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Abstract

Proteolytic removal of membrane protein ectodomains (ectodo-
main shedding) is a post-translational modification that controls
levels and function of hundreds of membrane proteins. The
contributing proteases, referred to as sheddases, act as important
molecular switches in processes ranging from signaling to cell
adhesion. When deregulated, ectodomain shedding is linked to
pathologies such as inflammation and Alzheimer’s disease. While
proteases of the “a disintegrin and metalloprotease” (ADAM) and
“beta-site APP cleaving enzyme” (BACE) families are widely consid-
ered as sheddases, in recent years a much broader range of
proteases, including intramembrane and soluble proteases, were
shown to catalyze similar cleavage reactions. This review demon-
strates that shedding is a fundamental process in cell biology and
discusses the current understanding of sheddases and their
substrates, molecular mechanisms and cellular localizations, as
well as physiological functions of protein ectodomain shedding.
Moreover, we provide an operational definition of shedding and
highlight recent conceptual advances in the field. While new devel-
opments in proteomics facilitate substrate discovery, we expect
that shedding is not a rare exception, but rather the rule for many
membrane proteins, and that many more interesting shedding
functions await discovery.
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Introduction

Membrane proteins are essential for health and disease and have a

large variety of fundamental physiological functions. Levels of indi-

vidual membrane proteins and their functions are tightly controlled

through different mechanisms, including post-translational modifi-

cations such as proteolytic ectodomain shedding (or briefly shed-

ding). Shedding is a form of limited proteolysis and thus an

irreversible post-translational modification (Fig 1). During the shed-

ding process, a protease (referred to as sheddase) cleaves a

membrane protein substrate close to or within its transmembrane

(TM) domain, resulting in release of the soluble extracellular

domain (ectodomain) from the membrane and a fragment that

remains bound to the membrane (Fig 1) (Kapeller et al, 1973; Black,

1980a; Ehlers & Riordan, 1991). Some sheddases are also referred to

as secretases (Selkoe, 1990), as the cleaved substrate ectodomain

may be secreted.

Shedding is best understood in mammals, where it has emerged

as a key cellular mechanism to control not only abundance, but also

activation and inactivation of membrane proteins, for example,

through release of membrane-bound growth factors and cytokines

or through degradation of surface receptors and cell adhesion

proteins (e.g., Black et al, 1997; Moss et al, 1997; Peschon et al,

1998; Colombo et al, 2018). Given the large number of substrates,

shedding influences many processes in development, physiology,

and disease, such as connectivity in the nervous system (e.g.,

Hattori et al, 2000), cholesterol homeostasis (Sakai et al, 1996,

1998), Alzheimer’s disease (e.g., Vassar et al, 1999), and inflamma-

tory disorders (e.g., Black et al, 1997; Moss et al, 1997). Yet, for

other membrane proteins, shedding may simply be a mechanism of

protein turnover and may not be coupled to (patho)physiological

consequences.

In the literature, the term shedding sometimes also refers to the

non-proteolytic release of membrane proteins and the release of
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vesicles from the plasma membrane (Black, 1980a,b), which are dif-

ferent molecular processes and are not covered here.

This review gives an overview of ectodomain shedding, starting

with an operational definition of shedding, then highlighting the

involved proteases and substrates and their regulation, and finally

describing the functional consequences and medical implications of

shedding. The aim of this review article is to use selected examples

a) to demonstrate that shedding is a fundamental cell biological

process, b) to illustrate general principles of shedding that emerge

from the comparison of different sheddase families, and c) to high-

light new trends and conceptual advances in the field.

Definition of ectodomain shedding

Shedding occurs for single-span TM proteins (Fig 1A), GPI-anchored

proteins (Fig 1B), and proteins with two or more TM domains

(Fig 1C). For several substrates, shedding is the first proteolytic

cleavage and may be followed by additional proteolytic cleavage(s)

within the TM segment. Both cleavages together are conceptually

referred to as “regulated intramembrane proteolysis” (Fig 1D)

(Brown et al, 2000; Lichtenthaler et al, 2011). In all cases, shedding

refers to the release of a protein’s ectodomain from the membrane.

Initially, the term ectodomain shedding was used in a narrow

manner with regard to cellular localization (plasma membrane)

(Kapeller et al, 1973; Black, 1980a; Arribas et al, 1996), the position

of the cleavage sites within the substrates (lumenal juxtamembrane

domain) and the number of proteases and substrates involved

(Ehlers & Riordan, 1991; Massague & Pandiella, 1993). However,

several key studies over the past years, which will be discussed in

more detail below, demonstrated that shedding occurs in all cellular

organelles of the secretory and endocytic pathway, happens both

outside and even within the substrates’ TM domain (Fig 1E), and is

mediated by many more proteases than previously thought, includ-

ing membrane-bound, intramembrane, and even soluble proteases.

Moreover, it now has become clear that shedding impacts on many,
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Figure 1. Sheddases trigger the release of a wide range of proteins from the membrane.
(A) Canonical sheddases cleave single-pass TM membrane proteins in their luminal juxtamembrane region, thereby releasing ectodomains from their membrane-integral
domains. Ectodomain refers to that part of the protein that is found on the extracellular side of the membrane—in case that the protein localizes to the plasma membrane—
or within the lumen of organelles of the secretory and endocytic pathway, which is topologically equivalent to the extracellular space. (B) GPI-anchored proteins are separated
from their lipid modification by cleavage within the C-terminus of the protein. (C) Dual-pass and polytopic membrane proteins (not shown) can be cleaved in loops and
ectodomains (not shown). Neuregulin-1 type III is cleaved at two sites in its loop domain, thereby releasing a bioactive peptide from its membrane anchors. (D) As a variation
of canonical shedding, in regulated intramembrane proteolysis (RIP), the sheddase-generated membrane-integral fragment is further processed in the plane of the lipid
bilayer, releasing an intracellular domain and a short extracellular peptide fragment. In this case, shedding is the first step of two subsequent proteolytic cleavages. (E) Non-
canonical sheddases cleave their substrate in or close to the TM domain without requiring any preceding cleavage. Depending on the site of cleavage, the intracellular
fragment is released from the lipid bilayer or stays anchored by a slightly shortened TM domain.
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if not all single-span membrane proteins and numerous polytopic

TM proteins at some stage during their lifetime. In order to reflect

these new findings, we propose a broader definition of shedding.

Ectodomain shedding is the proteolytic release of the bulk or even

the entire ectodomain of a mature membrane protein into the lumi-

nal or extracellular space and often alters the substrate’s function.

Depending on the cellular compartment where shedding occurs, the

ectodomain is released into the extracellular space (at the plasma

membrane) or into the lumen of the organelles (e.g., Golgi or endo-

some), which is topologically equivalent to the extracellular space

(Schatz & Dobberstein, 1996), and from where it may subsequently

be secreted into the extracellular space. The proteolytic cut occurs

within the extracellular or luminal juxtamembrane (membrane-

proximal) region or within the TM anchor of a membrane protein

substrate. Cleavage sites within the juxtamembrane region are typi-

cally at a short distance of often 10 - 35 amino acids from the TM

segment, but more distant cleavage sites are possible and, in fact,

the exact cleavage sites have only been determined for few shedding

substrates (e.g., summarized for ADAMs and BACE1 in Caescu et al,

2009; Yan, 2017).

Several other proteolytic events in cells, such as removal of a

signal peptide by signal peptidase (Blobel & Dobberstein, 1975) and

proteolytic cleavages by mitochondrial AAA proteases (Levytskyy

et al, 2017), formally share similarities to ectodomain shedding, but

will not be discussed in this review, as they occur either during

protein biosynthesis but not on the mature protein (signal pepti-

dase), or do not occur in the secretory or endocytic pathway (mito-

chondria).

Hardware: canonical sheddases

The human genome contains nearly 600 protease-encoding genes

(Lopez-Otin & Bond, 2008), and an increasing number of them are

recognized to act as sheddases, with some having many shedding

substrates and others so far having only a single substrate reported

to undergo shedding, as will be discussed below. Proteases are

commonly considered as sheddases if they cleave their substrates in

the luminal juxtamembrane domain with a short distance to the

membrane-anchoring domain (Ehlers & Riordan, 1991). We refer to

these proteases as canonical sheddases (Table 1) to distinguish them

from the more recently described non-canonical sheddases (de-

scribed below) that cleave within a substrates’ TM domain or at the

membrane boundary (Table 2). Canonical sheddases are typically

themselves membrane-bound, but more and more soluble

proteases, such as matrix metalloproteases (MMPs), are also

reported to mediate shedding, as will be discussed below. In

Tables 1 and 2, we additionally distinguish between sheddases

whose primary function is ectodomain release and proteases that

mostly have non-shedding functions, but can additionally act as

secondary or “part-time” sheddases. Some of the best-characterized

sheddases, such as “a disintegrin and metalloprotease 10”

(ADAM10), ADAM17 (also known as TACE for TNFa-converting
enzyme), and “b-site APP cleaving enzyme” (BACE1), have many

shedding substrates and act as “full-time” sheddases. In contrast,

other proteases, such as matrix metalloproteases (MMPs) or pro-

protein convertases, have mostly non-shedding functions, because

they cleave soluble proteins (MMPs) or remove pro-peptides

(pro-protein convertases) without shedding the whole ectodomain.

