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Abstract 

Various factors, including drugs as well as non-molecular influences, induce alterations 

in the stability of proteins in cell lysates, living cells and organisms. These alterations 

can be probed by applying a stability-modifying agent, such as elevated temperature, to 

a varying degree. As a second dimension of variation, drug concentration or factor 

intensity can be used. However, the corresponding analysis scheme has a low 

throughput and high cost. Additionally, since traditional data analysis employs curve 

fitting, proteins with unusual behavior are frequently ignored. The novel Proteome 

Integral Stability Alteration (PISA) assay avoids these issues altogether, increasing the 

analysis throughput by one to two orders of magnitude for unlimited number of 

parameter variation points. The consumption of the compound and biological material 

decreases by the same factor. We envision widespread use of the PISA approach in 

chemical biology and drug development. 

  

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 13, 2018. ; https://doi.org/10.1101/496398doi: bioRxiv preprint 

https://doi.org/10.1101/496398
http://creativecommons.org/licenses/by-nc-nd/4.0/


 3 

Introduction 

Various internal and external factors, including drugs, nutrients and metabolites, 

as well as non-molecular influences, such as radiation, etc., induce alterations in the 

stability of proteins in cell lysates, living cells and organisms. These alterations can be 

probed on the proteome-wide scale by applying a stability-modifying agent, such as 

elevated temperature (Savitski et al., 2014), proteolytic enzyme (Lomenik et al., 2009; 

Piazza et al., 2018), chaotropic agent, such as urea (Park and Maqusee, 2005), or salt 

(Vedadi et al., 2006). The agent is typically applied to a varying degree in a step-wise 

manner, and the fraction of the proteome remaining stable or, alternatively, the fraction 

becoming unstable, is analyzed. The protein stability can be assessed by, e.g., 

measuring the fraction of molecules remaining soluble at given conditions. The obtained 

information can be interpreted as drug binding to protein targets (Becher at al., 2016; 

Dart et al., 2018), as well as protein-protein docking, protein-small molecule 

interactions, or post-translational modifications (Huber et al., 2015; Becher et al., 2018; 

Dai et al., 2018; Saei et al., 2018).  

One such popular method of monitoring the changes in protein stability is thermal 

proteome profiling (TPP) (Savitski et al., 2014), that has translated onto a proteome-

wide scale the targeted approach of cellular thermal shift assay, CETSA (Molina et al., 

2013), which, in turn, is based on a well known concept of protein melting temperature 

shift, widely used in drug discovery and development. Changes in protein’s physico-

chemical properties due to temperature variations have previously been applied to test 

interactions of this protein with other molecules using as a read-out fluorescence (Lo et 

al., 2004; Nielsen et al., 2007), calorimetry (Bruylants et al., 2005), differential scanning 

calorimetry (Brandts & Lin, 1990) or mass spectrometry (West et al., 2012). For 

instance, Garbett et al. (Garbett et al., 2009) have used differential scanning calorimetry 

of the unfractionated plasma, attributing changes in signature thermograms not to 

changes in the protein concentrations, but to interactions of these proteins with small 

molecules and peptides.  

 TPP is not restricted to the detection of protein-compound interactions (e.g., 

Park et al., 2017; Massey, 2018; Miettinen et al., 2018; Türkowsky et al., 2018), but has 
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also been used for probing protein stability (Mateus et al., 2017; Volkening et al., 2018), 

its changes in cells (Becher et al., 2018; Dai et al., 2018) and bacteria (Mateus et al., 

2018). Recently, we have developed based on TPP the new method of System-wide 

Identification of Enzyme Substrates by Thermal Assay (SIESTA) (Saei et al., 2018). 

In a typical TPP experiment, aiming at profiling the proteome changes due to 

added small-molecule drug, both drug-treated and untreated (control) biological 

systems are incubated at Nt≥10 different temperature points, after which the systems 

are lysed, and insoluble proteins (typically, the molecules that lost their native structure 

due to thermal unfolding) are removed by ultracentrifugation. The proteins remaining 

soluble are reduced, alkylated and then digested by trypsin, upon which an isotopic 

label (e.g., tandem mass tag, TMT) is chemically attached. The labeled digests 

corresponding to different temperature points are then multiplexed into a single mixture, 

which is analyzed subsequently by LC-MS/MS. A straightforward LC-MS/MS analysis of 

a TMT mixture provides identification and quantification of ≤5000 proteins. In order to 

increase the depth of the proteomics analysis to 5000-10,000 proteins, the mixture is 

typically separated into 8-24 fractions, with each fraction being analyzed by LC-MS/MS 

individually.  

