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Abstract

Background: (−)-Epigallocatechin-3-gallate (EGCG), the most abundant catechin found in green tea, effectively

reduces body weight and tissue and blood lipid accumulation. To explore the mechanism by which EGCG inhibits

cellular lipid accumulation in free fatty acid (FFA) induced HepG2 cell culture, we investigated the proteome change

of FFA-induced HepG2 cells exposed to EGCG using two-dimensional gel electrophoresis and mass spectrometry.

Results: In this study, 36 protein spots showed a significant change in intensity by more than 1.5-fold from the control

group to the FFA group and from the FFA group to the FFA + EGCG group. Among them, 24 spots were excised from

gels and identified by LC-MS/MS. In total, 18 proteins were successfully identified. All identified proteins were involved

in lipid metabolism, glycometabolism, antioxidant defense, respiration, cytoskeleton organization, signal transduction,

DNA repair, mRNA processing, iron storage, or were chaperone proteins. This indicated that these physiological

processes may play roles in the mechanism of inhibition of lipid accumulation by EGCG in FFA-induced HepG2 cells.

Western blotting analysis was used to verify the expression levels of differentially expressed proteins, which agree with

the proteomic results.

Conclusions: From the proteomic analysis, we hypothesized that EGCG reduced cellular lipid accumulation in

FFA-induced HepG2 cells through the activation of AMP-activated protein kinase (AMPK) resulting from the generation

of reactive oxygen species (ROS). The induction of ROS may be a result of EGCG regulation of the antioxidant defense

system. Activation of AMPK shifted some FFA toward oxidation, away from lipid and triglyceride storage, and

suppressed hepatic gluconeogenesis. The findings of this study improve our understanding of the molecular

mechanisms of inhibition of lipid accumulation by EGCG in HepG2 cells.
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Background
Nonalcoholic fatty liver disease (NAFLD), defined by ex-

cessive liver fat accumulation related to metabolic syn-

drome, is a leading cause of progressive liver disease.

NAFLD is a clinicopathological term that encompasses a

disease spectrum ranging from simple lipid accumulation

in hepatocytes (hepatic steatosis) to hepatic steatosis with

inflammation (steatohepatitis), fibrosis, and cirrhosis [1].

Excess hepatic lipid accumulation is associated with nutri-

tional factors, drugs, and multiple genetic defects in en-

ergy metabolism.

Green tea is widely consumed throughout the world, es-

pecially in East Asian countries. Research indicates that

green tea is beneficial to health and many components of

tea have specific health-promoting effects [2,3]. Studies

have suggested that (−)-epigallocatechin-3-gallate (EGCG),

the most abundant catechin found in green tea, could ef-

fectively reduce body weight and tissue and blood fat ac-

cumulation [4,5]. In high-fat-fed mice, EGCG decreased

liver weight, liver triglycerides, plasma alanine aminotrans-

ferase concentrations, lipid accumulation in hepatocytes
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[6], and reduced the development of experimental

nonalcoholic steatohepatitis through its effect on lipid me-

tabolism [7]. EGCG treatment could effectively reduce

fatty liver incidence, liver damage, and liver triglyceride

levels in Male C57BL/6J mice fed with a high-fat,

Western-style diet [8]. These beneficial effects of EGCG

are associated with decreased lipid absorption and reduced

levels of inflammatory cytokines. Previous studies have

suggested that EGCG and green tea might modulate ex-

pression of lipid metabolism-related genes. EGCG treat-

ment up-regulated several genes related to fat oxidation

and thermogenesis, including liver acyl-CoA oxidase

(AOX), medium-chain acyl-CoA dehydrogenase (MCAD),

muscle uncoupling protein-2 (UCP2) and uncoupling

protein-3 (UCP3), and fatty acid translocase [9-11]. More-

over, EGCG treatment down-regulated several genes re-

lated to fatty acid synthesis and storage in the liver and

white adipose tissue, including acetyl-CoA carboxylase

(ACC), fatty acid synthase (FAS), malic enzyme (ME),

glucose-6-phosphate dehydrogenase (G6PDH), glycerol-3

-phosphate dehydrogenase (G3PDH), and stearoyl-CoA

desaturase-1 (SCD1) [12-15].