As will be discussed below, such proteases are increasingly found to

additionally act as sheddases on a few selected substrates. This

qualifies them as “part-time” sheddases.

The following paragraphs first describe the canonical sheddases,

starting with membrane-bound sheddases, followed by soluble

ones. As some sheddases have more than 100 substrates, only

selected substrates are listed, in particular those that have been vali-

dated under protease-deficient conditions or through in vivo studies.

ADAM10 and ADAM17

The best-characterized canonical sheddases, ADAM10 and

ADAM17, are most likely active in the trans-Golgi network (TGN),

in later secretory pathway compartments, and at the plasma

membrane (Fig 2). More than 100 substrates for ADAM10 and simi-

lar numbers for ADAM17 have been identified in different tissues

and cells using candidate testing and advanced proteomics,

although not all of them have been validated under physiological

conditions and with in vitro assays (for detailed lists, see e.g.,

Pruessmeyer & Ludwig, 2009; Weber & Saftig, 2012; Kawahara et al,

2014; Saftig & Lichtenthaler, 2015; Kuhn et al, 2016; Zunke &

Rose-John, 2017). Selected substrates are highlighted in Table 3.

Substrate cleavage by ADAM10 often happens constitutively under

non-stimulated conditions, whereas substrate shedding by ADAM17

is mostly observed, when cells are stimulated, either with physiolog-

ical activators or phorbol esters such as PMA (phorbol-12-myristat-

13-acetat, also known as TPA, 12-O-tetradecanoylphorbol-13-

acetat).

ADAM10 is essential for ligand-dependent shedding of the

Notch1 receptor and its subsequent signaling (Pan & Rubin, 1997;

Bozkulak & Weinmaster, 2009; van Tetering et al, 2009), which is

required for embryonic development but also in several adult

tissues (Sato et al, 2012; reviewed in Alabi et al, 2018). Addition-

ally, it acts as a-secretase for the amyloid precursor protein (APP)

thereby preventing the generation of the neurotoxic amyloid-b
peptide (Lammich et al, 1999; Postina et al, 2004; Jorissen et al,

2010; Kuhn et al, 2010; Suh et al, 2013), and is, thus, considered a

drug target for Alzheimer’s disease. Numerous phenotypes have

been identified in ADAM10-deficient mice, for example, in the

nervous system (Prox et al, 2013), but the many substrates still

need to be assigned to the individual phenotypes and functions. It

is also possible that some phenotypes are not just caused by the

loss of cleavage of a single, but of multiple substrates simultane-

ously.

ADAM17 has a key function in tissue homeostasis through cleav-

age of several members of the epidermal growth factor (EGF) recep-

tor (EGFR) ligand family, including TGFa (Peschon et al, 1998),

and may be a drug target for EGFR-dependent tumors (e.g., Schmidt

et al, 2018). Additionally, ADAM17 has a fundamental role in

inflammation by being the major sheddase for the cytokine tumor

necrosis factor a (TNFa). Thus, ADAM17 is considered a major

drug target for inflammatory diseases such as sepsis, rheumatoid

arthritis, and inflammatory bowel disease (reviewed in Rose-John,

2013).

Besides ADAM10 and ADAM17, the ADAM family has ten more

members with proven or assumed proteolytic activity (Weber &

Saftig, 2012), but only few (or in some cases no) physiological

substrates for them have been identified to date (Table 1).
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BACE1 and BACE2

Another class of sheddases in the endomembrane system are BACE1

and BACE2 (Fig 2), which were initially identified as APP sheddases

(Hussain et al, 1999; Sinha et al, 1999; Vassar et al, 1999; Yan et al,

1999, 2001; Lin et al, 2000; Fluhrer et al, 2002). Candidate

approaches and, more recently, proteomic studies identified more

than 40 substrates and substrate candidates each for BACE1 and

BACE2 (see Table 3 for selected substrates) (Hemming et al, 2009;

Esterhazy et al, 2011; Kuhn et al, 2012; Zhou et al, 2012; Stutzer

et al, 2013; Dislich et al, 2015), but many of them have not yet been

validated under physiological conditions. Since BACE1 acts as the

major b-secretase for APP and catalyzes formation of the pathogenic

amyloid-b peptide, several inhibitors targeting BACE1 are currently

in advanced clinical trials for Alzheimer’s disease. However, BACE1

has additional functions in neurobiology, including in myelination,

muscle spindle formation and maintenance, synapse formation, and

axon targeting (Hu et al, 2006; Willem et al, 2006; Rajapaksha et al,

2011; Cao et al, 2012; Hitt et al, 2012; Cheret et al, 2013; Barao

et al, 2015; Zhu et al, 2018).

For most substrates, the functional consequences of their cleav-

age by BACE1 have not yet been investigated, largely for lack of

tools such as antibodies targeted to the substrates’ ectodomains or

intracellular domains, or because little is known about the

substrates.

While BACE1 is highly expressed in the nervous system, its

homolog BACE2 is strongly expressed in pancreas (Vassar et al,

1999). In vivo experiments using BACE2-deficient mice revealed that

BACE2 regulates pancreatic b-cell function and mass through cleav-

age of “transmembrane protein 27” (TMEM27) (Esterhazy et al,

2011), making BACE2 a potential drug target for diabetes, which

needs to be further evaluated. Another BACE2 substrate is PMEL17,

the cleavage of which is required for pigment production in

Table 1. List of canonical, mammalian sheddase families.

Sheddase type Protease family Protease type Cellular localization References

Full-time
sheddases

ADAM proteases
(metalloproteases)
ADAM8, ADAM9, ADAM10, ADAM12,
ADAM15, ADAM17, ADAM19, ADAM20,
ADAM21, ADAM28, ADAM30, ADAM33

Membrane-anchored,
type I

Late secretory pathway
and plasma membrane

Pruessmeyer and Ludwig
(2009), Saftig and
Lichtenthaler (2015), Weber
and Saftig (2012), Zunke and
Rose-John (2017)

BACE proteases
(aspartyl proteases)
BACE1, BACE2

Membrane-anchored,
type I

Trans-Golgi network and
endosomes

Barao et al (2016), Dislich and
Lichtenthaler (2012), Vassar
et al (2014), Yan (2017)

Site-1 protease (serine protease), also
known as SKI-1 or S1P

Membrane-anchored,
type I

Golgi Seidah et al (2017), Seidah and
Prat (2012)

Part-time
sheddases

Meprin b
(metalloprotease)

Membrane-anchored,
type I

Broder and Becker-Pauly
(2013)

MT-MMPs
(metalloproteases)
MT1-MMP, MT2-MMP, MT3-MMP, MT4-
MMP, MT5-MMP, MT6-MMP, also named
MMP14-MMP17, MMP24, MMP25

Membrane-anchored,
type I or GPI-anchored

Late secretory pathway
and plasma membrane

Hayashida et al (2010), Itoh
(2015)

Pro-protein convertases
(serine proteases)
PCSK1/3, PCSK2, furin, PCSK4, PCSK5/6,
PACE4, PCSK7 and PCSK9

Membrane-anchored,
type I or soluble

Late secretory pathway
and plasma membrane

Seidah et al (2017), Seidah and
Prat (2012)

Transmembrane serine proteases
Matriptase, Matriptase-2, Matriptase-3,
Polyserase-1, Corin, Hepsin, TMPRSS2,
TMPRSS3, TMPRSS4, MSPL, Spinesin,
Enteropeptidase, HAT, DESC1, TMPRSS11A,
HAT-like 4, HAT-like 5

Membrane-anchored,
type II

Szabo and Bugge (2011),
Tanabe and List (2017)

Matrix metalloproteases (MMPs)
MMP1, MMP2, MMP3, MMP7, MMP8,
MMP9, MMP10, MMP11, MMP12, MMP13,
MMP19, MMP20, MMP21, MMP23, MMP26,
MMP27, MMP28

Soluble Extracellular space Freitas-Rodriguez et al (2017),
Klein and Bischoff (2011),
Peixoto et al (2012)

Legumain (d-secretase)
cysteine protease

Soluble Zhang et al (2016)

Cathepsin S and L
(cysteine protease)

Soluble Extracellular space Sobotic et al (2015)

Family members with known shedding function are indicated in bold and italics. Selected review articles that typically describe the whole protease family are
given. Some articles also contain lists of identified substrates. For proteases with few shedding substrates, the original study is cited. Site-1 protease belongs to
the family of pro-protein convertases, but is listed separately to highlight that it acts as a full-time sheddase in contrast to the other members of the same
family.

4 of 24 The EMBO Journal 37: e99456 | 2018 ª 2018 The Authors

The EMBO Journal Ectodomain shedding of membrane proteins Stefan F Lichtenthaler et al



melanocytes and thus, for pigmentation of hair, skin, and mucosa,

at least in rodents (Rochin et al, 2013).

