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Abstract 
 
The small leucine-rich proteoglycans (SLRPs) are involved in many aspects of mammalian biology, 

both in health and disease. They are now being recognized as key signaling molecules with an 

expanding repertoire of molecular interactions affecting not only growth factors, but also various 

receptors involved in controlling cell growth, morphogenesis and immunity. The complexity of 

SLRP signaling and the multitude of affected signaling pathways can be reconciled with a 

hierarchical affinity-based interaction of various SLRPs in a cell- and tissue-specific context.  

Below, we review this interacting network, describe new relationships of the SLRPs with tyrosine 

kinase and Toll-like receptors and critically assess their roles in cancer and innate immunity.   
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Introduction 
 
The small leucine-rich proteoglycans, abbreviated “SLRP”, were originally grouped on the basis of 

their relatively small protein core (36-42 kDa), as compared to the larger aggregating 

proteoglycans such as aggrecan and versican, and on their unique structural organization 

composed of tandem leucine-rich repeats (LRRs) [1,2]. It became also evident that at least three 

SLRP classes could be distinguished based upon additional unique features such as the 

organization of disulfide bonds at their N- and C-termini with the cysteine residues following a 

class-specific topology, and on the basis of their genomic organization with each individual class 

harboring a nearly identical number and size of exons and often positioned in a similar sequential 

pattern within chromosomes [3,4]. More recently, five distinct classes of SLRPs have been 

proposed based on shared biological activity and functions, albeit some of SLRPs are not classical 

proteoglycans [5]. SLRP biology and function is further complicated by their posttranslational 

modifications including substitution with sugars and glycosaminoglycan side chains of various 

types. For instance, the canonical class I members decorin and biglycan contain chondroitin or 

dermatan sulfate side chains with the exception of asporin. In contrast, all class II members harbor 

polylactosamine or keratan sulfate chains in their LRRs and sulfated tyrosine residues in their N-

termini. Class III members contain chondroitin/dermatan sulfate (epiphycan), keratan sulfate 

(osteoglycin) or no glycosaminoglycan (opticin) chain. Finally, non canonical class IV and V 

members lack any glycosaminoglycan chain with the exception of chondroadherin which is 

substituted with keratan sulfate [6]. Thus, the presence of finite sugar chains, together with further 
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posttranslational refinements, including modification in their degree of sulfation or epimerization, 

endows this class of proteoglycans with an extra layer of structural complexity.  

Initially thought to act exclusively as structural components, SLRPs are now recognized as key 

players in cell signaling capable of influencing a host of cellular functions such as proliferation, 

differentiation, survival, adhesion, migration and inflammatory response. All of these functions are 

mediated by the intrinsic SLRP ability to interact with both cytokines and ligands as well as with 

surface receptors. This minireview will critically assess recent advances on the modulation of 

various signaling pathways that are affected by SLRPs including signaling through receptor 

tyrosine kinase such as the EGFR, Met and IGF-IR, as well as receptors involved in innate 

immunity and inflammation such as Toll-like receptors and purinergic P2X receptors. We will focus 

specifically on decorin, biglycan and lumican, the best studied SLRP members so far. More 

extensive and specialized reviews on the subject have been published covering other aspects of 

SLRP biology [6-12]. 

 
 
Anti-proliferative effects on cancer cells via EGFR and Met suppression 

The first demonstration for an anti-proliferative effect of decorin, at that time called PG40 to reflect 

its apparent size, was achieved over two decades ago when Ruoslahti and coworkers discovered 

that stable transfection of decorin causes growth arrest in Chinese hamster ovary cells [13]. They 

subsequently discovered that this growth inhibition was actually due to decorin’s ability to bind and 

block TGFβ�[14], a property also shared by other SLRPs [15]. This original observation has led to a 

large number of studies focusing on decorin’s ability to inhibit fibrosis, whose main pathogenetic 

mechanism involves overactivation of the TGFβ signaling pathway. However, other studies using a 

variety of transformed cells showed that de novo decorin expression causes severe growth 

retardation in vitro [16] and suppression of tumorigenicity in animal models of human tumor 

xenografts [17]. Because most of these transformed cells are not dependent on TGFβ for their 

growth, it was hypothesized that another receptor system had to be involved insofar as decorin is a 

