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Abstract

Objective—Examination of the amniotic fluid proteome has been used to identify biomarkers for

intra-amniotic inflammation, as well as those that may be useful in predicting the outcome of preterm

labor. The purpose of this study was to combine a novel computational method of pattern discovery

with mass spectrometric proteomic profiling of amniotic fluid to discover biomarkers of intra-

amniotic infection/inflammation (IAI).

Methods—This cross-sectional study included patients with spontaneous preterm labor and intact

membranes who delivered at term (n=59) and those who delivered preterm with IAI (n=60).

Proteomic profiling was performed using SELDI mass spectrometry. A proteomic profile was

acquired through multiple simultaneous SELDI conditions which were combined in a single

proteomic “fingerprint” using a novel computational approach. Classification of patients based on

their associated SELDI-TOF mass spectra as belonging to either the class of individuals with preterm

delivery with IAI or term delivery was accomplished by constructing an empirical model. The first

phase in the construction of this empirical model involved the selection of adjustable parameters

utilizing a training/testing subset of data. The second phase tested the generalization of the model by

utilizing a blinded validation set of patients who were not employed in parameter selection.

Results—Gestational age at amniocentesis was not significantly different between the groups.

Thirty-nine unique mass spectrometric peaks discriminated patients with preterm labor/delivery with

IAI from those with preterm labor and term delivery. In the testing/training dataset, the classification

accuracies (averaged over 100 random draws) were: 91.4% (40.2/44) for patients with preterm

delivery with IAI, and 91.2% (40.1/44) for term delivery. The overall accuracy of the classification

of patients in the validation dataset was 90.3% (28/31).

Conclusions—Proteomic analysis of amniotic fluid allowed the identification of mass

spectrometry features which can distinguish patients with preterm labor with intra-amniotic infection/
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inflammation from those with preterm labor without inflammation or infection who subsequently

delivered at term.
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Introduction

Preterm delivery is the leading cause of perinatal morbidity and mortality worldwide [1-4].

Two thirds of all preterm deliveries is the result of spontaneous preterm labor parturition

approximately one third is the result of indicated delivery due to fetal and maternal indications

[5,6]. The improved prognosis of preterm neonates is largely the consequence of advances in

the care provided in newborn special care units [7], the availability of surfactant treatment

[8-10], as well as the use of antenatal steroids [11,12]. The rate of spontaneous preterm birth

remains largely unchanged and treatment with tocolysis has not been proven to reduce the rate

of preterm delivery or perinatal morbidity and mortality [13-15]. Thus, the prevention of

preterm delivery remains the most significant challenge of modern obstetrics.

Intrauterine infection is a common and important cause of spontaneous preterm labor and

delivery. Standard microbiological techniques have demonstrated that at least 25% of all

preterm births occur to mothers with microbial invasion of the amniotic cavity (MIAC) [16].

However, there is evidence that the rate of detection of intrauterine infection is higher when

molecular microbiologic techniques are used [17-24] or when cultures are obtained from the

chorioamniotic space [25].

Recent evidence indicates that intra-amniotic inflammation is also a risk factor for impending

preterm delivery, as well as short- and long-term morbidity [26-35]. Indeed, patients with intra-

amniotic inflammation detected by elevated cytokines (e.g., IL-6) [32], matrix-degrading

enzymes (e.g., MMP-8) [36,37], or an amniotic fluid white blood cell count [36] have a similar

prognosis to those with a positive culture for microorganisms. This underscores the importance

of the rapid detection of intra-amniotic inflammation [37]. The optimal method for the

diagnosis of intra-amniotic inflammation is rapid analysis of amniotic fluid obtained by

amniocentesis. This is generally accomplished with the use of a Gram-stain, amniotic fluid

white blood cell count, and amniotic fluid glucose [38,39]. The determinations of IL-6 and

MMP-8 concentrations have proven to be sensitive and specific parameters for the

identification of intra-amniotic inflammation [35-37,40].

The term “high-dimensional biology” refers to the use of high throughput techniques that allow

simultaneous examination of changes in the genome (DNA), transcriptome (mRNA), proteome

(proteins), or metabolome (metabolites) in a biological sample, with the goal of understanding

the physiology or mechanisms of disease [41-43]. Insights derived from high-dimensional

biology techniques are expected to assist with the development of new diagnostic, prognostic,

and therapeutic tools in medicine [44]. Such techniques have included genomics [45-47],

transcriptomics [48-74], proteomics [55,75-81], and metabolomics [82,83]. A critical aspect

to this research strategy is the intelligent data mining of complex data sets generated with the

use of these techniques, collectively referred to as “omics” sciences.

Examination of the amniotic fluid proteome has been employed as a means to identify

biomarkers for intra-amniotic inflammation and those that may be useful in predicting the

outcome of preterm labor [75-77,79,80]. The purpose of this study was to combine a novel

computational method of pattern discovery with the use of mass spectrometric proteomic

profiling of amniotic fluid to discover biomarkers of intra-amniotic inflammation. A key
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element of the approach is to obtain a broadly inclusive proteomic profile using multiple

simultaneous conditions in the acquisition of the mass spectrometric data, and to recombine

these multiple conditions in a single, computationally efficient proteomic “fingerprint.” A

requirement of this fingerprint representation is its ability to represent all mass spectral features

simultaneously for purposes of pattern discovery.

Materials and methods

A retrospective cross-sectional study was designed to include patients who presented with

preterm labor and intact membranes and underwent amniocentesis for the evaluation of the

microbial state of the amniotic cavity and/or fetal lung maturity. Amniotic fluid discarded for

clinical purposes was collected, stored, and used for proteomic analysis.

Study population

Patients admitted after a diagnosis of preterm labor and intact membranes were asked to

participate in a prospective cohort study designed to examine the relationship between clinical,

biochemical, and biophysical parameters and the risk of preterm delivery, intrauterine infection

and neurological disabilities. For the purposes of this study, we selected patients in this cohort

who met the following criteria: (1) singleton gestation; (2) gestational age between 22 and 35

weeks and a live fetus; (3) cervical dilatation ≤ 3 cm by digital examination; (4) intact

membranes; and (5) signed informed consent approved by the Institutional Review Board of

the Sotero del Rio Hospital Santiago, Chile, Wayne State University Detroit, Michigan, and

the Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH.

Seventy-nine patients in this study were also included in an investigation conducted to explore

the relationship between cervical length, vaginal fetal fibronectin, and preterm delivery.

Definitions, study procedures, and clinical management

Preterm labor was diagnosed in the presence of regular uterine contractions of at least 3 in 30

minutes, with or without cervical modifications. Beta-mimetic agents or magnesium sulfate

were given intravenously for tocolysis, and steroids were administered between 24 and 34

weeks. An amniocentesis was performed trans-abdominally to assess the microbiological state

of the amniotic cavity. The fluid was transported to the laboratory in a capped plastic syringe

and cultured for aerobic and anaerobic bacteria, as well as genital mycoplasmas.The white

blood cell (WBC) count, glucose concentration, and Gram stain for microorganisms were also

obtained from the amniotic fluid.

Intra-amniotic infection and inflammation were defined as a positive amniotic fluid culture for

microorganisms or an amniotic fluid IL (interleukin)-6 concentration >2600 pg/ml [32],

respectively. The presumptive diagnosis of microbial invasion of the amniotic cavity/intra-

amniotic inflammation was an indication for discontinuation of tocolysis at all gestational ages,

and for administration of parenteral antibiotics until delivery.

Steroid administration (Betamethasone or Dexamethasone) was used regardless of the

presumptive diagnosis of amniotic fluid inflammation, except in patients who had evidence of

fetal lung maturity, as determined by a shake test and/or lamellar body count. After the 32nd

week of gestation, patients with presumptive microbial invasion of the amniotic cavity/intra-

amniotic inflammation who remained pregnant after 48 hours underwent augmentation of labor

when required. In patients with intra-amniotic infection/inflammation before the 32nd week,

management consisted of antibiotic administration without tocolysis. Clinical

chorioamnionitis was an indication for augmentation of labor.
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Amniotic Fluid Proteomic Profiling—Proteomic analysis of amniotic fluid samples was

conducted using a combination of solid chromatography and mass spectrometry. Solid

chromatography was performed using protein chips (Ciphergen Biosystems, Inc., Fremont,

CA, USA). We used Surface Enhanced Laser Desorption Ionization-Time of Flight (SELDI-

TOF) for mass spectrometry analysis (Ciphergen Biosystems, Inc., Fremont, CA, USA).