Meprin b
Meprin b is a homodimeric TM metalloprotease. Soluble and TM

substrates as well as substrate candidates were identified proteomi-

cally from cell lines overexpressing or exposed to soluble meprin b
(Bien et al, 2012; Jefferson et al, 2013). Several TM proteins were

cleaved within their ectodomain at a large distance from the

membrane, which is not seen as a shedding event, as a large part of

the ectodomain remains. However, meprin b also acts as a sheddase

and cleaves close to the TM domain in CD99 to promote

transendothelial cell migration, and in APP, for which it acts as an

alternative b-secretase (Jefferson et al, 2011; Arolas et al, 2012;

Bedau et al, 2017). To what extent meprin b may contribute to

Alzheimer’s disease still needs to be explored in more detail.

Membrane-type matrix metalloproteases (MT-MMPs)

The six MT-MMPs are a subgroup of the larger MMP family. They

are assumed to be active at the plasma membrane and are mostly

known for their cleavage of soluble substrates (see Table 1), in

particular extracellular matrix proteins, such as collagens and fibro-

nectin (Itoh, 2015). Increasingly, they are reported to also act as

canonical sheddases for TM proteins (see Table 3 and reviewed in

Hayashida et al, 2010; Itoh, 2015), and more shedding substrates

are likely to be identified in the future. For example, MT1-MMP

sheds RANKL (Receptor activator of NF-kappaB ligand) and nega-

tively regulates osteoclastogenesis (Hikita et al, 2006). MT3-MMP

was recently shown to shed the GPI-anchored Nogo receptor 1,

which promotes excitatory synapse formation in vitro and in vivo

(Sanz et al, 2018). MT5-MMP sheds N-cadherin and controls periph-

eral thermal nociception, presumably through modulation of cell

adhesion between mast cells and sensory fibers (Folgueras et al,

2009). MT5-MMP shedding of N-cadherin also controls adhesion of

neuronal stem cells to ependymocytes and thereby stem cell quies-

cence versus proliferation (Folgueras et al, 2009; Porlan et al,

2014). MT5-MMP was recently furthermore identified as the APP g-
secretase, and its inactivation reduced inflammation and amyloid

pathology in an Alzheimer’s disease mouse model (Willem et al,

2015; Baranger et al, 2016). However, the APP g-secretase cleavage

is more distant (~120 amino acids) from the membrane than most

other shedding events. It is not yet clear for all examples mentioned

above how exactly the MT-MMPs contribute to the indicated

(patho)physiological processes, and it is likely that more shedding

functions of MT-MMPs will be discovered.

Pro-protein convertases, including site-1-protease (S1P)

Pro-protein convertases are a family of nine soluble and membrane-

bound serine proteases that are commonly found in the TGN and

later compartments of the secretory pathway (Fig 2). Several of

them, such as furin, remove pro-peptides from soluble or

membrane-bound inactive protein precursors (reviewed in Seidah &

Prat, 2012), including ADAM and BACE proteases. These pro-

peptide cleavages are not considered as shedding event, since they

often occur several hundred amino acids distant from the

substrates’ TM domains and, therefore, do not remove the majority

of the substrates’ ectodomains. Yet, pro-protein convertases are

increasingly reported to additionally act as sheddases for selected

substrates. For example, PCSK7 sheds the transferrin receptor

(Guillemot et al, 2013), whereas furin or another pro-protein

convertase sheds MT5-MMP (Wang & Pei, 2001), with both cleav-

ages occurring < 25 amino acids away from the substrates’ TM

domains. Thus, while the functional consequences of these shed-

ding events are not yet fully understood, pro-protein convertases

can act as “part-time” sheddases.

One family member, site-1 protease (S1P), also known as subti-

lins/kexin-isozyme 1, stands out from the other family members in

that it functions primarily as a sheddase (reviewed in Seidah et al,

2017). Known substrates of this Golgi-resident protease include viral

proteins as well as the latent transcription factors SREBP, involved

in cholesterol homeostasis, and ATF6, which is proteolytically acti-

vated during the endoplasmic reticulum (ER) unfolded protein

response, as well as the inactive a/b-subunit precursor of GlcNAc-1-
phosphotransferase, where proteolysis is required for lysosomal

homeostasis (Sakai et al, 1998; Ye et al, 2000; Marschner et al,

2011). Both SREBP and ATF6 are shed at a distance of < 30 amino

Table 2. List of non-canonical, mammalian sheddase families.

Sheddase type Protease family and members Protease type Cellular localization References

Full-time
sheddases

Rhomboid proteases
(serine proteases)
RHBDL1, RHBDL2, RHBDL3, RHBDL4

Integral multi-pass TM
protein

Golgi (RHBDL1), plasma
membrane (RHBDL2),
endosomes (RHBDL3), ER
(RHBDL4)

Freeman (2014),
Lemberg (2013)

SPP/SPPL family (aspartyl proteases)
SPPL3
SPP, SPPL2a, SPPL2b, SPPL2c,
(SPPL3 is a major sheddase; SPP acts as
a sheddase only in exceptional cases)

Integral multi-pass TM
protein

ER (SPP), lysosomes
(SPPL2a), cell surface
(SPPL2b), ER (SPPL2c),
Golgi (SPPL3)

Kuhn et al (2015), Voss
et al (2014) Boname
et al (2014), Chen et al
(2014)

Part-time
sheddases

Presenilin/c-secretase
(aspartyl protease)
Presenilin-1, Presenilin-2
(c-secretase acts as a sheddase only in
exceptional cases)

Integral multi-pass TM
protein,

Plasma membrane,
endosomes

Laurent et al (2015),
Schauenburg et al
(2018)

Family members with known shedding function are indicated in bold and italics. Selected review articles are given that typically describe the whole protease
family. Some articles also contain lists of identified substrates. For proteases with few shedding substrates, the original study is cited.
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acids from the membrane and are further processed by site-2

protease in the paradigm of regulated intramembrane proteolysis

(Brown et al, 2000).

Transmembrane serine proteases (TTSPs)

Matriptase-2 is a member of the type II transmembrane serine

proteases (TTSPs), an understudied group of 17 membrane-bound

serine proteases (Szabo & Bugge, 2011), and has been reported to

shed APP within the amyloid b domain, at least in transfected cells

or in vitro (Beckmann et al, 2016). Other TTSPs appear to cleave

predominantly soluble proteins or activate membrane-bound

proteins, but without shedding them in their juxtamembrane

domains (Jackle et al, 2015; Murray et al, 2016). Thus, at present

TTSPs belong to the group of “part-time” sheddases. However, it is

well possible that the future will reveal more TTSP shedding

substrates.

Soluble sheddases

Canonical sheddases are typically single-span TM or GPI-anchored

proteins (Table 1). Yet, several soluble proteases, which typically

cleave non-membrane-bound substrates, are increasingly reported

to also act as “part-time” sheddases by cleaving within the

substrate’s juxtamembrane domain. For example, MMP9, a soluble

MMP, sheds neuroligin 1 in the nervous system (Peixoto et al,

2012). Another example, the cysteine protease legumain (also

known as asparagine endopeptidase), was recently shown to act as

APP d-secretase (Zhang et al, 2015, 2017). This cleavage occurs in

vicinity to the BACE1 cleavage site in APP and enhances amyloid-b
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Figure 2. Cellular localization of sheddases.
Catalytically active canonical and non-canonical sheddases not only localize to the cell surface but also to different subcellular compartments. The localization of selected
canonical (red) and non-canonical (green) sheddases is indicated.
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generation, which makes legumain a potential drug target in Alzhei-

mer’s disease. Likewise, the soluble protease cathepsin S sheds the

cell adhesion proteins ALCAM and CD44 in vivo and, at least

in vitro, numerous additional cell surface proteins (Sobotic et al,

2015). Taken together, these examples demonstrate that membrane

attachment is not required for a protease to act as a sheddase.

However, a membrane-anchor offers the advantage to position the

active site close to the membrane surface, facilitating rapid accessi-

bility to the substrate’s cleavage site.

Hardware: non-canonical sheddases

Based on the position of their cleavage sites outside the substrates’

TM region, canonical sheddases were long thought to be clearly dif-

ferent from intramembrane proteases, which cleave their substrates

within the TM domain. The best-investigated intramembrane

protease, c-secretase, cleaves its first-identified substrates, which

typically have a long ectodomain, only when their ectodomain is

truncated by a canonical sheddase. Consequently, c-secretase and

other intramembrane proteases initially were assumed to not

directly shed membrane proteins, but only act secondary to a

primary shedding event. However, recent studies demonstrated that

some intramembrane proteases, in particular rhomboids and SPPL3,

act as bona fide sheddases and that other intramembrane proteases,

such as SPP and c-secretase, can—at least occasionally—also shed

membrane protein ectodomains directly and thus act as “part-time”

sheddases. Thus, proteases cleaving in juxtamembrane and TM

regions share more functional properties than previously expected.

Rhomboids

Rhomboids are intramembrane serine proteases first discovered in

Drosophila, where they act as key activators of EGFR signaling (Lee

et al, 2001; Urban et al, 2001). Drosophila Rhomboid-1 is a Golgi-

resident protease that triggers secretion of the EGFR-receptor ligand

Spitz by cleaving within its TM domain, paralleling the physiologi-

cal function of ADAM proteases in mammals (Fig 3A). Rhomboids

are universally conserved, and different functions ranging from

protein degradation to cleavage of cell adhesion molecules during

parasite invasion have been described (for recent reviews see

Lemberg, 2013; Freeman, 2014; Urban, 2016). The crystal structures

of the E. coli rhomboid protease GlpG revealed a conserved six-TM

helix-bundle forming a rhomboid active site cavity that opens to the

periplasmic (luminal) side of the membrane (Wang et al, 2006).