To thus obtained relative abundances of thousands of proteins, sigmoid curves 

are then fitted one by one, with the middle point of the curve corresponding to the 

melting temperature Tm of a given protein (Figure 1a). For each protein, the melting 

temperature shift ∆Tm induced by the drug or other factor of interest is then determined 

as the difference between the Tm values with and without the acting factor. Since for 

obtaining statistical significance for a given ∆Tm value the whole analysis has to be 

repeated at least twice (two replicates), a minimal TPP experiment with 8 fractions 

requires 2x2x8=32 LC-MS/MS runs, with each run lasting 1.5-2.0 h.  

To determine which proteins are most affected by the agent, the proteins are 

sorted by their ∆Tm values, with positive ∆Tm corresponding to stabilization, and 

negative – to destabilization by the factor. The p-value of a non-zero ∆Tm can be 

determined by a two-tailed Student’s t-test using the two replicate measurements, or by 

an equivalent statistical method. 
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Often, such a 1D TPP analysis does not provide sufficient specificity to uniquely 

identify the protein most affected by the factor or even confine it to a short list of 3-5 

most probable candidates. For specificity increase, a second dimension of analysis can 

be added, where the drug concentration (or factor intensity) is varied from zero to some 

maximum value (usually, 5-10 times higher than the IC50), while the temperature is fixed 

(Savitski et al., 2014). A sigmoid curve fitting can also be performed in the concentration 

domain, similar to the temperature domain (Figure 1b). The measured parameter in the 

second dimension is the concentration C0 (or pEC50, as in Savitski et al., 2014) at 

which the drug induces in a given protein thermal shift amounting to half of the ∆Tm 

value. To obtain good curve fitting, a similar number of discrete concentration points Nc 

is needed as temperature points, preferably Nc≥10. After determination of C0, proteins 

exhibiting largest absolute ∆Tm values and the lowest C0 values, are selected as 

potential drug targets or mechanistic proteins responding to the factor (Figure 1c).  

The above 2D TPP analysis is very powerful, but extremely resource consuming. 

A typical 2D procedure covering the whole TPP temperature range or at least the most 

useful half of it (usually, between 43 °C and 57 °C, encompassing the Tm values of 

most proteins) would require preparing and running of at least (10x32)/2=160 individual 

LC-MS/MS analyses. This may take more than two weeks of LC-MS/MS instrumental 

time, including the necessary blank runs between distinct groups of samples. Even with 

modern, reliable instrumentation, the risk of an unexpected stop or instrumental failure 

during such an experiment is non-negligible.  The time and cost of such an analysis are 

the limiting factors in wider use of this powerful method in molecular biology and drug 

discovery.  

The current 2D TPP approach possesses another limitation, which is the large 

number of cells needed for each samples (≈106). Growing and handling ≥1.5•108 cells 

per experiment is a challenge for any cell culture facility, since all cells need to be in a 

nearly identical biological state, as even small changes in the environment during cell 

growth can significantly affect the abundances of cellular proteins (Sabatier et al., 

2018). 
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The curve fitting procedure to obtain Tm values presents another challenge. 

Some proteins increase (or appear to increase) their solubility with temperature, as do 

most molecules, and only upon reaching a significantly elevated temperature their 

structure starts to unfold, which finally results in solubility drop. The melting curves of 

such proteins can exhibit bumps, bimodal behavior or other unexpected features that 

can result in a low fitting score (Franken et al., 2015). Indeed, although the melting of 

proteins is usually considered to be a two-state transition from a defined folded native 

structure to a random coil, intermediate structures are often present (Biltonen & Freire, 

1978; El-Baba et al., 2017). Moreover, some proteins, e.g. ribosomal units, are engaged 

in strong noncovalent complexes that fall apart only at significantly elevated 

temperatures. A sigmoidal curve fails to fit properly the melting behavior of many such 

proteins. Recently introduced non-parametric analysis of TPP data is more robust 

against deviations from the expected sigmoid shape (Childs et al., 2018), but it 

alleviates the problem of poor fitting only partially. As a result, problematic proteins are 

usually discarded from the final protein list, which increases the risk of false negative 

identifications (misses).  