Despite the amount of work on EGCG, there is little

proteomic information available on EGCG inhibiting lipid

accumulation in free fatty acid (FFA) induced HepG2 cells.

To investigate the inhibitory effect of EGCG on FFA-

induced lipid accumulation, HepG2 cells were exposed to

FFA co-treated with 50 μM EGCG. The proteome changes

of FFA-induced HepG2 cells were investigated by two-

dimensional gel electrophoresis (2-DE) combined with

matrix-assisted laser desorption ionization time-of-flight

mass spectrometry (MALDI-TOF/TOF MS). The object-

ive of this study was to obtain an improved understanding

of the mechanism by which EGCG inhibits lipid accumu-

lation in FFA-induced HepG2 cells.

Results
Effect of EGCG on FFA-induced intracellular lipid

accumulation in HepG2 cells

Fatty liver results from an imbalance between lipid avail-

ability and lipid metabolism. Palmitic and oleic acids are

the most abundant FFA in liver triglycerides in both nor-

mal subjects and patients with NAFLD [16]. Exposure of

HepG2 cells to exogenous FFA leads to significant intra-

cellular lipid accumulation [17]. HepG2 cells loaded with

1 mM FFA mixture (oleic acid [OA] and palmitic acid

[PA], 2:1) mimics benign chronic steatosis in humans

[18]. As shown in Figure 1A, the intracellular lipid con-

tent could be significantly lowered by treatment with

50 μM EGCG. This suggested that EGCG could signifi-

cantly inhibit FFA-induced intracellular lipid accumula-

tion in HepG2 cells. This result was also confirmed by

the quantification of intracellular triglycerides and chol-

esterol contents. In Figure 1B, EGCG treatment showed

significantly lower triglyceride levels (p ≤ 0.05). The con-

tent of cholesterol was also lowered but not significantly.

The effects of EGCG on FFA-stimulated HepG2 cell via-

bility were examined by MTT assay and annexin V stain-

ing. The results showed that cell viability was not

compromised by 50 μM EGCG treatment after 24 h of

exposure (Figure 1C and D).

Change in protein abundance in the three groups

To explore the inhibitory effect of EGCG on FFA-induced

lipid accumulation in HepG2 cells, the proteomes of the

control, FFA-induced (FFA) and FFA-induced co-treated

with 50 μM EGCG groups (FFA + EGCG) were analyzed

by 2-DE (Figure 2). Among the tested samples, more than

800 protein spots were reproducibly detected with

PDQuest 8.0.1 software on Coomassie Brilliant Blue

(CBB) G-250-stained gels. The control and FFA + EGCG

groups had 142 and 151 protein spots that showed a sig-

nificant change in expression level in when compared with

the FFA group, respectively. Moreover, 36 protein spots

showed a significant change in intensity by more than 1.5-

fold from the control group to the FFA group and from

the FFA group to the FFA + EGCG group. Among them,

24 spots that changed at least 2.0-fold were excised from

gels and identified by MALDI-TOF/TOF MS. In total, 18

protein spots were successfully identified and the results

are summarized in Table 1. The functions of the differen-

tially expressed proteins were obtained using their protein

accession numbers from the SwissProt/NCBI protein

function summary. All identified proteins in this study

were involved in multiple functional groups (Table 1), in-

cluding lipid metabolism, glycometabolism, antioxidant

defense, respiration, cytoskeleton organization, signal

transduction, DNA repair, mRNA processing, and iron

storage, or were chaperone proteins.