Consistent with this, rhomboid proteases have been shown to also

cleave substrates within their ectodomains and within loops of

multi-TM domain proteins (Erez & Bibi, 2009; Fleig et al, 2012).

Interestingly, in contrast to most other intramembrane proteases,

rhomboids can directly act as sheddases on full-length proteins with

long ectodomains and do not require the substrate’s ectodomain to

Table 3. Examples of substrates of selected canonical and non-canonical, mammalian sheddases.a

Sheddase Selected substrates References

ADAM10 Notch, APP, PrP, EGF, ephrin-A5, N-cadherin, DR6, CD23 Altmeppen et al (2011), Colombo et al (2018), Hartmann et al (2002),
Janes et al (2005), Jorissen et al (2010), Kuhn et al (2016, 2010), Pan
and Rubin (1997), Postina et al (2004), Reiss et al (2005), Sahin et al
(2004), Suh et al (2013), Vincent et al (2001), Weskamp et al (2006)

ADAM17 TGFa, TNFa, IL6R, amphiregulin, epiregulin, heparin-binding
EGF-like growth factor, L-selectin, TNFR2

Althoff et al (2000), Black et al (1997), Ludwig et al (2005), Moss et al
(1997), Peschon et al (1998), Sahin et al (2004)

BACE1 APP, NRG1, SEZ6, CHL1 Dislich et al (2015), Esterhazy et al (2011), Hemming et al (2009),
Kuhn et al (2012), Stutzer et al (2013), Zhou et al (2012)

BACE2 TMEM27, PMEL17 Esterhazy et al (2011), Rochin et al (2013)

Meprin b CD99, APP Arolas et al (2012), Bedau et al (2017), Jefferson et al (2011)

MT1-MMP CD44, syndecan, RANKL Endo et al (2003), Hikita et al (2006), Kajita et al (2001), Tam et al
(2004)

MT3-MMP NgR1 Ferraro et al (2011), Sanz et al (2018)

MT5-MMP N-cadherin, APP Baranger et al (2016), Folgueras et al (2009), Porlan et al (2014),
Willem et al (2015)

MMP9, MMP12 N-cadherin, NLG1 Dwivedi et al (2009), Peixoto et al (2012)

PC7 Transferrin receptor Guillemot et al (2013), Wang and Pei (2001)

Site-1 protease
(S1P, SKI-1)

SREBP, ATF6, GlcNAc-1-phosphotransferase Marschner et al (2011), Sakai et al (1998), Seidah et al (2017), Ye
et al (2000)

RHBDL2 Thrombomodulin, EGF, BCAM, Spint-1, CLCP1 Adrain et al (2011), Cheng et al (2011), Johnson et al (2017), Lohi
et al (2004)

RHBDL4 ERAD substrates, APP Fleig et al (2012), Johnson et al (2017), Paschkowsky et al (2016)

SPP XBP1u Chen et al (2014)

SPPL3 GnT-V and other glycan-modifying enzymes Kuhn et al (2015), Voss et al (2014)

c-secretase BCMA Laurent et al (2015)

Sheddases with many substrates and examples of recent studies are listed.
aOnly such substrates are listed that have been validated, preferentially under sheddase-inactivating conditions or through in vivo experiments.
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be trimmed by a preceding canonical shedding event (Fig 3A). In

mammals, four secretory pathway rhomboid proteases are known,

which are referred to as RHBDL1 to 4 (Fig 2 and Table 2). The first

known physiological substrate of a mammalian rhomboid protease

was thrombomodulin, which is cleaved by RHBDL2 at the plasma

membrane (Lohi et al, 2004; Cheng et al, 2011). RHBDL2 also

cleaves EGF, but likely only to modulate its signaling, a process that

may nevertheless be deregulated in certain cancer cells (Adrain

et al, 2011). More recently, substrate proteomics identified several

additional proteins to be cleaved by RHBDL2 (Table 3) (Johnson

et al, 2017). RHBDL4 has been linked to the ER-associated degrada-

tion (ERAD) pathway (Fleig et al, 2012) and has been suggested to

act as a non-canonical sheddase of APP (Paschkowsky et al, 2016).

Signal peptide peptidase (SPP)

Signal peptide peptidase (SPP) is a member of the heterogenous

group of GxGD intramembrane aspartyl proteases (Ponting et al,

2002; Weihofen et al, 2002). A recent crystal structure of the

archaeal GxGD protease MCMJR1 revealed the catalytic aspartate

residues forming an aqueous active site 8 Å below the membrane

surface (Li et al, 2013). SPP was first characterized as the activity

that clears signal peptides from the ER following their removal from

nascent secretory proteins by signal peptidase (Weihofen et al,

2000; Lemberg & Martoglio, 2002). More recently, SPP has also been

recognized as an ERAD factor that may under certain circumstances

act as a non-canonical sheddase, where—different to its common

role in regulated intramembrane proteolysis of signal peptides—it

does not require initial activatory cleavage by signal peptidase

(Boname et al, 2014; Chen et al, 2014; Hsu et al, 2015). Consistent

with this dual role, SPP assembles as a homo-tetramer that

processes signal peptides (Schrul et al, 2010) and—for its sheddase

function—as higher molecular weight assembly with the ERAD

factor Derlin1 and ERAD E3 ubiquitin ligases (Fig 3B) (Stagg et al,

2009; Chen et al, 2014; Stefanovic-Barrett et al, 2018). While SPP

had initially been hypothesized to contribute to non-proteolytic

dislocation of certain ERAD substrates (Loureiro et al, 2006; Lee

et al, 2010), heme oxigenase-1 and XBP1u were recently shown to

be shed by SPP, leading to their rapid degradation by the protea-

some (Boname et al, 2014; Chen et al, 2014). Although the C-term-

inal, luminal portion of SPP-dependent ERAD substrates is not

secreted (Fig 3B), cleavage without preceding substrate processing

formally ranks SPP as a “part-time” non-canonical sheddase.

SPP-like proteases (SPPL)

Besides SPP four SPP homologs, the SPP-like (SPPL) proteases,

SPPL2a, SPPL2b, SPPL2c, and SPPL3, have been identified in

mammals (Grigorenko et al, 2002; Ponting et al, 2002; Weihofen

et al, 2002). While all known SPPL2b substrates require processing

by a canonical sheddase before SPPL2b processing can occur within

the TM segment (Fluhrer et al, 2006; Martin et al, 2008, 2009; Zahn
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Figure 3. Non-canonical sheddases. One representative substrate per non-canonical sheddase is given.
(A) Rhomboid proteases cleave the TM domain of their substrates in the luminal membrane leaflet, thereby triggering release of the ectodomain. (B) SPP assembles with the
rhomboid pseudoprotease Derlin1, and ERAD E3 ubiquitin ligases TRC8 and MARCH6 to form a proteolytic ERAD complex that recognizes membrane proteins without
preceding cleavage. In a concerted action, fragments are released to both sides of the membrane and degraded by further components of the ERAD pathway. (C) SPPL3 cleaves
glycan-modifying enzymes at the luminal border of their TM domains, releasing the active site containing ectodomain. (D) Membrane proteins with large ectodomains need
shedding to truncate their ectodomain before their C-terminal fragment (CTF) can be further processed by c-secretase. In contrast, substrates with a naturally short
ectodomain are directly shed by c-secretase leading to secretion of their entire ectodomains. Nicastrin (Nic) serves as a molecular ruler accepting only membrane proteins
with a short ectodomain.
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et al, 2013), SPPL3 was recently found to act as a non-canonical

sheddase independently of the substrates’ ectodomain length

(Fig 3C; Voss et al, 2012). Proteomic approaches have identified

many substrate candidates, in particular with functions in regulation

of cellular N-glycosylation (Voss et al, 2014; Kuhn et al, 2015). By

shedding of various glycosyltransferases and glycosidases, SPPL3

removes the catalytic domain of these enzymes in the Golgi. Sub-

sequent secretion of these domains results in inactivation of the

glycan-modifying enzymes. Consequently, increased expression of

SPPL3 leads to protein hypoglycosylation, while reduced SPPL3

expression induces hyperglycosylation of cellular proteins. Thus,

shedding mediated by SPPL3 may serve as a potent cellular switch

that allows adaption of a cell’s glycan pattern to environmental

changes (Voss et al, 2014). SPPL2a is involved in processing

of CD74, the invariant chain of the Major Histocompatibility

Complex II (MHCII) (Beisner et al, 2013; Bergmann et al, 2013;

Schneppenheim et al, 2013). Under physiological conditions, the

type II-oriented CD74 molecule is sequentially processed by several

serine and cysteine proteases generating a stable membrane-bound

CD74 fragment that is subject to SPPL2a cleavage. Thus, CD74

processing reflects a classical cascade of regulated intramembrane

proteolysis. Whether SPPL2a and its presently still orphan sister

protease SPPL2c can also act as a non-canonical sheddases remains

to be elucidated.