soluble proteoglycan. One of the key observations that emerged from these studies was that the 

decorin-expressing tumor cells become arrested in the G1 phase of the cell cycle and overproduce 

the cyclin-dependent kinase inhibitor p21WAF1 [18] supporting earlier observations that decorin gene 

expression is markedly induced during quiescence [19,20]. Indeed, both the mouse and decorin 

structural organization of their gene and promoter are quite complex [21-23] and subject to an 

intricate transcriptional regulation [1,24,25]. It was soon discovered that decorin directly interacts 

with the epidermal growth factor receptor (EGFR) with a KD~87 nM [26]. This interaction evokes a 

transient activation [27,28] followed by a profound downregulation of the receptor and inhibition of 
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its downstream signaling activity [29,30].  Subsequent studies using the yeast two-hybrid system 

revealed that decorin binds to a narrow region within the ligand-binding domain L2 of the EGFR 

overlapping with the EGF binding domain [31]. The structural constraints of the EGFR binding 

region support a stochiometry of 1:1 for decorin protein core and EGFR, suggesting that decorin is 

biologically active as a monomer [32].  This interaction prevents receptor dimerization and targets 

the EGFR to a sustained internalization via caveolin-mediated endocytosis [33], eventually leading 

to its degradation (Fig. 1). Notably heparanase induces EGFR phosphorylation [34], using similar 

Tyr residues that are activated by decorin. However, the results are quite different since 

heparanase leads to EGFR activation [34] whereas decorin leads to EGFR down-regulation [35]. 

Another effect of decorin is its activation of caspase-3, one of the key enzymes involved in 

programmed cell death, thereby increasing decorin’s anti-oncogenic activity [36]. Similar effects 

are also observed in normal mesangial cells where overexpression of decorin activates caspase-3, 

induces apoptosis and arrests the cells in the G0/G1 phase of the cell cycle via EGFR 

downregulation [37]. Also caspase-8 activation has been detected in a wide variety of transformed 

cells when decorin is overexpressed using adenoviral vectors [38]. 

The consequences of decorin signaling through RTKs are exemplified by several observations 

using the decorin-null animals. First, crossing the decorin-null mice, which exhibit a skin fragility 

phenotype [39], with the p53-null mice causes an early lethality of the double mutant animals with 

massive organ infiltration by a T cell lymphoma [40]. This is in contrast to the p53-null mice which 

show a wide variety of tumor types, including carcinomas and sarcomas, and a prolonged survival 

as compared to the double mutant mice. The second key observation is that about one-third of 

decorin-deficient mice develop intestinal adenomas that eventually develop into adenocarcinomas, 

and this process is accelerated and amplified by subjecting the decorin-null mice to a western diet 

enriched in lipids and low in calcium and vitamin D [41]. Notably, tumorigenesis in the decorin-

deficient mice is associated with a down-regulation of both CDK-inhibitors p21WAF1and p27Kip1 and 

a concurrent upregulation of β-catenin. Together, these in vivo observations suggest that decorin 

deficiency is permissive for tumorigenesis. 

Adenovirus-mediated gene delivery or systemic administration of decorin gene in various tumor 

xenograft models has revealed  an effective inhibition of tumor growth, downregulation of both 

EGFR and ErbB2, and an inhibitory effect on metastatic spreading [38,42-47].  Some of these in 

vivo effects might be mediated by decorin’s ability to inhibit the endogenous tumor cell production 

of VEGFA [48].  

In an animal model of prostate carcinoma generated by a targeted deletion of the tumor 

suppressor PTEN in the prostate, systemic delivery of decorin causes a marked downregulation of 
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the EGFR in the treated tumors with an associated reduction in tumor growth [49]. Notably, decorin 

also interferes with a crosstalk between the EGFR and the androgen receptor in prostate 

carcinoma cells [49]. The interplay between decorin and the EGFR is further underscored by 

osteosarcoma cells which escape the decorin-suppressing activity via a protracted expression and 

activation of their endogenous  EGFR [50,51].  