Validation of differentially expressed proteins by western

blotting

Western blotting analysis was performed in triplicate to

confirm the differentially expression proteins found in the

proteomic analysis. FFA-induced HepG2 cells were treated

with 50 μM EGCG for 24 h. Equal amounts of total pro-

teins from different treated cells were used for western

blotting analysis. The results (Figure 3) suggested that the

expressed levels of peroxiredoxin-6 (Prdx6) and galacto-

kinase (GALK) were significantly lower (p ≤ 0.05) and suc-

cinate dehydrogenase flavoprotein subunit (SDHA) was

significantly higher (p ≤ 0.05) in the FFA + EGCG group

compared with the FFA group. Therefore, the western blot-

ting results agree with the proteomic results.

Discussion
Lipid accumulation is the main cause of NAFLD, which

results in fatty tissue degeneration [1,19]. This lipid
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Figure 1 EGCG reduced FFA-induced intracellular lipid accumulation in HepG2 cells. Lipid content detected by a quantitative Oil Red O

dye method (A), Triglyceride and cholesterol levels in FFA-overloaded HepG2 cells in different treatment groups (B), The effect of EGCG on FFA-

overloaded HepG2 cells. Proliferation and apoptosis were assessed by MTT assay (C) and PI/annexin V staining (D).

Figure 2 Comparison of 2-D electrophoresis analysis of the proteins expressed in FFA-stimulated HepG2 cells derived from different

treatment groups. Control (A), FFA (B), FFA + EGCG (C). Proteins that exhibited a significant expression change (≥ 1.5-fold, p≤ 0.05) from the

control group to FFA group while from the FFA group to FFA + EGCG group are labeled in the figures.
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Table 1 Differentially expressed proteins identified by MS or MS/MS

Spot
no.

Protein name Accession
no.a

Theoretical
mr/pI

MOWSE
score

Sequence
coverage (%)

Protein expressionb Biological
function

A B C

402 Keratin 1 H6VRF8 66184/8.15 118 13 Cytoskeleton

1210 Lysosomal protective
protein

P10619 34065/5.49 211 11 Glycometabolism

1217 14-3-3 protein gamma P61981 28325/4.80 350 30 Signal transduction

1311 Ubiquitin thioesterase
OTUB1

Q96FW1 26652/5.22 331 31 DNA repair

2307 Serine/arginine-rich
splicing factor 7

Q16629 26224/11.77 161 15 mRNA processing

3111 Probable G-protein
coupled receptor 179

Q6PRD1 260635/5.54 63 6 Signal transduction

3208 Prohibitin Q6PUJ7 29859/5.57 154 23 Chaperone proteins

3214 C447E6.1 (Nucleotide
binding protein 1)

Q2YS46 28604/5.89 65 16 Chaperone proteins

4116 Ferritin light chain P02792 18818/5.65 158 36 Iron storage

4201 Phosphoserine
phosphatase

P78330 25163/5.53 110 22 Protein phosphorylation

4411 Short/branched chain
specific acyl-CoA
dehydrogenase,
mitochondrial

P45954 44681/5.83 69 12 Lipid metabolism
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accumulation in hepatocytes results from an imbalance

between lipogenesis and lipolysis metabolism causing

eventual lipoperoxidative stress and hepatic injury [20].

Previous studies suggest that the inhibitory action of

EGCG on lipid accumulation is mediated via the AMP-

activated protein kinase (AMPK) pathway [21-23]. Acti-

vation of AMPK can induce ATP generation through

glycolysis and β-oxidation, and suppress fatty acid and

cholesterol syntheses, and gluconeogenesis [24]. How-

ever, the inhibitory effect of EGCG on FFA-induced

intracellular lipid accumulation at the proteomic level

has not been investigated. In this study, we reported a

comprehensive proteome, which deduced the target

genes of EGCG as well as its inhibitory effect on lipid

accumulation in FFA-induced HepG2 cells. Eighteen dif-

ferentially expressed proteins were successfully identi-

fied. These proteins are involved in lipid metabolism,

glycometabolism, antioxidant defense, respiration, cyto-

skeleton organization, signal transduction, DNA repair,

Table 1 Differentially expressed proteins identified by MS or MS/MS (Continued)