In order to solve or drastically reduce the impact of the above problems on the 

analysis results, we developed the Proteome Integral Stability Alteration (PISA) assay 

which achieves dramatic reduction in both analysis time and sample consumption by 

taking the following steps: 

1. In a 1D PISA assay, two protein samples per replicate are analysed, 

one with the factor (drug) applied and another one – without the factor. 

For each of these two samples, the protein mixtures corresponding to 

Nt≥10 individual temperature points are prepared, commonly 15 

temperature points sampled at 1.0-1.5 °C starting from 43 °C. However, 

instead of labeling each of these samples by individual TMT following 

centrifugation and digestion, as in TPP, these protein mixtures are 

instead pooled together. The integral sample is then centrifuged, 

digested and labeled by a single TMT (Figure 1d). Thus a standard 

TMT-10 multiplexing scheme can combine 5 drug-treated and 5 
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untreated samples, which upon separation into 8 fractions will require 

less than a day of LC-MS/MS instrumental time to obtain the depth of 

>5000 proteins. 

 

2. In data processing, instead of fitting to protein abundances at different 

temperature points a sigmoid curve and extracting Tm as in TPP, the 

read-out in 1D PISA is the protein abundance Sm in the pooled sample. 

This abundance represents the integral of the melting curve, 

independent of its actual shape (Figure 1e). If Sm is the read-out for the 

untreated sample and Sm’ is the corresponding value for the treated 

sample, then the PISA analogue of ∆Tm is the function Ft(Sm, Sm’) that 

combines these two read-out values. In the simplest form, Ft = Sm’- Sm 

(Figure 1f), but we also found Ft = Sm’/Sm useful. The p-values can be 

determined by, e.g., Student’s t-test, and a volcano plot, as in 

expression proteomics, highlights the candidate proteins (Figure 1g). 

 

3. In a 2D PISA assay, three samples are measured per replicate analysis 

(Figure 1h). The first two samples are the same as in 1D PISA (Figure 

1i), i.e., one obtained without the drug (zero concentration), and another 

with the maximum drug concentration. These two samples provide Sm 

and Sm’ as read-outs, from which one obtains Ft, as in 1D PISA. The 

third sample is a pool of the protein mixtures where intermediate drug 

concentrations are used (Figure 1j), and it provides the protein 

abundance Sm” as a read-out, Sm” being the integral of the 

concentration-dependence curve. The analogue of TPP’s read-out C0 is 

the function Fc(Sm, Sm’, Sm”), which will be described below. Thus the 

2D PISA assay provides two independent output parameters, Ft and Fc, 

which can be plotted against each other in a 2D plot. Similar to 2D TPP, 

the proteins of interest usually combine extreme values of Ft and the 

maximum Fc values (Figure 1c).  
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The standard TMT-10 labeling set can multiplex three 2D PISA 

replicates, with one TMT channel remaining vacant. This vacancy can 

be filled by an untreated proteome, which can be used for normalizing 

the Sm values (Figure 1h). According to our simulations, such a 

normalization can somewhat improve the precision. Alternatively, the 

vacancy can be filled by an untreated proteome obtained using 

detergent for enhanced protein extraction. Conventional TPP protocols 

tend to avoid detergents, as they affect protein solubility (Franken et al., 

2015; Seashore-Ludlow & Lundbäck, 2016). This avoidance results in 

underrepresentation of less soluble proteins in TPP; inclusion of the 

detergent-assisted untreated proteome may cure this deficiency. The 

untreated proteome will play here the role similar to the carrier 

proteome in the single-cell proteomics approach introduced by Budnik 

et al. (Budnik et al., 2018). 
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Figure 1.  Schematics of the TPP and PISA assays. Thermal proteome profiling´s concept of 

sigmoidal curve fitting to (a) temperature scanning data for treated (blue) and untreated (red) 

samples, curve fitting and obtaining ∆Tm, and (b) the same for concentration scanning data, 

with C0 determination. (c) Combination of the temperature and concentration domain data into a 