Amniotic fluid from each patient was diluted in sterile phosphate-buffered saline (PBS; 1.7mM

KH2PO4, 5mM Na2HPO4, 150mM NaCl, pH 7.4) at a 1:10 dilution and placed on the protein

chips selected for this study. Two types of protein chips were utilized, weak cation exchanger

(CM10) and reversed phase (H50), to detect a wider range of the amniotic fluid proteome than

could be detected with a single surface. The CM10 protein chip array incorporates a carboxylate

chemistry (negatively charged) and, therefore, acts as a weak cationic exchanger, binding on

its surface proteins or peptides which are positively charged at a given pH. The H50, or reversed

phase, binds protein based upon hydrophobic interaction chromatography, which has binding

characteristics similar to that of a C6 to C12 alkyl chromatographic resin. Protein or peptide

separation on this surface is based upon hydrophobicity. Those with less hydrophobic content

relative to the binding buffer will not bind to the array surface. Amniotic fluid samples were

assayed in duplicate. One spot in every protein chip array was used to profile pooled

midtrimester amniotic fluid to serve as an internal, experimental control.

Protein chip array preparation

H50 or CM10 protein chip arrays were placed in a bioprocessor (Ciphergen Biosystems Inc.,

Fremont, CA, USA), a device that allows the placement of 12 chips in a 96 well format. Chips

were pre-washed twice with 50 microliters of 50% methanol for 5 minutes. The chip array was

decanted, and 150 microliters of binding buffer (H50 binding buffer; 10% acetonitrile, 0.1%

trifluoroacetic acid (TFA), or CM10 binding buffer; 10 mM Sodium Acetate, pH 4.0) was

added to each spot on the array and incubated for 5 minutes, during which vigorous shaking

was performed employing an automated microtiter plate shaker (Lab-line Instruments, Inc.,

Melrose Park, IL, USA). This step was performed twice to equilibrate the chip surface. Then,

50 microliters of diluted amniotic fluid samples were added to the protein chip arrays and

incubated with vigorous shaking for 60 minutes. The samples in the wells were decanted, and

the protein chip array was washed three times using 150 microliters of binding buffer for 5

minutes each. Finally, the protein chip array was washed with 150 microliters of de-ionized

(DI) water, which was removed immediately. The protein chip arrays were then removed from

the bioprocessor and allowed to air-dry for 5-10 minutes before the application of energy-

absorbing molecules (EAM) or matrix.

Preparation and application of Energy Absorbing Molecules (EAMs)

Two different EAMs were utilized in this study to enlarge the mass range of protein detection:

Cyano-4-hydroxycinnamic acid (CHCA), and Sinapinic acid (SPA). Two hundred microliters

of 50% acetonitrile in 0.25% trifluoroacetic acid (TFA) were added to 5 milligrams of CHCA

powder in a polypropylene tube and vortexed at room temperature (RT) for 5 minutes.

Following the incubation, the tube was centrifuged for 15 minutes at 12,000x g at RT. The

supernatant was removed and diluted with equal volume of 50% acetonitrile and 0.25% TFA

prior to use. To prepare SPA, 400 μl of 50% acetonitrile in 0.5% TFA was added to a

polypropylene tube containing 5 milligrams of SPA and vortexed for 5 minutes at RT. The

SPA tube was centrifuged at 12,000x g for 15 minutes and the supernatant was retrieved for

use. One microliter was applied to each protein chip array spot and allowed to air dry. This

was followed by the addition of another microliter of the prepared EAMs.
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Data acquisition

ProteinChip arrays were read on the Ciphergen PBS IIC instrument equipped with a

ProteinChip array autoloader (ProteinChip software version 3.2) and exported to Ciphergen

Express Data Manager software (version 3.0). Each protein chip array was read twice (at low-

and high-laser energies). The mass spectrometer was calibrated using external mass standards

(Calibrants: Arg8-Vasopressin, somatostatin, bovine insulin b-chain, human insulin, hirudin,

bovine cytochrome C, equine myoglobin, carbonic anhydrase, enolase, bovine albumin, and

bovine immunoglobulin).

For protein chip arrays containing CHCA as EAM, the mass scan was set to 0-100,000 Da for

both low- and high-laser energy, and optimized from 3,000 – 10,000 Daltons. Low laser

intensity was adjusted to a setting of 170 arbitrary laser units and high laser intensity was set

at 185 arbitrary laser units. The mass deflector was adjusted to 500 Daltons for both low and

high laser intensities. For protein chip arrays containing SPA as EAM, the mass scan was set

to 0-200,000 Da for the low laser energy (200), and optimized from 3,000 – 10,000 Daltons.

For high laser energy (220), the mass scan was optimized for 10,000-30,000 Da. The mass

deflector was set at an automatic setting for protein chip arrays with SPA as matrix. The data

acquisition method for all of the protein chip arrays was set to the SELDI quantitation setting.

Analysis of Mass Spectrometry Data—The purpose of proteomic profiling is to generate

a description of the molecular composition of a biological fluid—in the present case, amniotic

fluid. A given mass spectrometry tracing is, however, only one of many possible

representations of the composition of the fluid in question. Other factors that can influence

such a tracing include the clinical condition, controlled experimental variables (protein chip,

EAM, laser intensity, etc.), as well as other unknown factors (experimental or otherwise). Data

analysis is aimed at extracting relevant information in an unbiased way through the discovery

and identification of biomarkers that allow the classification and prediction of clinical

conditions.

Several approaches to the analysis of proteomic mass spectrometry data have been used

[84-88]. We have developed a novel computational approach that overcomes some of the

obstacles and limitations of previous methods. This technique discovers patterns which are

combinations of spectral features (peaks). A unique characteristic of our method is the use of

ensembles of patterns from all possible groupings of samples to construct a classification score.

This score can, in turn, be used to classify the samples which meet the traditional definitions

of health and disease and, potentially, discriminate intermediate phenotypes as well. A second

attribute of this technique is that no a priori constraint need be placed on the number of features

that comprise a pattern.

This method encompasses three broad components: first, signal transformation of the mass

spectra into a tractable representation suitable for the discovery of patterns; second, the

discovery of a set of patterns from the transformed signals, and third, a phenotypic classification

scheme based on the set of patterns. Through a sequence of operations described briefly below

and in detail in the Supplementary Materials, signal transformation reduces a set of mass spectra

to a binary matrix. The rows in this matrix correspond to the mass spectra representing an

individual patient sample, to which we often refer as an “instance.” The columns of the matrix

correspond to the set of features selected from the mass spectra. This matrix forms the input

to the pattern discovery algorithm.

Signal transformation comprises a number of steps which include: (a) pre-processing of the

mass spectrum signals, (b) peak detection, (c) amplitude standardization, (d) encoding of the

signals as binary “fingerprints,” (e) noise reduction, and (f) fusion of fingerprints across

experimental conditions. Pattern discovery utilizes this representation of the set of signals to
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produce a set of patterns which are then selected based on their information content relative to

phenotypic class. The classification methodology using a repetitive training and testing

procedure is based on a method of bootstrapping [89,90] that allows for the unbiased selection

of parameters. A final blinded validation step is used to confirm that the pattern-based

prediction results are generalizable (i.e. the model is not overtrained).

Signal transformation (see Figure 1)

Signal pre-processing

Mass spectrometry data are recorded as digital signals of amplitude (vertical axis) versus m/z
(horizontal axis) (see Figure 2). Accordingly, standard digital signal processing may be applied

[91,92]. The ultimate goal of this step is to obtain a computationally efficient representation

of the signals that preserves all of the informative features. Signal processing consists of the

following four steps described in detail below: 1) interpolation to a common horizontal axis;

2) removal of a background “trend”; and 3) averaging of duplicate spectra. Signal processing

was implemented in MATLAB® software (The MathWorks, Inc., Natick, MA, USA) and the

Perl programming language. Details of the procedure are provided in Supplementary Materials.