5308 Serine/threonine-protein
phosphatase PP1-alpha

catalytic subunit

P62136 38229/5.94 239 29 Protein phosphorylation

5414 Galactokinase P51570 42702/6.04 131 14 Glycometabolism

6205 Peroxiredoxin-6 P30041 25133/6.60 70 18 Antioxidant defense

6211 Platelet-activating
factor acetylhydrolase
IB subunit gamma

Q15102 25832/6.33 136 26 Lipid metabolism

6403 Septin-2 Q15019 41689/6.15 123 21 Cytoskeleton

6707 Succinate dehydrogenase
[ubiquinone] flavoprotein
subunit, mitochondrial

P31040 73672/7.06 170 25 Respiration

8012 Cofilin-1 P23528 18719/8.22 128 31 Signal transduction

a SwissProt accession number.
b A: control group. B: FFA group. C: FFA + EGCG (50 μM) group.

Figure 3 Validation of Prdx6, GALK, and SDHA expression

levels in HepG2 cells by Western blotting. The expression levels

of Prdx6, GALK and SDHA in the control, FFA and FFA + EGCG

groups were detected by Western blotting. β-actin was used as a

loading control. Similar results were found in the three independent

experiments and the representative results are shown.
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mRNA processing, and iron storage, or are chaperone

proteins. This indicates that these physiological processes

may play a role in the mechanism by which EGCG inhibits

cellular lipid accumulation in FFA-induced HepG2 cells.

Proteins involved in redox regulation and energy

metabolism

After treatment with EGCG, two differentially expressed

proteins related to redox and respiratory regulation were

identified in HepG2 cells. Prdx6 is the sixth mammalian

member of the peroxiredoxin family, which has an im-

portant role in antioxidant defense [25,26]. Several stud-

ies reported that an increase in reactive oxygen species

(ROS) could lead to AMPK activation [27,28]. EGCG

significantly induced generation of ROS and reduced

glutathione (GSH) in cells [21-23]. AMPK is thought to

be a novel target for the treatment of obesity and type II

diabetes [29]. Activation of AMPK in liver and skeletal

muscle leads to the stimulation of fatty acid oxidation

and inhibition of lipogenesis, glucose production and

protein synthesis [30,31]. However, these effects could

be eliminated by ROS scavenger, N-acetylcysteine, treat-

ment [22,23,28]. In our proteomic experiment, Prdx6

was down-regulated by EGCG treatment. This may be a

reason for the increasing ROS levels that lead to AMPK

activation, preventing lipid accumulation in cells. Suc-

cinate dehydrogenase (SDH or ubiquinone) is an enzyme

that controls the transcription of metabolism-related

genes in mitochondria and promotes metabolism of glu-

cose and lipids [32,33]. SDH is related to oxidative me-

tabolism and is an indicator of oxidative capacity in cells

[34]. Prior studies have found that a reduction in oxida-

tive enzymes is correlated with a reduced capacity for

lipid oxidation and increased risk for obesity [35,36].

The mRNA expression levels of SDH are reduced in

mice with type II diabetes mellitus and obesity [37]. Sev-

eral studies have also shown that weight loss and exer-

cise could result in a significant increase in SDH activity

[38,39]. Our proteomic analysis showed that SDHA was

up-regulated by EGCG treatment in FFA-induced

HepG2 cells, indicating that EGCG increased lipid oxi-

dation by enhancing energy expenditure and fat oxida-

tion in the mitochondria of HepG2 cells.

Proteins involved in lipid metabolism

Proteins involved in lipid metabolism were changed sig-

nificantly by EGCG treatment in HepG2 cells. Platelet-

activating factor acetylhydrolase (PAFAH), a unique

member of the phospholipase A2 superfamily, is charac-

terized by its ability to specifically hydrolyze platelet-

activating factor (PAF) and glycerophospholipids [40].