2D plot and determination of the most probable protein candidates with large absolute ∆T shifts 

and low C0 values. (d) PISA concept of pooling together individual samples corresponding to 
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different temperature points and thus hardware integration of the melting curve without detailed 

determination of its shape. (e, f) measuring ∆Sm as a difference between the integral 

abundances of the protein in the treated and untreated samples. (g) Volcano plot of the 1D 

PISA results and determination of target candidates. (h) Example of a TMT-labeling scheme for 

a triplicate 2D PISA experiment. (i) 1D PISA experimental workflow, for each replicate sample: 

each sample in split in Nt ≥ 10 equal parts, each part being heated at a specific elevated 

temperature. If cells are used, they are then lysed by free-thaw cycles. Then the samples are 

pooled together before ultracentrifugation; collected supernatant is then digested and TMT-

labeled, which is followed by fractionation and high resolution LC-MS/MS analysis with 

subsequent data processing. (i) The same for the second dimension, concentration-dependent 

experiment performed at a fixed elevated temperature. 

 

4. As the simulation analysis presented below shows, there is a good 

linear correlation between the Sm values and the corresponding melting 

temperatures Tm, as well as between Sm’ and Tm’ values, provided the 

melting curves are sigmoidal. Thus, from the Sm and Sm’ data, one can 

extract via modeling the estimates of the Tm and Tm’ values. Moreover, 

there is a good linear correlation between ∆Tm and Ft under the same 

sigmoidal curve assumption. Similarly, there is a good linear correlation 

between C0 and Fc. Therefore, in PISA the information on these 

parameters in not lost, and can be derived through modeling if needed. 

Simulations 

Ab initio simulation of 2D PISA 

As a theoretical proof of principle, we simulated in Excel the melting curves of 1000 

proteins, with the melting temperatures Tm chosen randomly in the range from 42 °C to 

57 oC. Nt=16 temperature points between 37 °C and 67 °C with a 2 °C step were 

chosen. Sigmoidal melting curves were simulated by calculating the relative intensity 

I(T) for a given temperature T as:  

I(T) = 0.5+ERF((Tm - T)/SQRT(Tm))/2,      (1) 
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where ERF is the error function, and SQRT - the square root function. Examples of thus 

simulated melting curves are given in Figure 2a.  

The measured signal Sm was calculated as the sum of I(T) values for all 

temperature points. When the proteins were ranked by Tm and, separately, by Sm, the 

ranks were found to be exactly the same, validating the hypothesis that Sm is a suitable 

proxy for Tm.  

     The drug-induced melting temperature shifts ∆Tm were simulated as random values 

in the range between -5 °C and +5 °C, and Tm’ values were calculated as Tm’ = Tm + 

∆Tm. The corresponding melting curve intensities I’(T) were calculated by (1) with Tm’ 

being used instead of Tm. The Sm’ values were obtained as the sums of all individual I’ 

values. Ft values were obtained as Sm’ – Sm, and correlated with the corresponding 

∆Tm values (Figure 2b). Excellent if not perfect (R2 > 0.998), this correlation proves that 

linear function is a suitable approximation. Knowing the parameters of the linear 

regression, one can derive the model Tm value from the measured Sm data. 

The relative response R(C) of the thermal protein solubility shift to different drug 

concentrations C was modeled as a sigmoidal curve: 

R(C) = 0.5 + ERF((C0 – C)/ C0^0.25)/2,    (2) 

where C is a given concentration point, and ^ is the power function. Examples of the 

response function for two different C0 values are given in Figure 2c.    