Supplementary Materials.

Peak selection

Pattern discovery was performed using peaks detected in the spectra, the rationale being that

biomarkers have only been chemically identified from spectral peaks and not from the baseline.

Thus, the utilization of peaks for this purpose is consistent with this study’s ultimate goal. We

employed a two-step strategy comprising (a) detecting a large number of peaks including very

weak ones, and (b) filtering peaks using a statistically-motivated peak selection strategy. The

aim of this approach was to retain peaks which though small in amplitude nevertheless have

the potential to contribute to informative patterns.

Amplitude Standardization of mass spectra

Mass spectrometry signals are inherently semi-quantitative in that no simple relationship exists

between peptide/protein concentration and the amplitude of the peak in the mass spectra. Thus,

to find patterns shared among subsets of an entire set of amniotic fluid samples, it is necessary

to standardize the amplitude of the signals, a process sometimes referred to as “normalization.”

The method we employed is a variant of histogram equalization [93] that assigns the rank value

of each peak as its standardized amplitude and, thus, preserves the peak-height rank

relationships (shortest to tallest) within a spectrum.

Encoding Data for Pattern Discovery

Pattern discovery algorithms can be divided into those that operate in continuous-valued spaces

and those that operate in discrete (or categorical) spaces. A categorical approach has the

advantage over continuous representations of associating similar amplitude values of the mass

spectra into a finite number of meaningful labels (e.g. “small,” “medium” and “large” peaks).

In contrast, working with continuous variables representing amplitude values of peaks

generates potentially infinite subdivisions of the data, and this could obscure the recognition

of informative patterns. Our pattern discovery algorithm requires a categorical representation

of mass spectra. This approach enables identification of all patterns common to all subsets of

patients, as will be described.

The simplest categorical representation of the mass spectrometry amplitudes is binary, with a

“0” or a “1” representing the absence or presence of a feature. A more quantitative

representation may be obtained by grouping amplitude values into categorical variables

representing a finite set of ranges (“bins”). Transforming these categorical variables into a
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binary representation is then simple. For example, given four bins, these values can be

represented as: 000, 001, 010, 100. Each group of three digits represents a bin. While this is

not an efficient binary representation of three categories, the use of bits (binary features

described as 0 or 1) in the manner described (“indicator variables”) is useful for pattern

discovery. Table I shows the assignment of bits for this specific encoding using three thresholds

for amplitude, T1, T2, and T3.

The encoding just described is referred to as “differential binning,” since a bit is set for an

amplitude value of the mass spectra contained within a given range. Mass spectrometry signals

are better represented by “cumulative binning” in which successive bits are set for each

sequential threshold that is exceeded by an amplitude value. Table II shows an example of this

encoding scheme.

Since mass spectrometry is inherently semi-quantitative, there are situations where a peak is

small in one spectrum, while larger in a corresponding spectrum from another patient, and yet

the fact that both spectra have corresponding peaks is an important piece of information for

pattern discovery. Cumulative binning preserves this relationship where differential binning

may not. In order to capture this type of information, this study employs cumulative binning.

Given the rank-based method of standardization of the mass spectra described above, the “rank

thresholds” form categories (bins) corresponding to percentiles. For example, given three

thresholds at 50th, 75th and 95th percentiles, standardized amplitude values below the 50th

percentile would not set any bits (e.g. “000”). Values above the 50th and below the 75th

percentile would set the lowest bit (“001”). Values above the 75th and below the 95th percentiles

would additionally set the next bit (“011”) and, finally, values above the 95th percentile would

set all bits (“111”). Each peak, encoded in this way, generates several bits. The concatenation

of all of these bits together forms a string of bits, or a “fingerprint.”

Treatment of noise

A major challenge in the analysis of mass spectrometry data is the treatment of signal and

noise. Important information may be contained not only in large amplitude peaks, but in small

amplitude peaks as well. Thus, allowing small peaks to be present in the representation of the

mass spectra is desirable. This has the potential disadvantage of overwhelming the analysis

with noise. We handle this by constructing a “bit filter,” requiring that, within the training data
only, a bit occur more frequently in the spectra of one clinical group than in the other. This bit

filter, found using only training data, was applied to both training and test datasets in order to

construct a consistent set of fingerprints. We emphasize that this procedure is blinded to the

clinical class of the test data (and also to the validation data) to be predicted. In the course of

multiple training/testing experiments described below in the section on “Empirical modeling

methodology,” we found that a bit frequency ratio of 7 allowed us to find information-rich

patterns without being overwhelmed by noise.

Fusion of fingerprints across experimental conditions

As described in the section on amniotic fluid proteomic profiling, there were eight experimental

conditions for each amniotic fluid sample (two for protein chips (CM10 or H50), two for matrix

(CHCA or SPA), and two for laser intensity (Low or High)). Each experimental condition

contains different information. A particular advantage of the methods used in the present study

is the ability to combine information from multiple experimental conditions of the same

samples into a unified representation. Patterns comprised of information from disparate

experimental conditions are therefore able to emerge and be found. Thus, mass spectra for each

amniotic fluid sample from each experimental condition were subjected separately to binary
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encoding, as described in the previous section. The resulting individual fingerprints were

concatenated to form a single binary fingerprint for each amniotic fluid sample.

Pattern Discovery—The method of pattern discovery used in the present study is

deterministic (i.e. non-heuristic) and complete. Because the method is based on a categorical

representation of mass spectra, it is able to compute all possible clustering of the instances

based on their fingerprints, and it can thus be said to be “complete”. That is, each combination

of instances gives rise to at most one pattern. Any subset of instances giving rise to a pattern

is a cluster. Many patterns associated with such clusters are uninformative in identifying a

particular phenotype because the protein composition of amniotic fluid has sources of variation

having nothing to do with the phenotype of interest. In contrast, some patterns are highly

informative. The pattern of proteins/peptides associated with each “pure” cluster (i.e. one

which is strictly comprised of part of a single clinical phenotype) allows the generation of a

testable hypothesis (i.e. does a distinct molecular phenotype have a distinct set of clinical

correlates indicated by that pattern?). For example, among patients with preterm labor and

intra-amniotic inflammation there may be subsets of patients which could be identified by the

proteomic profile. Even though these groups of patients meet the clinical definition of

phenotype used in the study, their molecular profiles may provide information about neonatal

outcome which was not part of the definition of clinical phenotype and yet is of crucial clinical

importance. This methodological approach has substantial implications for the development

of a molecular taxonomy and pathophysiology of disease for conditions that are currently only

defined at a “syndrome” level (combinations of clinical presentation and basic laboratory tests).

The mathematical description of the pattern discovery algorithm is detailed in the

Supplementary Materials.

Classification

Pattern similarity and generation of a score

Pattern discovery finds all patterns in common between all subsets of amniotic fluid samples.

The similarity of an unknown sample to clinical phenotypes can be determined in terms of the

patterns of proteins/peptides (fingerprint features) that it shares with the fingerprints of samples

in the training set of each phenotype. An efficient way to classify unknown samples is to

discover patterns that occur between each unknown sample as well as those identified in the

training set. This method finds all patterns that co-occur in each unknown sample and all

combinations of amniotic fluid samples in the training data (and therefore whose phenotype is

known to the algorithm). A “good” pattern discriminating between two phenotypic classes

would match only training samples for one phenotype, while matching in none of the other

phenotype. An ideal pattern would match in all of the training samples in one phenotype and

in none of the training samples of the other phenotype.

We used information theory to assign a score to each pattern based upon the numbers of

instances of each phenotype in which the pattern occurs. In a two-class problem such as the

present one, scores range from +1.0 to -1.0; the former represents patterns which occur in

patients with preterm labor/delivery with IAI, and in none of the patients with preterm labor

and term delivery. An “unknown” patient may be scored by summing the pattern scores for all

of the patterns comprising the model. A positive score for a patient results in its predicted

classification as preterm delivery with IAI, while a negative score results in its predicted

classification as preterm labor with term delivery.