The complex binding repertoire of decorin would predict that this SLRP could modulate the 

bioactivity of other RTKs.  Indeed, decorin binds directly and with high affinity (KD ~ 1.5 nM) to Met, 

the receptor for hepatocyte growth factor [52]. Notably, binding of decorin to Met can be efficiently 

displaced by hepatocyte growth factor, and less efficiently by internalin B, a known bacterial ligand 

of Met with structural homology to decorin leucine-rich repeats. The interaction between decorin 

and Met induces transient activation of the receptor, recruitment of the E3 ubiquitin ligase c-Cbl, 

followed by rapid intracellular degradation of Met. Tumor growth is further suppressed through 

caspase-3-mediated apoptosis. Notably, signaling through Met leads to phosphorylation of β-

catenin, a known downstream Met effector, directing it to proteosomal degradation thereby 

decreasing cellular motility, tissue invasion and metastasis (Fig. 1). These findings indicate that 

decorin exerts its anti-proliferative activity by antagonistically targeting multiple tyrosine kinase 

receptors, thereby contributing to reduction in primary tumor growth and metastastic spreading. 

The decorin role as a marker for prognosis as well as an anticancer therapeutic is reviewed in this 

issue by Theocharis et al [53].  

 

 
Proliferative effects on normal cells via the IGF-IR 

By contrast, in normal cells decorin signaling through insulin-like growth factor receptor type 1 

(IGF-IR) exerts anti-apoptotic and proliferative effects, favoring cellular growth. Decorin binds IGF-

IR with affinity in the low nanomolar range (KD ~1-2 nM) in endothelial cells [54], renal fibroblasts 

[55], and human tubular epithelial cells [56]. In addition, decorin binds to and sequesters the IGF-I 

(KD ~18 nM), the natural ligand of this RTK [54]. By binding to the IGF-IR, decorin triggers 

phosphorylation and downstream activation of phosphoinositide-3 kinase (PI3K), Akt/protein 

kinase B (Akt/PKB) and p21WAF1 inducing an anti-apoptotic effect [54,56,57] (Fig. 1). The relevance 

of decorin in the IGF-IR pathway is reinforced in two experimental animal models of inflammatory 

angiogenesis and unilateral ureteral obstruction. In both cases, decorin-deficiency causes a 

significant increase in IGF-IR levels as compared to controls [54,55]. More over, lack of decorin 

promotes renal tubular epithelial cell apoptosis in experimental diabetic nephropathy [56,57] and in 

a renal obstruction model with interstitial inflammation and fibrosis [54,56]. In renal fibroblasts, 

decorin activates the mTOR (mammalian target of rapamycin) and p70S6 kinase (p70S6K) 
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downstream of IGF-IR/PI3K/Akt signaling [57]. This ultimately results in increased translation and 

synthesis of fibrillin-1, thereby indirectly promoting cell proliferation [58]. These pathways might 

represent the intricate regulatory mechanisms whereby decorin modulates IGF-IR signaling in a 

cell type-specific manner, thereby giving rise to different biological outcomes. In contrast to the 

well-characterized interactions of decorin with the EGFR family, the biological necessity for 

decorin-triggered activation of the canonical IGF signaling cascade is not well characterized. 

Decorin appears to mimic the effects of IGF-I and stimulates the IGF-IR without inhibiting signaling 

as it has been shown for its interaction with receptors of the ErbB family. However, the significance 

of decorin/IGF-IR interaction is not clear. In endothelial cells, decorin promotes transient receptor 

phosphorylation and activation and subsequent degradation, but it also promotes adhesion and 

migration on fibrillar collagen [54,59]. In extravillus trophoblasts, instead, decorin inhibits migration 

by affecting the IGF-IR pathway [60]. All of these studies were performed with “normal” cells. Thus, 

there are no published data on the role of decorin in modulating cancer growth via the IGF-IR in 

transformed cells or in tumor models.  Further studies are needed to elucidate the role of decorin 

in the regulation of IGF-IR and to clarify whether decorin/IGF-IR signaling might be operative in 

carcinoma cells as well. 

The complexity of decorin signaling is further expanded by additional degradative pathways 

involved in decorin catabolism. The endocytosis and lysosomal degradation of decorin comprises 

multiple pathways including those mediated by the EGFR [33] and low density lipoprotein receptor-

related protein (LRP) [61]. Interestingly, lipid-raft-dependent EGFR signaling also modulates 

decorin uptake, a process that could constitute a regulatory mechanism for desensitization of 

decorin-evoked signaling [62]. Thus, there are numerous opportunities for feedback control of 

decorin activity and its efficiency for signaling. The ability of decorin to bind to more than one RTK 

suggests that decorin is directly involved in the intricate crosstalk between receptors and their 

downstream signaling cascades.  