The measured read-out Sm” is simulated as Sm” = SUM(Sm + R(C)*(Sm’ - Sm)). The 

reduced parameter Sm”* is extracted from the measured values as  

Sm”*  = (Sm” – n*Sm)/(Sm’ - Sm),    (3) 

where n is the number of concentration points used. Again, the protein rank by Sm”* 

turned out to coincide with the rank by C0, confirming that the former parameter is a 

suitable proxy of the latter. An excellent linear correlation (R2 > 0.998) was found 

between Sm”* and -log10(C0) (Figure 2d). Thus, using linear regression, one can 

extract the model C0 values from S”* data. 
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These simple ab initio simulations provided theoretical proof of principle for the 

2D PISA method. Not only the ∆Tm and C0 protein ranks are preserved in the PISA 

output parameters, but there is a linear correlation between these parameters and the 

underlying ∆Tm and C0 values.  

 

 

Figure 2.  Ab initio simulation of 2D PISA. (a) Simulated melting curves. (b) Correlation 

between the simulated Ft = Sm´- Sm and ΔTm values. (c) Simulated response of the thermal 

protein stability shift to different drug concentrations. (d) Correlation between the calculated 

Sm´´* values and C0 concentration.  

 

Simulation of 1D PISA output from experimental TPP results 

 Another proof of principle for the PISA approach was derived from the 

conventional TPP data, in which the abundances corresponding to different temperature 

points were added together to simulate the PISA read-out. From the published TPP 
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datasets where both cells and cell extracts were treated with Dasatinib (Savitski et al., 

2014), we calculated the Sm and Sm’ values as sums of protein abundances at all 

temperature points between 41 °C and 59 °C. The average correlation between the two 

replicates of the ∆Tm values of the proteins surviving all stringent TPP filters for curve 

fitting were 0.903, while the average correlation between the corresponding ∆Sm values 

was higher, 0.946. The better correlation in PISA corresponds to higher precision of the 

Sm calculation method compared to curve fitting in TPP. As a result, using the same 

statistical criteria for significance, there were 251 statistically significant proteins in TPP 

of cells and lysates, while there were 259 significant proteins in PISA (Figure 3a-b and 

d-e, respectively).  At the same time, there was an excellent correlation between the 

replicate-averaged ∆Tm and ∆Sm values, R=0.947 for cells and R=0.987 for lysate 

(Figure 3c and f, respectively). These correlations were actually higher that those 

between the two ∆Tm replicates in the original datasets, which were R=0.849 and 

R=0.931, for cells and lysate, respectively.  

Experimental 

1D PISA assays on MTX and 5-FU 

For purely experimental proof of principle, the PISA assay was performed on cells using 

two cell lines (lung carcinoma A549 and kidney carcinoma A498) and two drugs with 

well-known targets. In particular, we used the folate and nucleoside analogs 

methotrexate MTX and 5-fluorouracil (5-FU), known to inhibit, respectively, DHFR, an 

enzyme involved in the tetrahydrofolate synthesis, and TYMS, a key enzyme in de novo 

synthesis of thymidylate (Vincente et al., 2013; Qiu et al., 2017; Rajagopalan et al., 

2002; Visentin et al. 2012; Wyatt et al. 2009). These drugs and their targets have 

already been subjects of CETSA investigations using antibody-based targeted protein 

detection, with the targets showing an increased stability after drug incubation (Jafari et 

al., 2014; Almqwist et al., 2016). The identification of DHFR and TYMS as targets of 

MTX and 5-FU, respectively, was also performed by Functional identification by 

expression proteomics (FITExP) (Chernobrovkin et al., 2014), a proteome-wide MS-

based proteomics method for drug target deconvolution which is orthogonal to thermal 

shift approaches.  
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Figure 3.  Simulation of PISA data analysis based on published TPP datasets. (a) Volcano 

plot (∆Tm, p) for TPP data of 5 µM Dasatinib treatment of cells. Proteins with significant 

(p<0.05) changes are shown in black. (b) The corresponding volcano plot (∆Sm, p) of the 

calculated PISA results. (c). Correlation between the average ∆Tm and average ∆Sm values for 

Dasatinib treatment of cells. (d-f) Same as (a-c) for cell lysate extracts, respectively. Data are 

taken from (Savitski et al., 2014). 