Empirical modeling methodology

The goal of this work is the discovery of proteomic patterns that correlate with well-

characterized clinical phenotypes. The approach involves first the discovery and selection of

a set of patterns, and then the evaluation of the information content of the patterns. Once a set
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of patterns is validated by determining its ability to predict phenotype in a blinded set of profiles

of amniotic fluid samples, it is dissected into the set features of which it is comprised.

Our empirical modeling methodology employs a cross-validation approach based upon the

well-known bootstrapping procedure [89,90]. The method involves the subdivision of the

clinical samples into two subsets: training/testing and validation. Multiple random draws from

the training/testing subset are used to determine parameters that define the “model,” i.e. the

collection of patterns that are informative with respect to the phenotype (also called “class”).

In this case, the two classes are preterm delivery with IAI and full-term delivery (preterm labor

with term delivery). Once the model has been determined, it is used to predict the phenotypes

of a blinded set of samples that have been withheld from analysis, and termed the “validation

set.” Figure 3 is a flowchart of this procedure. Bootstrap cross-validation verifies that the

classifier is not over-trained.

Training/testing and validation subsets were comprised of 75% and 25% of the total number

of instances, respectively. In cases of unequal numbers of instances in the two classes, the

training/testing subsets were balanced. For example, for the data considered in this study, the

numbers of samples from patients with preterm delivery with IAI and preterm labor with term

delivery samples were 60 and 59 respectively. Thus, the training/testing sets consisted of 44

samples of each class, while the validation sets consisted of 16 samples from patients with

preterm delivery with IAI and 15 samples of preterm labor with term delivery. The training/

testing set was further randomly subdivided multiple times into 2/3 training samples and 1/3

test samples. (i.e. 29 instances of each class were assigned to the train subset and 15 to the test

subset.) Randomization was accomplished by assigning a pseudorandom number to each

sample and then sorting on that number, using routines available in Excel™ (Microsoft, Inc.,

Redmond, WA).

Each classifier was evaluated using multiple random training/testing draws (typically 100). An

overall measure of classification accuracy for the specific selection of parameters is indicated

by the mean and the confidence intervals. In addition, since every sample in the training/testing

set was utilized as an “unknown” test sample approximately 33 times (1/3 of 100 draws), a

statistical measure of the average classification accuracy for each test instance was also

obtained.

After the optimal set of parameters defining a classifier was determined, this classifier was

trained on the aggregate of the 44 samples from patients with preterm delivery with IAI and

44 from those with term delivery. The resulting classifier was used to predict the phenotypes

of 16 patients with preterm delivery with IAI, and 15 patients with term delivery in the

validation phase of the study. The performance of the classifier was evaluated using Receiver

Operator Characteristic (ROC) curves.

Results

This study included patients with preterm labor who delivered at term (n=59) and those who

delivered preterm with intra-amniotic infection/inflammation (n=60). The demographic and

clinical characteristics of the patients included in the training/testing phase, as well as those

included in the validation phase of the study, are described in Tables III and IV, respectively.

The gestational age at amniocentesis was not significantly different between the term and

preterm delivery groups.

The microorganisms isolated among patients with preterm labor and inflammation in the

training/testing phase included: Ureaplasma urealyticum (n=16), Candida albicans (n=4),

Fusobacterium sp. (n=2), Streptococcus sp. (n=1), Streptococcus agalactiae (n=1), Escherichia

coli (n=1), Mycoplasma hominis (n=1), Listeria monocytogenes (n=1), Gardnerella vaginalis
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(n=1), Peptostreptococcus sp. (n=1), Streptococcus viridans (n=1). More than one

microorganism was identified in 8 patients, while no microorganism was isolated in 6 patients.

The microbial and inflammatory status of the amniotic fluid in patients with preterm labor with

intra-amniotic infection/inflammation included in the validation phase is depicted in Table V.

Classification of patients based on their associated SELDI-TOF mass spectra as belonging to

either the class of patients with preterm delivery with IAI or term delivery was accomplished

by constructing an empirical model using patterns discovered from training data. The first

phase in the construction of this empirical model involved the selection of adjustable

parameters utilizing the training/testing subset of data. The second phase tested the

generalization of the model by utilizing the blinded validation set of instances that were not

employed in parameter selection.

Training/testing Results

Most of the parameter choices relate to the conversion of mass spectra to binary fingerprints,

as discussed previously. Many different values of parameters were explored during the training/

testing process. We found that the classification results were fairly robust with respect to

variations in encoding parameters, which is a good indication of how well the method should

generalize the data outside the training/testing dataset. As discussed in the preceding section,

we chose percentile binning and cumulative encoding. The important parameters associated

with this method are the number and values of the thresholds for the quantization of amplitude

bins. The best results were obtained with three quantization bins at percentile thresholds of

80%, 89.5%, and 99%. An additional parameter was the bit filter used for noise reduction, also

as discussed above. For the best classification result, we required that the probability of a bit

occurring in one phenotypic class be seven times greater than in the case of the other class.

Utilizing these parameter choices, classification accuracies (averaged over 100 random draws)

were: 91.4% (40.2/44) for patients with preterm delivery with IAI and 91.2% (40.1/44) for

term delivery. In our exploration of parameter space, we observed that only a small set of the

patients were consistently misclassified, whereas most patients were always classified

correctly. Thus, the classification accuracy was dominated by a small number of ambiguous

instances. This issue will be discussed in more detail below.

Validation Phase

Using the same encoding scheme and parameters as had been decided at the conclusion of the

training/testing phase, pattern discovery and scoring were performed on the 16 patients with

preterm delivery with IAI and 15 of those with term delivery that were withheld as validation

data. The validation phase resulted in correct classification of 14 of the patients with preterm

labor/delivery with IAI and 14 of those with preterm labor without IAI who delivered at term.

Because of the small number of validation instances, a single instance carries much weight.

Thus, the classification accuracy of the validation phase is consistent with the accuracies

predicted from the training/testing phase. Table VI presents the results of the validation phase

in the form of a confusion matrix. The overall accuracy was 90.3% (28/31).

The performance of the pattern-based classification can be illustrated using a ROC curve.

Figure 4 shows the ROC curves for the validation set alone, as well as for the average in the

case of the training/testing experiments over the 100 random draws described above. The fact

that the validation results correspond closely with the training/testing results is indicative that

the model is not over-trained.

The ROC curves display the relationship between sensitivity and specificity. However, our

method uses objective criteria for the selection of the cutoff, namely, that positive scores
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correspond to preterm labor/delivery with IAI classification and negative scores to preterm

labor who delivered at term (see Figure 4 for details).

Discussion of misclassified patients

Misclassification was dominated by a few patients. To examine this, we un-blinded the

validation data and ran the multiple random draw procedure on the entire data set. The same

samples from patients with preterm labor/delivery with IAI from the training/testing random

draws were misclassified along with two additional ones from the validation set. We examined

the laboratory data for these patients and discovered that most misclassified patients had

amniotic fluid white blood cell counts and IL-6 concentrations that were lower than average

for the patients with preterm labor/delivery with IAI. It is therefore not surprising that these

looked somewhat more like those with preterm labor and term delivery in their patterns. In

general, a correlation exists between the score we calculate and these variables. Figure 5 shows

scatter plots of the amniotic white blood cell count and IL-6 concentration versus the pattern-

based score derived from proteomic analysis of AF.

Biomarkers—The goal of the present work was to discover novel markers, or novel patterns

of markers indicative of preterm labor with intra-amniotic inflammation or infection.

Classification accuracy, therefore, was used to determine the information content present in

our representation of the data, as well as in individual spectral features (or combinations

thereof) with respect to clinical outcome, in this case, preterm labor/delivery with IAI versus

full-term delivery. Consequently, following completion of the classification studies described

above, a search for informative markers and analogous patterns was undertaken. We found

several statistically dominant peaks. In order to see beyond these, the search for markers was

conducted iteratively, with the removal of significant features from previous iterations prior

to the next iteration. Rank thresholds were adjusted downward at each one of the iterations in

order to increase the detection sensitivity.