 

Biglycan, a danger signal that induces cooperativity of innate immunity receptors 

Biglycan, a class I SLRP structurally related to decorin, serves as an agonist of different cell 

surface receptors thereby giving rise to diverse biological outcomes [63]. The initial observation 

was made during studies of a renal obstruction model caused by pressure injury. In these studies 

biglycan was markedly over-expressed in resident renal tubular epithelial cells prior to the 

infiltration of macrophages, suggesting that biglycan might be involved in the initiation of the 

inflammatory response [57]. More recently, a number of reports have firmly established that 

biglycan, in analogy to decorin, acts as a signaling molecule especially important in the innate 
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immune system [64,65]. Under physiological conditions, biglycan is sequestered in the extracellular 

milieu, acting as a structural component with no apparent immunological function. Upon tissue 

stress or injury, biglycan is released from the extracellular matrix by a proteolytic processing which 

is not yet characterized. In contrast to the sequestered proteoglycan, soluble biglycan turns into an 

endogenous ligand of innate immunity receptors and interacts with Toll-like receptors (TLR)-2 and -

4 on macrophages, thereby triggering a robust inflammatory response. It is intriguing that both 

TLRs and biglycan contain LRR-motifs with the potential to interact with each other. Downstream 

of TLRs, biglycan signaling involves MyD88, p38, Erk and NFκB and results in the synthesis and 

secretion of TNFα and MIP-2. Consequently, additional neutrophils and macrophages are recruited 

to the site of tissue injury. This initial step does not require de novo synthesis of the pro-

inflammatory agents and therefore generates a fast response to tissue damage.  Moreover, 

macrophages stimulated by proinflammatory cytokines can synthesize biglycan de novo [64], 

thereby boosting the inflammatory response in an autocrine and paracrine manner (Fig. 2). Thus, 

soluble biglycan appears to represent a “danger” motif (DAMP, danger-associated molecular 

pattern) in analogy to pathogen-associated molecular patterns (PAMPs) in pathogen-driven 

inflammation. Besides its interaction with TLRs [64], biglycan also acts as a ligand for selectin 

L/CD44 and is thus directly involved in the recruitment of CD16(-) natural killer cells [66]. 

Soluble biglycan, as a pivotal DAMP, is not only secured by its interaction with TLR2/4 but is 

also involved in signaling through the cytoplasmic NOD-like receptors (NLRs) (Fig. 2). This is due 

to an interaction with and clustering of membrane-bound Toll-like- and purinergic P2X receptors, 

whereby biglycan induces receptor cooperativity within these newly-formed multireceptor 

complexes. By signaling through TLR2/4, biglycan stimulates the expression of NLRP3, a member 

of NLRs, and pro-IL-1β mRNA. Importantly, biglycan is simultaneously capable of interacting with 

P2X4/P2X7 receptors which will activate the NLRP3/ASC inflammasome in a ROS- and Hsp90-

dependent manner. These combined signaling events culminate in the activation of caspase-1 and 

in the processing of pro-IL-1β into its mature form, without the need for additional co-stimulatory 

factors [65]. Collectively, these findings provide solid evidence for the multi-functional involvement 

of biglycan within the innate immune system. In particular biglycan appears to specifically interact 

with two classes of receptors thereby providing cross-talk between their downstream signaling, a 

function that might be facilitated by the presence of tandem LRRs and glycosaminoglycan side 

chains. Notably, a recent report has shown that biglycan gene expression is specifically 

upregulated in human aortic valve stenosis and that the enhanced accumulation of biglycan within 

the stenotic valves contributes to the production of phospholipid transfer protein , a key factor in 

atherosclerotic aortic valve development, via TLR2 [67]. Thus, biglycan is well suited to serve as a 
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cross-linker for different cell surface receptors.  