 

The first step in the PISA assay was to measure IC50 values of MTX in A549 cells 

and 5-FU in A498 cells, determined as drug concentrations causing 50% growth 

inhibition at 48 h. The obtained IC50 values were 1 µM for MTX in A549 and 17.5 µM for 

5-FU in A498 cells. The subsequent steps were as in the workflow in Figure 1h. For 

treatment, we used a drug concentration corresponding to 5-10 times the IC50 value, 

and vehicle (solution without the drug) as a control. All experiments on both cells and 

lysates were performed in 5 biological replicates. The lysates were treated at Nt=15 

temperature points for 3 min each, and then pooled together after allowing precipitation 

at room temperature for 6 min and before centrifugation and digestion. Following 

TMT10 labeling of the digests, the samples were pooled and separated into 24 fractions 

by high pH reverse phase chromatography. The LC-MS/MS analysis was performed on 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 13, 2018. ; https://doi.org/10.1101/496398doi: bioRxiv preprint 

https://doi.org/10.1101/496398
http://creativecommons.org/licenses/by-nc-nd/4.0/


 15

an Orbitrap Q Exactive HF system. Protein identification and relative quantification was 

performed by as conventional in shotgun proteomics.  

For MTX in A549 cells (Figure 4a), both DHFR and TYMS were clearly 

determined as by far the biggest positive outliers in the ∆Sm distribution.  In lysate, only 

DHFR was an outlier (Figure 4b), while ∆Sm value for TYMS was very small. This result 

confirmed DHFR to be the primary target of MTX and TYMS to be a secondary target 

that binds a metabolized form of MTX (Qiu et al., 2017). Similar results were obtained 

for 5-FU that also binds to TYMS after metabolic modification (Longley et al., 2003): 

while in A498 cells TYMS is a clear positive outlier (Figure 4c), in a lysate the ΔSm 

value for TYMS was not significant (Figure 4d).   
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Figure 4.  Volcano plots of experimental PISA assay results. Proteins with significant 

(p<0.05) changes are shown in black; known targets – in red. (a) A549 cells treated with MTX. 

(b) Same for cell lysate. (c). A498 cells treated with 5-FU. (d) Same for cell lysate. 

 

1D PISA assay on 9 drugs 

To demonstrate the unique analytical power of PISA arising from great reduction of the 

sample number, we treated A549 cell lysate with 9 drugs (Nutlin, Tomudex, Floxuridine, 

8-azaguanine, Topotecan, Bortezomib, Dasatinib, Gefitinib, and Vincristine) at 10 µM for 

45 min as well as vehicle. These 9 drugs have previously been used in deep-proteome 

FITExP analysis (Saei et al., 2018). Then we performed PISA analysis, multiplexing the 

9 drugs and control into a TMT-10 sample in a biological triplicate, separating each 

replicate into 24 fractions and analyzing them by LC-MS/MS.  The 72 analyses took less 
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than a week of instrumental time, while with TPP the same effort would require two and 

a half month, a prohibitively expensive enterprise for most research groups. The 

analysis yielded 7200 proteins quantified in all replicates, and allowed us to apply the 

specificity concept previously used only in FITExP and SIESTA – namely, contrasting, 

for every protein, the ∆Sm value for any particular drug to those for all other drugs.  This 

was done by the OPLS-DA method. As an example, Dasatinib that targets kinases 

showed many kinases specifically stabilized or destabilized. To increase the analysis 

specificity, Gefitinib that has similar targets was removed from the dataset (Figure 5a).  

For the first time, it became possible to compare the data on specific expression 

(FITExP) with those on specific thermal shift (PISA) on 5600 common proteins and 

prove the orthogonality of these two methods. As an example, the Floxuridine target 

TYMS shows elevated expression as well as positive stabilisation; it is an outlier in both 

types of analysis when Tomudex that has the same target is removed (Figure 5b).  