c-secretase
The last member of the GxGD-type aspartyl proteases is c-secretase,
which has presenilin-1 or -2 as the catalytic subunit and which acts

as a sheddase on full-length proteins only in exceptional cases. Initi-

ally identified because of its link to APP processing in Alzheimer’s

disease (Sherrington et al, 1995; De Strooper et al, 1998; Wolfe

et al, 1999), c-secretase currently has more than 100 known

substrates (for an overview see Haapasalo & Kovacs, 2011). Interest-

ingly, presenilins are distant homologs of the SPP/SPPL family

members, but have opposite membrane topology and therefore only

cleave type I membrane protein substrates, whereas SPP/SPPL

proteases selectively cleave type II-oriented TM segments (Weihofen

et al, 2002). Besides presenilin, c-secretase consists of three addi-

tional proteins (Aph-1, nicastrin, and PEN2) (Fig 3D), which are

essential for c-secretase maturation and activity (Edbauer et al,

2003; Kimberly et al, 2003; Takasugi et al, 2003). Cryo-electron

microscopy shows that the nicastrin subunit has a compactly folded

ectodomain that forms a lid on top of the active site of c-secretase
(Bai et al, 2015), making nicastrin a molecular ruler that prevents

membrane proteins with long ectodomains from getting cleaved by

c-secretase (Bolduc et al, 2016). As a consequence, c-secretase
substrates with long ectodomains require prior shedding by canoni-

cal sheddases, reducing ectodomain length to < ~50 amino acids

and allowing subsequent intramembrane proteolysis by c-secretase
(Struhl & Adachi, 2000). Thus, c-secretase generally does not act as

a sheddase on intact membrane proteins, with the striking exception

of the recently described c-secretase shedding of the B cell matura-

tion antigen (BCMA) that alters its function as a B cell surface recep-

tor required for NFjB signaling and maintenance of long-lived

plasma cells (Laurent et al, 2015). The cleavage takes place within

the BCMA TM domain, but—in contrast to other c-secretase
substrates—does not require prior ectodomain shedding, as the

ectodomain is naturally short enough (54 amino acids) for direct

non-canonical shedding by c-secretase. The mammalian proteome

contains additional type I membrane proteins with naturally short

ectodomains, and BCMA may therefore be the founding member of

a new class of naturally short c-secretase shedding substrates. Inter-

estingly, a recent study reported that also the APP-homolog APLP1,

which has a large ectodomain of several hundred amino acids, may

be directly shed by c-secretase, at least to a small extent, in addition

to its usual shedding by ADAM10 and BACE1 (Schauenburg et al,

2018). However, it is in this case not yet clear how the long APLP1

ectodomain could mechanistically bypass the strict, short ectodo-

main length requirement imposed by nicastrin.

Taken together, intramembrane proteases can act as non-cano-

nical sheddases and thus directly influence the physiological func-

tions of their substrates. While some intramembrane proteases, like

rhomboids and SPPL3, primarily act as sheddases and have multiple

substrates, others including SPP and c-secretase appear to have

exceptional “part-time” sheddase functions only on selected targets

under specific conditions, and otherwise mostly act as intra-

membrane proteases requiring a prior shedding event.

Hardware: higher order assembly and non-
proteolytic subunits

Most sheddases are assumed to act as monomers or, as observed for

BACE1, homodimers (Schmechel et al, 2004; Westmeyer et al,

2004), but there is increasing evidence that certain sheddases may

assemble into higher order complexes, as has been described for

ADAM10 that interacts with c-secretase (Chen et al, 2015). While

this may allow efficient coupling of shedding and subsequent

intramembrane proteolysis, it is unknown whether all ADAM10

substrates are further processed by c-secretase, and it remains to be

determined which fraction of both proteases is found in the

complex. In addition, ADAM10 was also reported to associate with

certain members of another class of multi-pass TM proteins, the

tetraspanins (reviewed in Matthews et al, 2017). These non-proteo-

lytic partners have been attributed functions in ADAM10 maturation

(Arduise et al, 2008; Dornier et al, 2012; Haining et al, 2012; Prox

et al, 2012), but their exact impact on activity, regulation, and

substrate specificity of ADAM10 remains to be determined. Simi-

larly, larger complexes have been observed for ADAM17, which

associates with the catalytically inactive rhomboid-family proteins

iRhom1 or -2 (Adrain et al, 2012; McIlwain et al, 2012; Christova

et al, 2013; Maretzky et al, 2013; Cavadas et al, 2017; Grieve et al,

2017), and for SPP, which assembles with Derlin1 (Chen et al,

2014). iRhoms and derlins can be seen as part of the sheddase hard-

ware and serve as substrate adaptors or trafficking regulators for

their active protease partners ADAM17 or SPP (Maretzky et al,

2013). This is reminiscent of c-secretase with its three non-proteo-

lytic subunits required for maturation, trafficking, and activity of

the whole protease complex (Edbauer et al, 2003; Kimberly et al,

2003; Takasugi et al, 2003).

Hardware: substrates

To date, the number of shedding substrates is unknown, but given

the large numbers of canonical sheddase substrates mentioned
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above (see substrates and review articles cited in Table 3), it is clear

that shedding affects at least a few hundred different mammalian

membrane proteins. Moreover, a systematic screening of published

reports led to a database (SheddomeDB) listing over 400, mostly

human, shed proteins (Tien et al, 2017). Furthermore, several recent

proteomic studies detected hundreds of membrane proteins in condi-

tioned medium of various cell lines and in body fluids (e.g., Faca

et al, 2008; Kuhn et al, 2012; Meissner et al, 2013; Kim et al, 2014;

Wilhelm et al, 2014; Dislich et al, 2015). These proteins may well

constitute cleavage products of shedding substrates, although not all

of them have been validated by independent methods. Interestingly,

sets of shed proteins differed significantly between different cell

types or even between distinct cancer cell lines (Faca et al, 2008;

Kuhn et al, 2012). Given the large variety of cell types in mammals,

it thus seems reasonable to estimate that the total number of shed

proteins in a given organism may exceed 1,000. Potentially, all of the

more than 2,000 human single-span membrane proteins listed in

UniProt may undergo shedding, at least at some point during their

life cycle. In fact, it has proven difficult to find proteins that are not

shed at all, in particular when proteins are overexpressed in cell

lines. Thus, it appears possible that shedding substrates fall into two

distinct categories. One of them includes substrates for which shed-

ding is coupled to physiological consequences, as discussed in the

next paragraph. The other category comprises membrane proteins

where shedding does not lead to major functional changes but may

be a mechanism of protein turnover. Yet, more functional studies

with a larger number of shedding substrates are required to firmly

distinguish between both categories.

A future establishment of a more comprehensive catalog of shed-

dase substrates appears possible and is facilitated by the recent

development of new proteomic methods for in vitro and in vivo

substrate identification (Gevaert et al, 2003; Kleifeld et al, 2010;

Eichelbaum et al, 2012; Kuhn et al, 2012; Dislich et al, 2015;

reviewed in Muller et al, 2016). However, before concluding that all

proteins identified in a given proteomic study or from overexpres-

sion studies are new sheddase substrates, careful validation by inde-

pendent methods must be executed. This includes in vitro assays to

test the direct cleavage and the demonstration of physiological rele-

vance, in particular when substrates have been identified upon

protease overexpression or exogenous addition of recombinant

protease in in vitro assays.

How does shedding alter membrane protein function?

As for all other enzymes, the function of sheddases is determined by

their substrates. Given the large number and diversity of their

substrates, it is clear that shedding affects numerous physiological

processes. In the following, we will illustrate three fundamental

ways in which the shedding process can alter a substrate protein’s

function.

First, where the full-length membrane-bound form of the

substrate displays its physiological function, shedding provides a

mechanism to terminate the function of a full-length membrane

protein (Fig 4A). Examples are cell adhesion proteins (e.g., selec-

tins), glycosyltransferases (e.g., GnT-V), and cell surface receptors

(e.g., TNFRs). This is not just a mechanism leading to membrane

protein degradation, but the shed ectodomain can even further

block the physiological function of the remaining full-length

proteins. For example, the shed ectodomain of the B cell maturation

antigen (BCMA) acts as a decoy receptor that sequesters the cognate

ligand and thereby further attenuates cell signaling in addition to

shedding of the full-length BCMA receptor (Laurent et al, 2015).

Second, if cleavage releases the biologically active ectodomain of

the membrane protein, shedding can activate a membrane protein

(Fig 4B). Examples are growth factors (e.g., TGFa) and cytokines
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Figure 4. Functional consequences of shedding.
(A) By proteolytic processing of TM proteins that display a physiological function, like cell adhesion or receptor-mediated signaling, sheddases terminate these functions. (B)
Shedding generates biologically active signaling molecules frommembrane-anchored precursors, e.g., cytokines or growth factors that act on neighboring or far distant cells.
(C) As part of regulated intramembrane proteolysis, sheddases induce a proteolytic cascade ultimately activating signalingmolecules, like the Notch intracellular domain, that
act within the same cell. Shedding may be ligand-induced and the ligand may even be a membrane-anchored protein itself, as in case of Notch.