Table VII summarizes the result of this procedure. In all, 39 peaks in the fused spectra were

determined in two iterations to carry significant information that collectively discriminates

patients with preterm labor/delivery and IAI from those with preterm labor and term delivery.

Figure 6 displays the experimental data as a heat map. In this figure, the panel representing

each of the 8 experimental conditions is divided into two parts. The upper section shows the

data for samples from patients with preterm labor and term delivery, while the lower part

demonstrates the data for the samples from patients with preterm labor/delivery with IAI. The

figure shows the data between 2.5 kDa and 30 kDa, since this domain contained all of the

significant informative markers.

There are a number of locations in Figure 6 where differences between patients with preterm

labor/delivery with IAI and those with term delivery are readily apparent upon visual

examination. For example, there is a group of peaks in the vicinity of 3.5 kDa that is present

in patients with preterm labor/delivery with IAI and absent in those who delivered at term. The

peaks can be seen in 6 of the 8 experimental conditions (when using SPA as an EAM combined

with high laser power there is no useable data below about 9.8 kDa). In order to visualize the

markers identified in Table VII, their locations are marked in Figure 6, below the relevant

experimental condition panel.

The degree to which the selected spectral features are able to discriminate patients with preterm

labor/delivery with IAI from those with term delivery (that is, the information content of the

pattern) was determined by clustering all 119 instances based upon the pattern of features.

There were 69 spectral features corresponding to 39 m/z locations (the multiplicity is due to

the fact that the same m/z feature was sometimes detected in multiple experimental conditions).
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For each instance, a vector of 69 features was extracted and rank normalized in the same way

as had been done for the construction of the binary fingerprints. Note that the ranking is based

on the original set of peaks for each experiment rather than ranking the 69 selected features.

The resulting 119 × 69 matrix is shown in Figure 7. A 119 × 119 similarity matrix was computed

as the correlation coefficients of all of the feature vectors, and a dendrogram was then computed

using hierarchical agglomerative clustering. The result is displayed adjacent to the feature

matrix in Figure 7, color coded according to clinical outcome (red for preterm labor/delivery

with IAI, green for preterm labor with term delivery). Based upon this representation, it is

possible to select a clustering threshold that results in a sensitivity of 91.7% and a specificity

of 91.5%. This outcome is consistent with the pattern-based supervised classification results

reported above, indicating that the features included in this proteomic pattern effectively

capture all of the information present in the ensemble of features used in the supervised

analysis. Furthermore, this result is significantly better than an unsupervised classification

outcome based upon the binary fingerprints utilizing all of the spectral features (data not

shown), indicating that the selected significant features not only contain essentially all of the

information present in the data, but also exclude a significant amount of noise, thus improving

the discriminating ability of the reduced representation.

It may also be observed that a few of the features in Figure 7, notably ones below 5 kDa, are

present in nearly all of the samples of preterm delivery with infection/inflammation. An

argument for parsimony argument would suggest that only these features are required for

accurate classification. However, it is also clear in Figure 7 that there are other associations

among instances that are carried primarily by other features. For example, features in the 5-10

kDa range are prevalent among a subset (but not all) of the patients with infection/

inflammation, and absent from patients who delivered at term. Another set of features above

15 kDa are present in a different subset of patients with infection/inflammation but are less

prevalent (but not absent) in the group who delivered at term. Interestingly, the second of these

subsets has a mean IL-6 concentration that is 60% higher than the first subset (P < 0.05). Thus,

although it is not necessary that all features be considered in order to obtain an accurate overall

classification of the samples, the additional pattern-based features appear to parse the groups

into subsets which may indicate a correlation between molecular signature and clinical

phenotype.

Discussion

Principal findings of the study

1) Analysis of amniotic fluid with a combination of solid chromatography (protein chip) and

SELDI allows the identification of mass spectrometry features which can distinguish patients

with preterm labor with intra-amniotic inflammation from those with preterm labor without

inflammation or infection who subsequently deliver at term; 2) informative features in the mass

spectrometry tracings were obtained using a novel computational approach which reduces the

complexity of the data and identifies individual features as well as patterns related to the clinical

phenotype; 3) the classifiers were originally derived by utilizing a testing and training set of

samples (supervised learning). However, a high degree of accuracy [overall accuracy 90.3%

(28/31)] was obtained when the classifiers were applied to a validation set of samples in a

blinded fashion; 4) analysis of the informative mass spectrometry features which distinguish

patients with preterm labor and intra-amniotic inflammation indicated that 39 features were

identified as potential biomarkers; 5) there was substantial redundancy in the classification

accuracy based upon the 39 features taken individually; 6) some of the proteins/peptides have

been previously identified in amniotic fluid of patients with intra-amniotic infection/

inflammation. However, most of the features reported herein remain to be identified; and 7)

the computational approach described in this article has the potential to identify patterns of
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informative features in this biological fluid. However, its application can extend beyond this

matrix to vaginal/cervical fluid, blood, cerebral spinal fluid, urine, as well as other biological

fluids.

Proteomic analysis of amniotic fluid in the preterm parturition syndrome

The amniotic fluid proteome is the entire set of proteins/peptides present in this biological

fluid. A global description of the number of proteins, their concentrations, function,

posttranslational modifications, as well as the protein/protein interactions in this fluid remains

has not yet been described. An “amniotic fluid proteome project” is desirable to maximize the

diagnostic and prognostic value of amniotic fluid analysis, as well as to understand the

physiologic properties of this fluid.

Several efforts have been undertaken to characterize the protein composition of amniotic fluid

[75-77,79,80]. Some aimed at determining the presence (or absence) of a particular protein, its

concentration, and whether it changes with gestational age or pathologic states. The typical

example of an informative protein is alpha fetoprotein, which has been employed in the

diagnosis of neural tube defects [94] and other congenital defects [95]. Other investigators have

used two-dimensional gel electrophoresis to provide a description of the protein composition

of amniotic fluid [77]. Recently, proteomic techniques have focused on the identification of

biomarkers for intra-amniotic inflammation/infection in patients with preterm labor with intact

membranes [75,76,79,80] and/or PROM [80].

Proteomic studies of complex biological fluids to identify biomarkers present two major

challenges: analysis of fluid composition with biochemical techniques (SELDI, MALDI, 2D

electrophoresis, etc.) and data mining. We have used SELDI in this study because of its early

promise in the identification of biomarkers. The data mining approach employed herein was

selected because of its ability to discover patterns of features that have the potential to be more

informative than a single individual pattern. Moreover, this approach has the theoretical

strength to identify patterns capable of segregating patients with “intermediate phenotypes.”

This approach is deterministic and complete, and these are major advantages over probabilistic

and/or heuristic computational methods.

SELDI

Methods for discovering proteomic biomarkers are diverse and controversial. There is no

consensus yet regarding a preferred methodology. One axis of discussion relates to the tradeoff

between the throughput of a method and its depth/breadth of coverage of the proteome. The

present work has employed SELDI-MS, which is broadly regarded as a high-throughput

method for proteomic profiling, but one that sacrifices proteomic coverage. In an effort to find

a middle ground between throughput and coverage, we have chosen to combine multiple

“dimensions” of SELDI-MS. That is, we have used multiple combinations of chromatographic

surfaces, energy-absorbing matrices, and laser intensities. Each combination produces a

different picture of the proteome of amniotic fluid. The fusion of data across multiple SELDI

dimensions creates a more comprehensive view of the proteome. Newly available methods for

proteomic profiling have improved capabilities to identify and quantify proteins (e.g., iTRAQ).

The theoretical advantages over SELDI of such technologies are appealing.

