary Table S4: functional enrichments in survival patterns (Fisher Exact test, 

FDR<0.02) 

Supplementary Table S5: list of top survival related genes within single cell based signatures 
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Yanovich-Arad et al., Figure 5
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Yanovich-Arad et al., Supplementary Figure S1
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Supplementary Fig. S1: Preprocessing of proteogenomic data

A)   Applying Glioma CpG island methylator phenotype (G-CIMP) signature to RNA-seq data to detect

      IDH-mut samples. Ten samples were identified as mutant, with two of them classified as WT in 
      the clinical information provided (Figure 1C).
B)   Principal component analysis (PCA) before (left) and after (right) TMT batch effect removal. 
       Different colors represent the two batches of TMT sets.
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Yanovich-Arad et al., Supplementary Figure S2
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Supplementary Fig. S2: Independent WGCNA and unsupervised clustering of RNA and protein data.

A)      Comparing protein and RNA modules excluding IDH-mut samples and treated samples. Significantly 
          correlating long-term survival modules are found regaardless of treatment.
B)      Comparing protein and RNA modules including IDH-mut samples. RNA results show that survival correlating 
          modules are all IDH-correlating as well (Treated_RC=treated with radiation and chemotherapy). 
          Significant Pearsoon correlations (p<0.05) to clinical parameters are indicated in red to blue color, as indicated 
          in the color bar. 
C+D) Relative change in area under the cumulative distribution function (CDF) curve of consensus scores in 
         RNA (C) and protein (D).
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Yanovich-Arad et al., Supplementary Figure S3
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Supplementary Fig. S3: Controlling for IDH mutation - repeating pattern analysis with IDH-WT only
A) Hierarchical clustering of 1240 genes significantly correlating to survival in either RNA or protein   
 (adjusted p-value<0.1) identifies seven clusters.
B) Venn diagram showing 64% overlap between the list of 1426 genes in Fig. 4 and the IDH-WT genes.

C) Alluvial plot showing the assignment of each of 916 common genes that correlated significantly to   
 survival in both the original analysis and the IDH-WT only. In the layer-specific clusters, most genes   
 belong to the same cluster, while the common and opposite clusters are only partially overlapping.
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