In a model of non-infectious inflammation in the kidney, the so called unilateral ureteral 

obstruction model, biglycan-deficient mice display lower levels of active caspase-1 and mature IL-

1β, resulting in reduced infiltration of mononuclear cells and less kidney damage. In a prototypical 

innate immune process such as lipopolysaccharide-induced sepsis, lack of biglycan results in a 

clear survival benefit associated with lower levels of circulating TNF-α and IL-1β, reduced 

activation of the NLRP3 inflammasome and less infiltration in the lung, a major target organ of 

sepsis in mice [64,65]. These findings have led to a new understanding of the regulation of 

pathogen-independent (“sterile”) inflammation. Sterile inflammation appears to be driven by soluble 

biglycan as an endogenous agonist for two crucial TLRs acting as an autonomous trigger of the 

innate immunity system. In contrast, in PAMP-mediated conditions, biglycan would serve as an 

amplifier of the inflammatory response by signaling through the second TLR which is not involved 

in pathogen sensing. This concept describes a fundamental paradigm of how tissue injury is 

monitored by innate immune receptors detecting the release of minute amounts of components 

from the extracellular matrix and turning such a signal into a robust inflammatory response. This 

clearly implicates biglycan as a novel target of anti-inflammatory strategies.  

Besides being a strong trigger of pro-inflammatory signaling within the innate immune system, 

biglycan can also affect bone morphogenetic protein (BMP) signaling, thereby influencing the 

differentiation of tendon stem/progenitor cells and subsequent tendon formation [68]. Biglycan 

forms complexes with BMP-4 and modulates osteoblast differentiation [69] as well as enhances its 

binding to chordin [70]. The latter in turn leads to BMP-4 inactivation by the chordin-Tsg (Twisted 

gastrulation) complex [70].  

 

Lumican signaling in cell growth and inflammation 

The role of lumican in the regulation of cell signaling has not been studied in great detail. In 

analogy to decorin, lumican inhibits tumor cell growth in soft agar by increasing the expression of 

the CDK inhibitor p21WAF1 [71].  Again, similar to decorin, these growth inhibitory effects of lumican 

occur in a variety of cell types including fibrosarcoma, carcinoma and normal embryonic cells [71]. 

Notably, expression of membrane type metalloprotease 1 (MT1-MMP) reduces lumican secretion 

and abrogates lumican-mediated p21WAF1 induction [71].  Also decorin is cleaved by MT1-MMP [71] 

suggesting that protease processing is important in SLRP biology.  The role of shedding of cell 

surface syndecans is reviewed in this series by Manon-Jensen et al [72]. 

         Lumican reduces colony formation in soft agar and tumorigenicity in nude mice of cells 

transformed by v-src and K-ras oncogenes [73].  In mouse embryonic fibroblasts lumican-evoked 



R. V. Iozzo and L. Schaefer                                                   Novel signaling mechanisms triggered by SLRPs 

 

 10 
 
 
 

upregulation of p21WAF1 occurs through a p53-mediated mechanism with a subsequent decline in 

the cyclins A, D1 and E [74]. Lumican deficiency is associated with proliferation of stromal 

keratinocytes and embryonic fibroblasts [75]. Its inhibitory effects on cell growth have also been 

observed in tumor cells, with some of these cells secreting lumican in an autocrine manner [76]. In 

melanoma cells, lumican regulates vertical growth, suppresses anchorage-independent 

proliferation, and inhibits cyclin D1 expression [77,78]. A recent study has further shown that 

lumican not only inhibits melanoma invasion and metastasis, but also induces tumor cell apoptosis 

and inhibits angiogenesis [79]. Thus, lumican might contribute as a therapeutic agent to combat 

melanoma metastasis.  

         Lumican can interact with β1-containing integrin receptors and this signaling leads to 

inhibition of melanoma cell migration by enhancing cell adhesion [80].  Indeed, several 

components of the focal adhesion complex are modulated by lumican-evoked signaling, including 

vinculin and focal adhesion kinase [81]. Lumican alters the relationship between actin filaments 

and β1 integrin, which in turn would affect focal adhesion formation, thereby explaining the anti-

invasive effects of this SLRP [81]. A commonality of signaling between lumican and decorin is also 

supported by recent studies showing involvement of decorin in modulating various integrins in 

controlling proliferation, adhesion and migration [59,82]. Notably, lumican manufactured by 

endothelial cells binds to the cell surface of extravasated neutrophilic leukocytes via β2-containing 

integrin receptors and promotes migration during the inflammatory response [83]. Thus, there is a 

possible endothelial-dependent lumican expression that might mediate in a paracrine fashion 

neutrophil recruitment and migration.   Lumican also is involved in Fas-FasL-induced apoptosis by 

upregulating Fas (CD95) in mouse embryonic fibroblasts [74]. 