Computational analysis

The computational method described in this article focuses on the identification of mass

spectrometric patterns. The idea that combinations of protein markers may be more informative

with respect to diagnosis of disease than any one marker is gaining broader acceptance

[96-101]. The analytical methods described in the present work were carefully designed to

detect the presence of such informative combinations, even if their proteomic constituents are
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not individually revealing. In order that such subtle, yet potentially important patterns be

detectable, it is not sufficient to perform statistical analysis of individual m/z locations,

individual peaks, individual SELDI dimensions, or any other apportioning of the available

data. Rather, it is necessary to first combine all of the data into a comprehensive summary in

which all potential biomarkers have a comparable representation, and then seek informative

combinations of features within this fused representation.

Previous work in biomarker-based prediction of preterm labor associated with inflammation

and/or infection has succeeded in achieving prediction accuracies comparable to those reported

here. Therefore, the objective of this work was to detect biomarkers and determine whether

present patterns of biomarkers for the identification of preterm labor are associated with

inflammation. In that regard, the use of a deterministic and complete algorithm, combined with

an efficient fingerprint representation of arbitrary-dimensionality mass spectrometry data, has

a number of attractive attributes. First, because patterns are discovered without bias towards a

small number of features that may have dominant individual statistical influence, other features

are given an equal opportunity to form highly informative patterns regardless of their individual

informativeness. Second, because the method is deterministic, it is straightforward to apply it

iteratively, removing biomarkers and patterns discovered in previous iterations in order to

reveal additional informative features. This approach may have important implications for the

understanding of the mechanisms of disease, although it may have limited diagnostic or

prognostic value.

Proteomic Analysis for the identification of intra-amniotic inflammation/infection

The present study was designed to identify features distinguishing women with preterm labor

and intact membranes with intra-amniotic inflammation/infection from those with preterm

labor who do not have evidence of inflammation and deliver at term. This was a case-control

study planned to maximize discovery of features associated with inflammation. Training and

testing methodology was used to develop a model capable of accurately classifying disease vs.

non-disease. The value of the classifiers was tested in a separate set of samples (i.e., validation

set). The overall accuracy in the validation set was 90.3% (28/31), while in the training/testing

set the result was 91% (80/88). These results suggest that the classifiers generated by the model

will generalize the prospective samples, provided that they belong to the same parent

populations and that their proteomic profiles are generated identically. Our results are in

keeping with those reported by other investigators [75,79] conducting proteomic analysis of

amniotic fluid.

Classification errors

Three out of 31 patients were misclassified in the validation set. Two patients had intra-

amniotic inflammation/infection (see Table V, patients 4 and 13), but were not identified as

such by proteomic profiling. One patient had a positive culture for E.coli, an elevated amniotic

fluid white blood cell count (310 cells/mm3), elevated IL-6 (69 ng/ml), and a low glucose (9

mg/dL). The second patient had an infection with fungi, an elevated white blood cell count

(280 cells/mm3), an elevated IL-6 (14.4 ng/ml) and a low amniotic fluid glucose (1 mg/dl).

Therefore, these patients have strong evidence of a false negative result by proteomic profiling.

One patient had an episode of preterm labor with intact membranes at 31 weeks of gestation,

had a negative amniotic fluid culture for bacteria, no amniotic fluid white blood cells, an IL-6

of 1.1 mg/mL, and an amniotic fluid glucose of 30 mg/dl. This patient remained undelivered

until 39 weeks, and gave birth to a neonate that weighed 2950 grams. Thus, this patient

represents a false-positive amniotic fluid proteomic profile. The possibility exists that there

was a transitory inflammatory process detected by proteomic profiling of AF which was missed

by conventional tests. However, we have no evidence for this.
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Our interpretation of examining false-positive and false-negative results of proteomic profiling

of AF in the validation set of samples is that this technique is not immune to diagnostic errors.

Further studies are required to explain this situation.

m/z ratios of informative mass spectrometry features

The model developed for classification purposes could be mined for informative features. We

identified 39 unique m/z features from across the 6 different experimental conditions (2 protein

chips, 2 energy-absorbing materials or matrices, and 2 laser intensities). Table VII presents the

m/z ratio of informative features. Some of these have been previously reported, while others

are novel. The table describes the experimental conditions under which the peaks were

identified. A glance at the table indicates the cationic protein chip yields more informative

peaks than the hydrophobic chip.

Strengths and limitations of the study

The strengths of the study are that it employed two protein chips (hydrophobic and cationic)

for chromatography, clearly characterized phenotypes using multiple tests (amniotic fluid

culture, white blood cell count, amniotic fluid IL-6, and Gram stain of amniotic fluid), as well

as a novel computational method. Limitations of this study include that it is a case control

rather than a cohort design, the absence of a group of patients with preterm labor without

inflammation who delivered preterm, and that protein identification of the informative features

has not been provided at this time. Further studies are required to address these limitations.

The issue of the intermediate phenotypes

The classification of patients into two phenotypes (for example patients with preterm labor

with intra-amniotic inflammation/infection vs. those without inflammation/infection who

deliver at term) is useful in providing a framework to discover biomarkers. However, it is

clearly an oversimplification of the biology of premature labor. While it is often possible to

describe stereotypical phenotypes and then lump patients into one of two (or several) such

possibilities, this approach usually breaks down under close scrutiny. Although two patients

may be assigned to a single phenotype, it is invariably true that at some level there are

differences between them, and in many cases these differences are important from the

perspective of clinical management.

The traditional classification of the neoplastic state of the uterine cervix includes three distinct

classes of patients: (1) those without any evidence of neoplasia (i.e. healthy); (2) those in whom

neoplastic cells are limited to the epithelium and, therefore, have carcinoma in situ, and (3)

those in whom neoplastic cells have invaded the basement membrane and, thus, have invasive

cervical cancer. Generally, high-dimensional biology has focused on the extreme phenotypes

composed of healthy women and those with invasive cancer. This approach ignores the

biological (and clinical) reality of patients with carcinoma in situ who represent an

“intermediate phenotype.”

In the context of premature labor and intrauterine infection/inflammation, a similar spectrum

of disease can be considered. At least three groups of women can be identified: 1) women with

premature labor and no microorganisms in the amniotic fluid who deliver at term; 2) those with

microbial invasion of the amniotic cavity with a high microbial burden and severe inflammation

who deliver shortly after admission; and 3) one or more intermediate groups in which there is

some degree of intra-amniotic inflammation. Milder degrees of inflammation in comparison

with group 2 may represent an early phase of microbial invasion of the amniotic cavity in which

the host has not had time to deploy an inflammatory response, patients who are unable to mount

an inflammatory response even in the presence of a high microbial burden, or patients who

have been examined after the microbial invasion has been controlled by an appropriate
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inflammatory response. The molecular profile of each distinct intermediate phenotype will

predictably vary between patients who delivered at term and those with severe infection/

inflammation. Moreover, there will presumably be molecular heterogeneity within the

intermediate phenotypes. The pressing need to identify, classify, predict and treat intermediate

phenotypes underlies our effort to develop new computational approaches to the analysis of

high-dimensional biology which is described in Material and Methods section of this study.

The concept that patterns of features represent clusters of patients and that ensembles of patterns

provide a basis for classifying patients into distinct phenotypes may be revisited in the context

of “intermediate phenotypes.” A “perfect” pattern in the hypothetical “ideal world” of the two

extreme phenotypes “diseased” and “healthy” would be one that only occurs in one of the two

phenotypes and, furthermore, one that occurs in every patient that is a true member of that

phenotype. However, in clinical practice this situation is rarely the case. This might be regarded

as a failure of biomarker discovery due, for whatever reason, to a lack of correlation between

experimental observation and clinical outcome. Another point of view, however, is that this

phenomenon is the direct result of the phenotypic heterogeneity among patients that occurs in

spite of stringent selection criteria, which, after all, are based on preconceived phenotypic

views. We propose that this heterogeneity may be accurately reflected in molecular

“fingerprints” and, therefore, would enable the creation of a molecular taxonomy of the disease

(s). Such a taxonomy would provide a more detailed, informative and, hopefully, useful,

classification of patients.