10 of 24 The EMBO Journal 37: e99456 | 2018 ª 2018 The Authors

The EMBO Journal Ectodomain shedding of membrane proteins Stefan F Lichtenthaler et al



(e.g., TNFa). In these cases, shedding is a mechanism to timely and

spatially control release and activity of the biomolecule. For exam-

ple, shed TNFa acts in a paracrine manner to activate proinflamma-

tory TNFR1 signaling, whereas membrane-bound TNFa activates

anti-inflammatory TNFR2 (Grell et al, 1995), but can only do this

upon direct cell–cell contact. Interestingly, also the membrane-

bound fragment remaining after shedding can be biologically active.

This is observed for the BACE1-generated C-terminal fragment of

CHL1, which functions in growth cone collapse during axon guid-

ance in the nervous system (Barao et al, 2015).

Third, shedding can induce subsequent processing by an

intramembrane protease. A key example is activation of the Notch

receptor, which is induced by a membrane-anchored ligand on

another cell. Ligand-binding triggers endocytosis of both the ligand

and of Notch into the opposing cell. This exposes the membrane-

proximal ADAM10 cleavage site. ADAM10 cleavage is followed by

c-secretase-mediated processing to release the intracellular domain,

which then acts as a transcription activator (Pan & Rubin, 1997; De

Strooper et al, 1999; Tiyanont et al, 2011; Fig 4C).

Taken together, shedding is a versatile mechanism to control the

activity of membrane proteins. Yet, for most shedding substrates, it

has not yet been explored how shedding controls or alters their

function. As a result, more functional consequences in addition to

the three categories described above may be discovered in the

future. Likewise, it appears possible that—for some substrates—the

shedding process is simply contributing to protein turnover and

may not be coupled to a major functional consequence, for example,

in cell signaling.

Cellular localization of ectodomain shedding

Initially, the term shedding referred to cleavages occurring at or

very close to the plasma membrane (Arribas et al, 1996), where the

cleaved, soluble ectodomain was released from cells into condi-

tioned medium or into body fluids. It is now clear that shedding

additionally takes place in multiple cellular compartments, includ-

ing all organelles of the secretory and endocytic pathway (Fig 2).

Related proteases may be active in different cellular compartments,

as seen for SPP cleaving in the ER (Weihofen et al, 2002) and SPPL3

being active in the Golgi (Voss et al, 2014), or presenilin-1-

containing c-secretase being more active at the plasma membrane

while c-secretase complexes containing the presenilin-2 paralog are

predominantly active in endo- and lysosomes, but potentially also

in the trans-Golgi network (Meckler & Checler, 2016; Sannerud

et al, 2016). In which cellular compartment a given sheddase

cleaves its substrate is largely determined by where the substrate

meets the active enzyme. Many sheddases, including ADAMs,

BACEs, and MT-MMPs, require removal of their pro-peptide by furin

or related pro-protein convertases for gaining their full proteolytic

activity (e.g., Lopez-Perez et al, 1999, 2001; Bennett et al, 2000;

Capell et al, 2000; Huse et al, 2000; Schlondorff et al, 2000;

Creemers et al, 2001). Pro-peptide removal often occurs in the

trans-Golgi compartment and, thus, efficiently prevents premature

substrate cleavage in the ER and the Golgi compartment. Activity of

other sheddases is pH-dependent. For instance, BACE1 has an acidic

pH optimum (Vassar et al, 1999; Shimizu et al, 2005), thus only

cleaving in acidic cellular compartments. Therefore, depending on

the substrates’ localization, some BACE1 substrates are predomi-

nantly cleaved in endosomes, whereas others are mostly cleaved in

the TGN. These different cellular localizations of BACE1 activity are

even exploited for the development of substrate-specific BACE1

inhibitors, which selectively target BACE1 in endosomes (Rajendran

et al, 2008; Mitterreiter et al, 2010; Ben Halima et al, 2016). On the

other hand, partly due to lack of suitable reagents, the exact cleav-

age compartment—assumed to be late in the secretory pathway or

at the plasma membrane—has been identified for only few

substrates of ADAM10. For instance, that ADAM10 cleavage of the

Eph-receptor ligand ephrin-A5 takes place at the plasma membrane

has been inferred mainly because this cleavage happens in trans

with ephrin-A5 being expressed on the surface of one cell and

ADAM10 on the surface of another cell (Janes et al, 2005). Other-

wise, shedding events known to date happen in cis, with substrate

and sheddase expressed within the same cell.

Substrate recognition of sheddases

The increasing number of substrates that are assigned to shed-

dases allows to highlight two major requirements governing

substrate recognition by sheddases: (i) substrate sequence and

structure and (ii) vicinity of the cleavage site close to or within

the membrane.

Sheddases recognize amino acid motifs and/or secondary structures in

their substrates

Sheddases often have preferences for certain amino acid motifs,

which is seen in in vitro assays (e.g., Gruninger-Leitch et al, 2002;

Caescu et al, 2009), by mutational analyses (e.g., Sisodia, 1992) and

by sheddase structure determinations (e.g., Hong et al, 2000; Seegar

et al, 2017). However, this requirement is less pronounced

compared to many soluble proteases, such as trypsin and caspases.

As a consequence, point mutations in the substrates close to the

cleavage site rarely fully abolish cleavage, as for example shown for

APP (Sisodia, 1992; Citron et al, 1995). Additionally, it is possible

that mutations simply shift the cleavage site by a few amino acids to

an alternative, cryptic cleavage site, or that other proteases cleave at

a site close by. This may be overlooked in typical cellular shedding

experiments, where levels of one of the cleavage products are

measured, but where the exact cleavage sites have mostly not been

determined. Not only the amino acid sequence, but also secondary

structure elements around the substrate’s cleavage site may contri-

bute to specificity of the shedding event. For example, cleavage sites

for rhomboids are within or at the border of substrates’ TM domains

and are part of helical structures, which need to be unfolded before

cleavage (Urban & Freeman, 2003; Strisovsky et al, 2009). Conse-

quently, point mutations increasing or decreasing the propensity to

unfold the helical structure increased or decreased the extent of

substrate cleavage, respectively (Strisovsky et al, 2009; Moin &

Urban, 2012; Strisovsky, 2016). Overall, substrate specificity of

sheddases is not only determined by a binary interaction between

sequence surrounding the scissile peptide bond and protease active

site, but additional protein interactions to so-called exosites located

either on the sheddase or adaptor proteins. For example, it has been

suggested that iRhoms and tetraspanins present substrates to

ADAM17 and ADAM10 (Maretzky et al, 2013; Matthews et al,
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2017), respectively, proposing an interaction of the substrate with

both the adapter and the protease. Similarly, SPP is primed toward

the full-length type II membrane protein XBP1u by the rhomboid

pseudoprotease Derlin1 (Chen et al, 2014). Likewise, substrates are

thought to interact with different subunits of the four-member

c-secretase complex before they reach the active site (Fukumori &

Steiner, 2016).

Location of the cleavage site with respect to the membrane

A second major determinant of substrate recognition by sheddases

is the location of the substrate’s cleavage site. The cleavage site typi-

cally localizes in the luminal juxtamembrane domains (canonical

sheddases) and TM domains (non-canonical sheddases) of the

substrate. Thus, a “perfect” sequence motif for a membrane-bound

sheddase may still not be sufficient for cleavage if the sequence

motif in the substrate is too far away from the membrane. Likewise,

once the membrane is removed, e.g., in in vitro sheddase assays,

the substrate specificity may be different compared to cellular and

in vivo experiments, as the active site may gain access to potential

cleavage sites that would not be reachable and therefore never get

cleaved under physiological conditions (e.g., Schlondorff et al,

2000; Brummer et al, 2018). Conversely, protease cleavage speci-

ficities determined in vitro using peptide libraries may not necessar-

ily be relevant in full-length substrates in cellular membranes. Thus,

it is difficult to predict sheddase substrates simply based on

sequence analysis, and experimental substrate identification is

required.

Taken together, substrate recognition of sheddases requires a

permissive sequence and structure around the cleavage site of the

substrate and the correct positioning of the sheddase’s active site

toward the substrate’s scissile peptide bond.

Substrate repertoire of sheddases

For most known shedding substrates, the protease has not yet been

identified. And conversely, only for few sheddases, a comprehen-

sive list of substrates is known. In the following, we will summarize

key lessons about shedding substrates learned from the comparative

study of different sheddases with multiple substrates.

Developmental stage matters

Numerous substrates are known for ADAM10 and ADAM17. Yet,

only one or at most few of them were assumed to be of major

physiological relevance. This conclusion was largely based on the

most obvious phenotype(s) of the corresponding sheddase-defi-

cient mice. For example, ADAM10-deficient mice die at embryonic

day 9.5, because the ADAM10 substrate Notch is no longer

cleaved, thus preventing Notch signaling during embryonic devel-

opment (Hartmann et al, 2002). However, conditional postnatal

ADAM10 deletion circumventing embryonic lethality demonstrated

additional phenotypes, particularly in the brain, that are not

related to Notch but to other substrates; for example, defects in

synaptic connectivity were caused by defective processing of

NrCAM (Jorissen et al, 2010; Prox et al, 2013; Kuhn et al, 2016).

Thus, the most pertinent physiological function of a sheddase

may be mediated by different substrates at distinct developmental

or adult stages.