In terms of TLR signaling, lumican  presents PAMPs to the receptor complex. The protein core 

of lumican is capable of binding and presenting LPS to CD14, thereby activating TLR4 signaling 

[84] (Fig. 2). Lumican also binds to and signals through the FasL, it increases the synthesis and 

secretion of proinflammatory cytokines and accelerates the recruitment of macrophages and 

neutrophils [75,85]. Via its protein core, lumican interacts with the CXC-chemokine KC (CXCL1), 

thereby creating a chemokine gradient in the tissue along which neutrophil will infiltrate the site of 

injury [86].  

 

Conclusions and perspectives 

Undoubtedly SLRPs are structural components especially important during development and the 

maturation of various tissues enriched in mesenchyme. Utilization of animal models including the 

mouse [7,39,87-98] and zebrafish [99], has revealed fundamental roles for SLRPs in embryonic life 



R. V. Iozzo and L. Schaefer                                                   Novel signaling mechanisms triggered by SLRPs 

 

 11 
 
 
 

and disease progression. The past decade has further witnessed many members of the SLRP 

gene family emerging as signaling molecules.  The discovery that soluble SLRPs engage various 

cell surface receptors resulting in a triggering of downstream signaling events, has shed a new 

light on how SLRPs might regulate cell behavior. This is possible because of several 

characteristics of these proteoglycans. First, their makeup is conducive to protein/protein 

interactions. Second, many surface receptors are made up of protein modules that are often 

shared by extracellular matrix proteins, including leucine-rich repeats, fibronectin and 

immunoglobulin repeats, among others. Thus, there is the likely possibility that during evolution 

some of these modules have been utilized by both matrix (structural) and ligand (signaling) 

molecules. Third, SLRPs are abundant and ubiquitous, and thus might signal in a different way 

than traditional ligands whose kinetics are often very rapid, that is, both triggering of signals and 

transferring of this information to the nucleus takes just a few minutes. In contrast SLRPs can 

induce protracted signaling leading to growth inhibition in most of the cases studied. An additional 

layer of complexity is provided by SLRP’s ability to bind and sequester various cytokines, growth 

factors, and morphogens involved in multiple signaling pathways affecting differentiation, survival, 

adhesion, migration, cancer and inflammatory responses.  

In spite of their conserved and highly similar structural composition, various SLRPs such as 

decorin, biglycan and lumican have distinct interacting receptors. How could SLRPs bind to 

multiple receptors and still be specific in their action? One way to answer this important question is 

to consider a “hierarchical” possibility of receptor binding and activation. For example, decorin 

binds to EGFR, Met and IGF-IR with diverse affinity constants, with KD ranging from 87 nM for the 

EGFR to 1-2 nM for the Met and IGF-IR. Thus, when decorin encounters a cancer composed of a 

mixed population of cells, it might differentially affect the tumor cells depending upon the 

expression and cellular density of a given RTK. This cell-specific context might also apply to other 

members of the SLRP gene family. Finally, another key concept emerging from the studies 

summarized above is that some SLRPs, such as biglycan, might work through clustering and 

activating multireceptor complexes. This concept provides a novel mechanism of how tissue injury 

could be sensed by innate immune receptors: detecting the release of minute amounts of matrix 

constituents and turning such a signal into a robust inflammatory response.  
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Figure legends 

 

Fig. 1.  Schematic representation of decorin’s effects as an antiproliferative (left panel) and 

proliferative (right panel) molecule. In most cancer cells so far investigated, decorin causes a 

downregulation of EGFR and Met with consequent activation of p21 and caspase-3, which leads to 

apoptosis. Decorin also interferes with the non-canonical β-catenin pathway via the Met receptor.  

In normal cells such renal tubular epithelial cells, decorin evokes a pro-survival and proliferative 

response via the IGF-IR and downstream signaling. Please, refer to the text for additional 

information.  

 

 

Fig. 2.  Schematic representation of biglycan’s and lumican’s effects on the innate immune system. 

Please, refer to the text for detailed information.  
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