In the present study no such “perfect” patterns were observed. However, there is evidence of

a relation between the pattern-based scoring function (which represents the degree of similarity

of an instance with all clusterings of each phenotype) and clinical outcome variables (e.g. IL-6

and AF WBC as shown in Figure 5). As the pattern-based score increases there is an increased

likelihood of extreme elevation of these variables, which may be regarded as a gradual approach

towards an extreme phenotype — that of preterm delivery due for example to severe

inflammation or high microbial burden.

It is important to note that the ability to find patterns in a proteomic profiling experiment that

may be indicative of intermediate phenotypes must not depend on a priori knowledge of the

intermediate phenotypes. Rather, robust informative patterns with partial support among the

presumptive extreme phenotypes represent new hypotheses that should emerge from the

analysis in a natural way. It is a case of “ask a simple question, get a complicated answer.” In

this case, the “complicated answer” represents new hypotheses that can be subsequently tested

by seeking specific correlations distinguishing members of extreme phenotypes from members

of intermediate phenotypes in clinically meaningful ways.

Conclusions

Proteomic profiling of amniotic fluid allowed the identification of 39 mass spectrometric

features, which were collectively informative in distinguishing patients with preterm labor with

intra-amniotic infection/inflammation from those with preterm labor who subsequently

delivered at term. Some of the proteins/peptides that correspond to the 39 mass spectrometric

peaks have been previously identified in amniotic fluid of patients with intra-amniotic

infection/inflammation. However, most of the features reported herein remain to be identified.
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Figure 1.

Flowchart describing the elements involved in the transformation of raw mass spectrometry

tracings to binary fingerprints necessary for pattern discovery. This flowchart consists of two

major units denoted by dashed boxes. The box on the left side of this figure represents the

processes conventionally referred to as “signal processing” in the engineering community. The

box on the right side of the figure describes processes needed to transform signal data into a

binary categorical description. Raw mass spectrometry files, stored as text files on computer

disk, are first processed by computer programs written in the MATLAB® language. These

processes are represented as rectangular boxes on the left side of this figure. Each mass

spectrometry tracing is first interpolated to a uniform grid of m/z values. Next, signals

corresponding to duplicate spots on the protein chip arrays are averaged. Then, the baseline

trend for this averaged signal is removed. Finally, a set of peaks is obtained for each tracing.

Thus, replacing the original signals by a set of selected features. As shown in the diagram, this

sequence of processes is iterated over each tracing. These sets of peaks are stored in an

intermediate file to be processed by operations on the right side of the diagram. The right side

of this flow chart loops over all samples. First, for each sample, the sets of peak amplitudes

are quantized. Next, the peak amplitudes are standardized by rank normalization. These

quantized amplitudes are then converted into a binary representation. The next step of bit

filtering is necessary in order to reduce noise. At this stage of processing, the data corresponding

to each mass spectrometry tracing is represented as an individual binary sequence. Finally,

binary sequences for each experimental condition for a given patient are concatenated, forming
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a binary fingerprint accurately representing the data for a patient. These binary fingerprints

form the input for pattern discovery.

Romero et al. Page 24

J Matern Fetal Neonatal Med. Author manuscript; available in PMC 2009 June 1.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



Figure 2.

Examples of raw mass spectrometry tracings of patients in the two clinical categories under

study. Panel A describes the mass spectrometry tracing of the amniotic fluid of a patient with

an episode of premature labor without inflammation who delivered at term. Panel B describes

a similar tracing in a patient with premature labor with intra-amniotic infection/inflammation.

Both tracings were generated using a CM10 (cationic chip), CHCA energy absorbing matrix

at a lower laser intensity. Each panel displays two tracings, one for each of the duplicated spots

(one tracing in red and one tracing in blue). Each sample of amniotic fluid was run in duplicate.

Note first that the mass spectrometry profile of the same fluid is very similar, suggesting a high

degree of reproducibility in both clinical categories (patients with preterm labor/delivery with

intra-amniotic infection/inflammation and preterm labor without intra-amniotic infection/

inflammation who deliver at term). There are striking differences in the mass spectrometry

profiles between the two clinical conditions. A large number of high-amplitude peaks are

apparent in the tracing shown in panel B for the patient with preterm labor/delivery, with intra-

amniotic infection/inflammation being absent in panel A. These high-amplitude peaks

correspond to proteins present in patients with preterm labor/delivery with intra-amniotic

infection/inflammation, while such proteins are either absent or in very low concentrations in

patients with preterm labor without intra-amniotic infection/inflammation who deliver at term.
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Figure 3.

Flowchart for the training/testing/validation. This diagram illustrates the cross-validation

methodology employed in our analysis. First, data for all 119 patients were randomly divided

into training/testing and validation samples. The training/testing sample consists of data for 88

patients: 44 with preterm labor/delivery with intra-amniotic infection/inflammation and 44

with preterm labor with term delivery. The validation set encompasses the remaining 31

patients: 16 with preterm labor/delivery with intra-amniotic infection/inflammation and 15

with preterm labor with term delivery. Data from the training/testing set follow the processing

indicated on the left side of this diagram. The dashed box indicates the bootstrapping procedure

of 100 repeated random draws in which 58 samples where selected for training data and 30 for

testing data. Training and testing data sets were “balanced,” with the training set containing

29 patients of each class and the testing set containing 15 of each class. Within one of these

random draws, the classification of the training subset was available to the algorithms, while

that of the test data were withheld (i.e., “blinded”). Encoding, as described in Figure 1, was

carried out on the training and testing data resulting in binary fingerprints. Pattern discovery

was performed on the training data to obtain sets of patterns for each of the two classes of data
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(preterm labor/delivery with intra-amniotic infection/inflammation and preterm labor with

term delivery). These patterns were ranked as to their relative information content with respect

to the two clinical classes. The patterns from both classes were matched against each test

instance in order to compute a score and classification for the test instance. Thus, the result of

a single random draw was a set of classifications; one for each patient in the test sample for

that draw. An entire run of 100 random draws resulted in a hypothesized predictive model,

implicitly defined in terms of the encoding parameters for that run. After several runs were

performed on the training/testing data, the one resulting in the best overall classification

accuracy was selected for prediction of the validation data set, as indicated on the right side of

this diagram.

Romero et al. Page 27

J Matern Fetal Neonatal Med. Author manuscript; available in PMC 2009 June 1.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



Figure 4.

ROC curves illustrating the relationship between sensitivity (vertical axis) and false-positive

rate (1-specificity) in the horizontal axis. The ROC curve constructed with open diamonds is

calculated using the average of over 100 random draws of the test scores received by each

patient in the training/testing data set. The ROC curve constructed with squares is calculated

from the scores obtained with the patients in the validation set. The filled symbols (squares

and diamonds) represent the sensitivity/specificity point obtained by using 0 as the score cutoff

for classification. Sensitivity and specificity are indicated in Table VI.
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Figure 5.

Results of amniotic fluid analysis (amniotic fluid white blood cell count (WBC), IL-6

concentration) plotted versus pattern-based score, which is derived from proteomic analysis

of amniotic fluid, as described in the Material and Methods section. The horizontal axis displays

the rank of the pattern-based score. The lowest score is displayed on the left, and the highest

score is displayed on the right. A negative value (to the left of 0) corresponds to patients whose

classification, according to proteomic analysis of amniotic fluid, is predicted to be in the class

of those who have preterm labor who subsequently deliver at term. A positive value (to the

right of 0) corresponds to patients whose predicted classification is preterm labor/delivery with

intra-amniotic infection/inflammation. The open boxes represent patients who have clinical
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evidence of preterm labor/delivery with intra-amniotic infection/inflammation (this diagnosis

was based on results of amniotic fluid analysis). The filled circles represent patients with an

episode of preterm labor who delivered at term. There is a strong correlation between the ranked

pattern score and the amniotic fluid WBC count (lower panel) and IL-6 concentration (upper

panel). These results indicate that low scores (derived from proteomic analysis of amniotic

fluid) are generally associated with both a low concentration of IL-6 in amniotic fluid and a

low WBC count. Importantly, misclassified patients who are identified with empty boxes to

the left of 0 had very low concentrations of IL-6 and/or amniotic fluid WBC count. This

suggests that misclassification based on proteomic analysis occurred in patients with the

mildest forms of intra-amniotic inflammation. Please note that this figure is based on all 119

patients, including the 88 in the training/testing data set and the 31 in the validation data set.
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Figure 6.