 
 
 
Figure 5. Results of a single PISA assay for 9 drugs. (a) OPLS-DA plot of Dasatinib data 

contrasted with all treatments, except Gefitinib. Known targets (kinases) are shown in red. (b) 

Comparison of FITExP results with PISA assay data on Floxuridine treatment for 5600 common 

proteins. The Floxuridine target TYMS shows most elevated expression as well as highest 

positive stabilisation. 
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Discussion 

Specificity increase 

The specificity increase in PISA compared to TPP can come from three sources. First, it 

is the possible use of a larger number of temperature points Nt, as this incurs no 

additional cost in terms of LC-MS/MS instrumental time. Larger Nt with the same 

temperature range means smaller errors associated with the discrete character of 

measurements, and more accurate capturing of the behavior of proteins with steep 

melting curves. The use of more temperature points will also mitigate the error arising 

due to statistical noise, e.g., single point outliers. The only limitation on Nt is practical. 

We tested Nt=20 temperature points and received lower p-values for known target 

proteins than with Nt=10. Note that, for increased dynamic range of the readout, the 

temperature range can be narrowed to the region of the most significant solubility 

changes, excluding both the lowest and the highest temperatures where the difference 

between the treated and untreated samples is small.  

The second reason for the specificity increase in PISA compared to TPP is the 

use as a readout of the statistically robust integral under the melting curve Sm instead 

of the curve-fitting parameters that are subjects to various statistical uncertainties. Also, 

since all samples corresponding to various temperature points are pooled together 

before lysis (when intact cells are drug-treated) or ultracentrifugation (when lysates are 

treated), all the downstream procedures, such as reduction/alkylation, digestion and 

TMT labeling, are performed on a single pooled sample, which reduces the 

experimental errors and thus improves the p-values. Of course, when different drug 

concentrations are used, samples have to be pooled after centrifugation and 

supernatant collection. 

The third reason is the larger number of replicates that can be analyzed in 

practice. We mentioned above that a standard TMT-10 labeling scheme allows for 

simultaneous analysis of five replicates of both treated and untreated samples, while in 

published TPP studies we found no more than three replicates. The much larger 

statistical power of the five-replicate experiment allows one to identify with high 

significance even proteins with tiny thermal shift. 
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Throughput increase 

With the same number of replicates, 1D PISA analysis provides a throughput increase 

by a factor of Nt compared to TPP, while 2D PISA gives an increase of Nt·Nc. With both 

Nt and Nc being of the order of 10, the throughput increase in 2D PISA can reach two 

orders of magnitude.  

 Sensitivity increase 

One of the limiting factors in TPP is the minimum volume (usually, ≈10 µL) of lysate 

allowing for reliable supernatant collection after ultracentrifugation of the thermally 

treated sample. In 1D PISA, where the samples are merged before centrifugation, 

reduction of the minimal volume per sample is by a factor of Nt.  Similarly, in 2D PISA, 

where the samples for different drug concentrations are merged before thermal 

treatment, the overall reduction of sample volume is Nt·Nc times.  

 Cost reduction 

 The costs of a PISA experiment arises from the use of biological materials, 

chemicals (e.g., TMT10 labeling reagents), labor for sample treatment and preparation 

for the LC-MS/MS analysis, as well as the LC-MS/MS analysis itself. The reduction in 

the volume of biological material (mainly, cells) is similar to the above increase in 

sensitivity. In drug discovery, the cost of an experimental drug can be quite substantial, 

and thus the cost reduction in PISA can be high. Besides, in our recent TPP-based 

method of SIESTA (Saei et al., 2018), where a recombinant enzyme is added to a cell 

lysate together with a co-factor, the cost of a recombinantly produced and purified 

enzyme with validated activity can exceed the cost of the LC-MS/MS part of SIESTA, 

scaling up with the required enzyme amount. Therefore, SIESTA is one of the analysis 

types that will greatly benefit from the use of PISA instead of TPP. Additional cost 

reduction comes from the TMT reagents and LC-MS/MS instrumental time, which are 

usually the most expensive items in TPP. Paradoxically, labor and chemicals become 

the dominant cost items in PISA while the LC-MS/MS instrumental time becomes a 

lesser component. 
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 Applicability area 

The main idea behind PISA – the use of the integral under the curve instead of the 

curve shape parameters – can be applied in many analytical methods were curve fitting 

is employed to probe protein stability or solubility, e.g. in limited proteolysis combined 

with MS (Leuenberger et al., 2017), in the use of urea or other chaotropic agents, 

pressure or high (low) pH values, or high (low) salt concentrations.   
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