Tissue-dependent shedding

A substrate may be cleaved by different sheddases in a tissue-depen-

dent manner, depending on the expression pattern of substrate and

sheddases. For example, BACE1 is highly expressed in the brain,

but at low levels in most other tissues (Vassar et al, 1999). As a

result, APP and the cell adhesion protein L1 are mostly shed by

BACE1 in the brain, but predominantly by ADAM10 in peripheral

cells and tissues (Gutwein et al, 2003; Kuhn et al, 2012, 2016;

Colombo et al, 2013). Likewise, the surface protein SEZ6L is mostly

cleaved by BACE1 in the brain, but by BACE2 in the pancreas

(Stutzer et al, 2013; Pigoni et al, 2016).

Subcellular localization

The substrate spectrum may also depend on the subcellular localiza-

tion of protease and substrate, in particular in polarized cells such

as neurons. For example, neuronal ADAM10 predominantly local-

izes to the somatodendritic compartment (Marcello et al, 2007),

whereas BACE1 is found more in axons (Kandalepas et al, 2013).

Similar differences are seen in polarized epithelial cells (Capell et al,

2002; Wild-Bode et al, 2006). SPPL3 mainly localizes to the Golgi

and preferentially sheds glycan-modifying enzymes in this compart-

ment, while glycosyltransferases localizing to the ER are not affected

by SPPL3 (Voss et al, 2014; Kuhn et al, 2015). Thus, it is likely that

these proteases mostly cleave substrates that localize to the same

subcellular compartment.

One substrate may be cleaved by multiple sheddases within one

cell type

A major insight from recent quantitative proteomic studies for

substrate identification is that some targets are predominantly shed

by a single protease within one cell type, whereas other substrates

within the same cell type may be cleaved by more than one

protease. For instance, in neurons, SEZ6 is only cleaved by BACE1

and MMP17 is only shed by ADAM10, whereas the cell adhesion

protein CHL1 is cleaved to more than 40% by each BACE1 and

ADAM10 (Kuhn et al, 2012, 2016) and to some extent by ADAM8

(Naus et al, 2004). For most substrates with multiple sheddases, it

remains unclear which additional sheddase(s) contribute and

whether the cleavage sites of the different proteases are identical or

different. For example, numerous glycan-modifying enzymes are

shed by SPPL3, but even upon loss of the protease some substrates

still undergo significant shedding (Kuhn et al, 2015). Additionally,

compensatory effects need to be considered, when one sheddase is

inactivated. For example, blocking BACE1-medidated shedding of

the Alzheimer’s disease-linked APP protein in neurons leads to a

compensatory increase in APP shedding by ADAM10, as observed

in neurons and even in humans in an Alzheimer clinical trial (May

et al, 2011; Colombo et al, 2013). A key challenge for the future will

be to understand whether the different proteases that cleave a single

protein have redundant functions or whether the corresponding

cleavages lead to different functional consequences, as in the case

of APP and neuregulin (Hu et al, 2006; Willem et al, 2006; Ring

et al, 2007; Li et al, 2010; La Marca et al, 2011).

Substrates can have major and minor sheddases

Another future challenge will be to detect (patho)physiologically

relevant, but minor proteolytic cleavage events in a given substrate.

For example, APP in neurons is mostly shed by the a-secretase
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ADAM10 and the b-secretase BACE1. Yet, to an apparently smaller

extent, APP is also shed by additional proteases, including meprin b
and BACE2 (Farzan et al, 2000; Yan et al, 2001; Fluhrer et al, 2002;

Jefferson et al, 2011) and the recently identified d- and g-secretases
legumain and MT5-MMP, respectively, which may be relevant

for Alzheimer’s disease (Willem et al, 2015; Zhang et al, 2015). APP

in non-neuronal cells may further be cleaved by RHBDL4

(Paschkowsky et al, 2016), but the pathophysiological relevance of

this cleavage still needs to be demonstrated. Other examples are the

Nogo-66 receptor (NgR1), which is predominantly shed by MT3-

MMP in neurons (Sanz et al, 2018), and the transferrin receptor that

is mostly shed by PC7 in hepatocytes (Guillemot et al, 2013), with

presumed minor sheddases in these cases yet to be identified. The

glycosylation enzyme ST6GalI is a shedding substrate for both

SPPL3 (Kuhn et al, 2015) and BACE1 (Kitazume et al, 2001).

Establishment of minor cleavage events is difficult, because the

major sheddase would still cut a substrate protein even when the

minor sheddase is inactivated. However, proteomic methods specifi-

cally determining the neo-N-/C-termini of cleavage products can

determine even such minor cleavage sites (reviewed in Muller et al,

2016). Another difficulty in detecting minor or even major cleavage

events is that the shedding by a specific protease may only take

place under activated cellular conditions, such as inflammation,

infection, or cell stress. Thus, as long as the stimulus is unknown,

the cleavage event will not be detected.

Taken together, sheddases can have different substrates and

substrates can have different sheddases. As a last expansion of the

complexity, a protease that cleaves a given substrate may differ

between various organisms. This still appears as an exception, but

during evolution different proteases have evolved in distinct organ-

isms to cleave similar types of substrates. One prominent example is

EGFR ligands, which are cleaved by ADAM10 and ADAM17 in

mammals but by rhomboid proteases in Drosophila, despite both

classes of sheddases being conserved between the two species (Lee

et al, 2001). Interestingly, mammalian rhomboid proteases still

retain the ability to cleave EGFR ligands, but they appear to be less

prominent, as ADAM17 has taken the lead during mammalian

evolution. Hence, EGFR ligand cleavage by rhomboids only

becomes visible upon ADAM17 inhibition or deficiency (Adrain

et al, 2011). Over all, we can expect that the substrate spectrum in

common model organisms will be more comprehensively defined so

that we shall learn more about the fascinating evolution of canoni-

cal and non-canonical sheddases.

Regulation of shedding

Shedding is frequently regulated by mechanisms ranging from traf-

ficking control to natural protein inhibitors and activators. Given

the number of sheddases, substrates, and mechanisms, there is a

wealth of studies on this topic (reviewed e.g., in Hayashida et al,

2010; Lichtenthaler, 2012; Adrain & Freeman, 2014; Clark, 2014). In

the following, we will illustrate key principles with selected exam-

ples and highlight new developments in shedding regulation.

Trafficking introduces a major layer of control

Protein trafficking is arguably one of the most important regulatory

mechanisms for ectodomain shedding. While a soluble protease

may meet its substrate through diffusion, membrane-bound shed-

dases and their TM substrates need to be transported to the same

organelle for cleavage to occur. This was first shown for the path-

way regulating shedding and activation of SREBP. When cellular

cholesterol levels drop, ER-localized SREBP translocates to the

Golgi, where it gets shed by S1P and subsequently cleaved by site-2-

protease within its TM domain (Rawson et al, 1997; Sakai et al,

1998). This dual cleavage results in release and activation of the

cytoplasmic SREBP domain, which induces transcription of genes

involved in cholesterol biosynthesis (Sakai et al, 1996). Regulated

trafficking also happens for other shedding substrates such as APP,

where endocytic trafficking controls APP cleavage by either the a-
secretase ADAM10 or the b-secretase BACE1 (e.g., Haass et al,

1993; Koo & Squazzo, 1994; Chyung & Selkoe, 2003; Carey et al,

2005; Schobel et al, 2008) (and reviewed in Lichtenthaler, 2012).

Trafficking also controls the activity of sheddases. For example,

upon activation of NMDA receptors, the cytoplasmic adaptor protein

Sap97 binds the cytoplasmic tail of ADAM10, thereby promoting its

trafficking and activation (Marcello et al, 2007). ADAM10 trafficking

is also controlled by tetraspanins (Dornier et al, 2012). Likewise,

iRhoms have been implicated in trafficking and regulation of

ADAM17 (Adrain et al, 2012; McIlwain et al, 2012).

Abundance control is key

More sheddase or more substrate typically results in more cleavage,

and levels of both enzyme and substrates are typically controlled

through transcription, translation, and protein degradation. For

example, LPS stimulation of immune cells induces TNFa transcrip-

tion followed by increased TNFa shedding through ADAM17 (Black

et al, 1997; Moss et al, 1997). Translational repression has been

intensively studied for BACE1 (De Pietri Tonelli et al, 2004;

Lammich et al, 2004; Rogers et al, 2004; Zhou & Song, 2006;

Mihailovich et al, 2007; Faghihi et al, 2008; Hebert et al, 2008;

Wang et al, 2008), and this repression may be relieved upon cellular

stress or during disease (e.g., O’Connor et al, 2008). Lysosomal

protein degradation is an additional mechanism to control levels of

sheddases and substrates. For instance, binding of BACE1 to the

adaptor protein GGA promotes degradation (Tesco et al, 2007) and

this is blocked by a specific sugar modification, bisecting N-acetyl-

glucosamine (Kizuka et al, 2015). As an alternative to lysosomal

degradation, classical sheddases may be shed themselves, e.g.,

ADAM10, BACE1, and meprin b (Hussain et al, 2003; Tousseyn

et al, 2009), which may be considered a mechanism for inactivating

a sheddase (Wichert et al, 2017).