Experimental data in heat graph format. Spectra have been detrended and resampled as

described in the text. Colors indicate relative intensity of mass spectrometry signals (blue colors

are low intensity, followed by greens, then reds and, finally, whites for maximum intensity).

Each of the eight panels represents data collected with different experimental conditions which

are indicated on the right side of the figure (lo/hi laser power, CHCA or SPA EAM, and H50

or CM10 chromatographic chip), and on each panel the preterm labor/delivery with intra-

amniotic infection/inflammation patients are collected together below the preterm labor with

term delivery patients. The m/z scale is logarithmic. The triangles underneath each panel

indicate the location of features that are informative in discriminating the two patient groups.

The filled triangles show stronger features identified in the first iteration of pattern discovery,
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while the open triangles indicate weaker but still informative features identified in the second

iteration.
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Figure 7.

Clustering of instances based on the “pattern” (i.e. the 69 features identified as described in

the text corresponding to 39 distinct masses). The matrix has 119 rows (patients) by 69 columns.

The spectral values corresponding to the binary features were retrieved from the spectra and

rank normalized (as described in the text), such that the maximum value among the 119 × 9

values was 1.0 and the minimum value was 0.0. The color legend for the matrix is in the lower

right. The dendrogram of patients (on the left side) is colored by clinical class (red = preterm

labor/delivery with IAI, green = preterm labor with term delivery). The dendrogram of features

(on the top) is colored by the m/z of the parent ion of the feature, with a color legend in the

upper right.

Romero et al. Page 33

J Matern Fetal Neonatal Med. Author manuscript; available in PMC 2009 June 1.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t

Romero et al. Page 34

Table I

Example of Differential Encoding.
Condition Bit 1 Bit 2 Bit 3
Amplitude < T1 0 0 0
T1 ≤ Amplitude < T2 0 0 1
T2 ≤ Amplitude < T3 0 1 0
Amplitude ≥ T3 1 0 0
T1: low amplitude threshold.

T2: medium amplitude threshold.

T3: high amplitude threshold.

Bit 1: binary integer feature, which is set to 1 if the intensity is greater than the high amplitude threshold T3.

Bit 2: binary integer feature, which is set to 1 if the intensity is greater than the median amplitude threshold T2, but less than the high amplitude threshold

of T3.

Bit 3: binary integer feature, which is set to 1 if the intensity is greater than the low amplitude threshold T1, but less than the median amplitude threshold

of T2.
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Table II

Example of Cumulative Encoding.
Condition Bit 1 Bit 2 Bit 3
Amplitude < T1 0 0 0
T1 ≤ Amplitude < T2 0 0 1
T2 ≤ Amplitude < T3 0 1 1
Amplitude ≥ T3 1 1 1
T1: low amplitude threshold.

T2: medium amplitude threshold.

T3: high amplitude threshold.

Bit 1: binary integer feature, which is set to 1 if the intensity is greater than the high amplitude threshold T3.

Bit 2: binary integer feature, which is set to 1 if the intensity is greater than the median amplitude threshold T2, but less than the high amplitude threshold

of T3.

Bit 3: binary integer feature, which is set to 1 if the intensity is greater than the low amplitude threshold T1, but less than the median amplitude threshold

of T2.

Please note that this Table shows that bits remain set as the amplitude thresholds are exceeded.
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Table III

Demographic and clinical characteristics of the study population (Training/testing sets)

Term delivery
(n=44)

Preterm delivery with IAI
(n=44)

p

Maternal age (years) 21 (15-41) 25.5 (16-41) NS
GA at amniocentesis (weeks) 29.9 (23-34) 28.1 (22-33) NS

GA at delivery (weeks) 39 (37-42) 28.2 (22-34) <0.001
Amniocentesis-to-delivery

interval (days)
60 (34-130) 1 (0-11) <0.001

Birthweight (grams) 3185 (2580-4560) 1240 (420-2600) <0.001
AF WBC count (cells/mm3) 3 (0-33) 470 (0-11000) <0.001

AF glucose (mg/dl) 27 (0-107) 9 (0-58) <0.001
AF IL-6 (pg/ml) 426.2 (45-1212) 76485 (2863-606000) <0.001

Values are expressed as median (range).

IAI: intra-amniotic infection/inflammation; GA: gestational age; AF: amniotic fluid; WBC: white blood cell; IL: interleukin; NS: not significant.
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Table IV

Demographic and clinical characteristics of the study population (Validation set)

Term delivery
(n=15)

Preterm delivery with IAI
(n=16)

p

Maternal age (years) 23 (16-38) 29.5 (21-41) NS
GA at amniocentesis (weeks) 31 (22-33) 27.9 (22-32) NS

GA at delivery (weeks) 39.1 (37-40.7) 28 (23-33) <0.001
Amniocentesis-to-delivery

interval (days)
61 (33-130) 1.2 (0-7) <0.001

Birthweight (grams) 3200 (2620-4500) 1189 (400-1940) <0.001
AF WBC count (cells/mm3) 0 (0-35) 655 (10-11500) <0.001

AF glucose (mg/dl) 32 (17-83) 9 (0-60) <0.001
AF IL-6 (pg/ml) 505.8 (164-1144.9) 114750 (6370-303700) <0.001

Values are expressed as median (range).

IAI: intra-amniotic infection/inflammation; GA: gestational age; AF: amniotic fluid; WBC: white blood cell; IL: interleukin; NS: not significant.
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Table VI

Classification results for the Validation set.
Predicted as preterm

labor/delivery with IAI
Predicted as preterm labor

with term delivery

Preterm labor/delivery with
IAI

87.5 % (14/16) 12.5 % (2/16)

Preterm labor with term
delivery

6.7 % (1/15) 93.3 % (14/15)

IAI: intra-amniotic infection/inflammation
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Table VII

Biomarkers for patients with preterm labor/delivery with IAI
Avg m/z Tier Experimental Condition
3,380.6 1 cm10(chca), cm10(spa), h50(chca)
3,403.0 1 cm10(chca)
3,451.2 1 cm10(chca), h50(chca)
3,475.5 1 cm10(chca), h50(chca)
3,495.9 1 cm10(chca), cm10(spa), h50(chca)
3,716.9 1 h50(chca)
4,055.8 1 cm10(chca)
4,144.0 1 cm10(chca)
4,163.3 1 cm10(chca)
4,189.8 1 cm10(chca)
4,205.7 1 cm10(chca)
4,356.3 2 cm10(spa)
4,672.0 1 cm10(chca)
4,802.6 2 cm10(chca), cm10(spa)
5,232.4 2 cm10(chca)
5,430.2 1 cm10(chca) [z=2; 10,876.6 Da]
5,543.1 2 cm10(spa) [z=2; 11,094.6 Da]
5,632.8 2 h50(chca) [z=5; 28,086.5 Da]
6,354.5 1 cm10(chca)
7,869.6 1 cm10(chca)
7,891.2 2 cm10(spa)
8,020.7 2 cm10(chca)
8,409.3 1 cm10(spa)
9,383.4 2 h50(chca) [z=3; 28,086.5 Da]
10,483.6 1 cm10(chca), cm10(spa)
10,630.9 1 cm10(spa)
10,876.6 1 cm10(chca), cm10(spa), h50(spa)
10,993.6 1 cm10(spa)
11,094.6 1 cm10(spa)
12,055.2 1 cm10(chca)
12,737.1 1 h50(chca), h50(spa)
12,948.0 1 cm10(spa)
13,200.4 1 cm10(spa)
13,348.3 1 cm10(chca), cm10(spa)
13,526.3 1 cm10(spa)
16,512.9 1 h50(spa)
24,073.1 1 cm10(spa)
24,260.6 1 cm10(spa)
28,086.5 2 h50(chca)
The average m/z values in the first column describe the location of the biomarkers. Tier 1 and Tier 2 refer to the two stages of pattern discovery. Tier 1

features are more informative than those in Tier 2.
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