Integration of signaling at the level of sheddase and

regulatory subunits

Besides stimulation through regulation of trafficking and protein

abundance, signaling pathways can also acutely stimulate shedding

within minutes, allowing cells to quickly respond to external stimuli

without the need for time-consuming protein biosynthesis. A prime

example is the fast activation of ADAM17 by the phorbol ester PMA

(Peschon et al, 1998; Doedens et al, 2003; Sahin et al, 2004). This

occurs through phosphorylation of the ADAM17-associated iRhom

protein independently of the cytoplasmic tail of ADAM17 and

appears to induce a fast structural change in ADAM17 (Doedens

et al, 2003; Le Gall et al, 2010; Cavadas et al, 2017; Grieve et al,

2017). This fast ADAM17 activation also occurs for a physiological
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process called transactivation, in which agonists of G protein-

coupled receptors indirectly activate the EGFR (Prenzel et al, 1999;

Maretzky et al, 2011). Although this fast activation appears to be

independent of phosphorylation of ADAM17 itself, other sheddases

can be regulated by direct phosphorylation as observed for the

d-secretase legumain (Wang et al, 2017). Another mechanism that

is increasingly linked to the shedding control is calcium signaling,

as observed for human meprin b (Arnold et al, 2015) or certain

rhomboid proteases (Baker & Urban, 2015).

Inhibitors and activators of protein shedding

In addition to direct activation of the enzymes, various mechanisms

tune access of sheddases to their substrates. One prominent exam-

ple is the soluble tissue inhibitors of metalloproteases that (to vari-

ous extent) block ADAM10, ADAM17, and MT-MMPs (e.g., Amour

et al, 1998, 2000). Conversely, other ligands are known to induce

shedding as observed for Notch, RGMa, BAFFR, and DDR1 (Pan &

Rubin, 1997; Bozkulak & Weinmaster, 2009; van Tetering et al,

2009; van Erp et al, 2015; Shitomi et al, 2015; Smulski et al, 2017).

An emerging layer of regulation is post-translational modification at

the substrate level. For instance, O-glycosylation at amino acids

close to the cleavage site controls substrate shedding by ADAM

proteases (Goth et al, 2015) and in context of the ER, substrate

ubiquitination has been shown to trigger intramembrane proteolysis

(Fleig et al, 2012).

Modulation by lipids

Since sheddases and their substrates are mostly membrane proteins,

they are in direct contact with membrane lipids. It is now becoming

clear that lipids are not only bystanders, but can directly control

proteolytic activity, as is clearly seen for intramembrane sheddases,

in particular c-secretase and rhomboids (Urban & Wolfe, 2005;

Bondar et al, 2009; Holmes et al, 2012; Winkler et al, 2012). Yet,

even the activity of canonical sheddases can be affected by lipids,

for example, BACE1 by cholesterol (Ehehalt et al, 2003; Kalvodova

et al, 2005) or ADAM17 by phosphatidylserine (Sommer et al,

2016). However, the exact mechanisms by which lipids regulate

sheddase activity await further clarification.

Disease association and shedding-based drugs

Deregulation of shedding may result in diseases caused by too much

or too little of the substrate or the sheddase or the cleavage activity.

Sheddases and the relevant substrates are consequently considered

as drug targets. A key example is an excessive level of shed TNFa,

Table 4. Shedding-related diseases and drugs.

Sheddase Substrate Disease
Therapeutic strategy and
stage of development

References (review articles or
original study)

ADAM8 Unknown Breast cancer Inhibition of ADAM8 (mouse study) Romagnoli et al (2014)

Unknown Pancreatic cancer Inhibition of ADAM8 (mouse study) Schlomann et al (2015)

ADAM9 EGF, FGFR2iiib Prostate cancer Inhibition of ADAM9 (mouse study) Peduto et al (2005)

ADAM10 APP Alzheimer’s disease Activation of ADAM10 (phase II
clinical trial terminated),

Endres et al (2014),
Suh et al (2013)

CD23 Asthma Inhibition of ADAM10 (mouse
study)

Mathews et al (2011), Weskamp
et al (2006)

Ephrin-B2 Lung fibrosis Inhibition of ADAM10 (mouse
study)

Lagares et al (2017)

PrP Prion diseases Activation of ADAM10 (mouse
study)

Altmeppen et al (2015), Endres
et al (2009)

ADAM17 TNFa Inflammatory diseases
Sepsis
Rheumatoid arthritis
Crohn’s disease
Psoriasis
Lupus nephritis

Inhibition of TNFa, (approved
drugs), blocking ADAM17 through
exosite inhibitors, soluble
prodomain or iRhoms (mouse
study)

Adrain et al (2012), Horiuchi
et al (2007), Issuree et al (2013),
McIlwain et al (2012), Qing et al
(2018), Udalova et al (2016),
Wong et al (2016)

IL6 receptor Inflammatory diseases
Intestinal inflammation, intestinal
cancer, Rheumatoid arthritis, Lupus
erythematosus, Asthma, Sepsis,
Nephrotoxic nephritis,
Arterosclerosis, Lung emphysema
and others

Inhibition of IL6 signaling through
soluble gp130 (clinical trials
ongoing)

Rose-John (2017), Schmidt et al
(2018)

BACE1 APP Alzheimer’s disease Inhibition of BACE1 with small-
molecule drugs (clinical trials
ongoing)

Barao et al (2016), Vassar et al
(2014)

d-secretase APP Alzheimer’s disease Inhibition (mouse study) Zhang et al (2017, 2015)

The table lists selected examples where the pathological role of a sheddase or its substrate to a disease has been established in animal models and through
human genetics. The many instances where altered sheddase expression only correlates with disease are not listed.
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which is implicated in numerous inflammatory diseases, including

sepsis, rheumatoid arthritis, and lupus. Clinical treatment blocks the

function of shed TNFa by neutralizing it with antibodies or anti-

body-like proteins, which are among the best-selling drugs world-

wide (Udalova et al, 2016). Other approaches were less successful,

such as the use of small-molecule inhibitors of the TNFa sheddase

ADAM17, because of the broad ADAM17 substrate spectrum and

the cross-reactivity of inhibitors with ADAM17-related metallopro-

teases. Besides small-molecule drugs and antibodies, shed substrate

ectodomains may be employed as decoy receptors. For example,

recombinant soluble gp130, corresponding to the shed gp130 ecto-

domain, is used to block excessive IL-6 signaling in inflammatory

conditions and is currently being tested in a phase II clinical trial

(reviewed in Rose-John, 2017). Another important example of a

shedding-related condition is Alzheimer’s disease, where pathogenic

amyloid-b peptide results from shedding of APP by BACE1 followed

by c-secretase-mediated intramembrane proteolysis. Naturally

occurring mutations at the BACE1 cleavage site in APP result in

enhanced APP shedding by BACE1 and increased amyloid-b levels,

thus causing an inherited form of the disease (Citron et al, 1992).

For some diseases, increased or reduced levels of sheddases have

been reported, but it is not always clear whether this is a cause or a

consequence of the disease pathogenesis and whether it might be

therapeutically exploited, for example, in cancer (reviewed in

Murphy, 2008). Selected examples of shedding-related diseases and

potential drugs are listed in Table 4. The shed substrate ectodo-

mains may also serve as potential companion diagnostics to monitor

drug responses in patients upon sheddase inhibition or activation.

For example, the BACE1-cleaved APP ectodomain serves as a

marker to monitor BACE1 activity in clinical trials with BACE1 inhi-

bitors against AD (May et al, 2011).

Conclusion and outlook

ADAM10 and ADAM17, the first known proteases with sheddase

activity, were identified 21 years ago (Black et al, 1997; Moss et al,

1997; Pan & Rubin, 1997). Initially considered as a process

affecting selected membrane protein substrates only (Ehlers &

Riordan, 1991; Massague & Pandiella, 1993; Arribas et al, 1996),

ectodomain shedding is now a fundamental process in cell biology.

It controls the communication between cells and their environment

and impacts on many areas in life sciences and medicine. It is

becoming increasingly clear that proteolysis of membrane proteins

is not the exception, but rather the rule for many membrane

proteins. Despite the tremendous progress over the past years,

there are many central open questions and challenges that lie

ahead. Given the large number of known and still to be identified

shedding substrates and the increasing number of sheddases, a

major challenge for the future will be to assign individual

substrates to proteases and determine how the proteolytic cleavage

alters the substrates’ function. This is particularly important as

sheddases are used as drug targets. Their inhibition or activation

may not only interfere in the desired way with the function of the

disease-linked protein, but may affect the function of multiple

other substrates of the same protease as well. Yet, these hurdles

may be overcome by developing substrate-selective inhibitors or

by designing drugs targeting protease exosites where only a subset

of substrates binds. This will require a better understanding of the

molecular mechanisms underlying the sheddases’ substrate speci-

ficity. It will be equally important to understand the spatial organi-

zation of proteolysis, for example, within cells or even whole

tissues, as well as the timing, kinetics, and regulation of shedding,

including the potential identification of more non-proteolytic sub-

units of sheddases. Taken together, it is a fascinating time to study

ectodomain shedding and we can stay tuned for more major

discoveries over the years to come.
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