PAF is a potent pro-inflammatory phospholipid that ac-

tivates cells involved in inflammation and stimulates

ROS generation [41-43]. Down-regulation of platelet-

activating factor acetylhydrolase IB subunit gamma

(PAFAH1B3) by EGCG treatment might lead to an in-

crease of PAF, which could stimulate the generation of

ROS and activating AMPK in HepG2 cells. Short/

branched-chain acyl-CoA dehydrogenase (SBCAD) cata-

lyzes the first step in the mitochondrial β-oxidation

of L-2-methylated short acyl-CoA compounds [44].

SBCAD deficiency is characterized by accumulation of 2-

methylbutyrylglycine (2MBG), which induced an increase

of lipid oxidation and a decrease of antioxidant defenses

(decreased GSH) in rat [45]. In our proteomic experiment,

SBCAD was down-regulated in the EGCG-treated group.

This might result in a decrease of antioxidant defense and

a high level of cellular ROS, which could activate AMPK

to prevent cellular lipid accumulation.

Proteins involved in glycometabolism

Two proteins involved in glycometabolism were down-

regulated by EGCG treatment. GALK catalyzes the phos-

phorylation of α-galactose to galactose-1-phosphate in the

second step of the Leloir pathway, a metabolic pathway

found in most organisms for the catabolism of β-galactose

to glucose-1-phosphate [46]. Glucose-1-phosphate could

be metabolized to glucose-6-phosphate providing sub-

strate for the pentose phosphate pathway, which generates

ribose-5-phosphate and NADPH for the biosynthesis of

fatty acids and sterols [47]. A study reported that unsatur-

ated fatty acids could increase the activation of galacto-

kinase and galactose-1-phosphate uridyltransferase, and

stimulate sterol biosynthesis from galactose [48]. Down-

regulation of galactokinase reduces ribose-5-phosphate

and NADPH from the pentose phosphate pathway,

resulting in a reduction of the biosynthesis of fatty acids

and sterols in FFA-induced HepG2 cells. Lysosomal pro-

tective protein (PPCA) appears to be essential for the ac-

tivity of β-galactosidase, which catalyzes the hydrolysis of

β-galactosides into β-galactose and glucoside. PPCA asso-

ciates with β-galactosidase and exerts a protective function

necessary for its stability and activity [49]. Down-

regulation of PPCA could reduce the activity of β-

galactosides and decrease β-galactose for the Leloir

pathway, inhibiting the biosynthesis of fatty acids and ste-

rols from galactose [47,48].

Proteins involved in biological regulation and signal

transduction

Some proteins involved in biological regulation and sig-

nal transduction were also identified in HepG2 cells, in-

cluding serine/threonine protein phosphatase-alpha

catalytic subunit (PP-1A), phosphoserine phosphatase

(PSP), 14-3-3 protein gamma and prohibitin (PHB). PP-

1A and PSP belong to the phosphoprotein phosphatase

family, which remove the phosphate from the serine or

threonine residues of phosphoproteins [50]. Previous
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study reported that a glucose-induced activation of the

transcription of the FAS gene was markedly reduced by

okadaic acid, an inhibitor of protein serine/threonine

phosphatases 1 (PP1) and PP2A, and by AICAR, a cell-

permeable activator of the AMPK [51]. These results in-

dicated that the reduction of the FAS gene involves a

phosphorylation/dephosphorylation mechanism and

AMPK activation. Therefore, down-regulation of PP-1A

and PSP might indicate an inhibition of lipid biosyn-

thesis and an activation of AMPK in HepG2 cells by

EGCG treatment. 14-3-3 protein gamma belongs to the

14-3-3 protein family, which has the ability to bind many

functionally diverse signaling proteins, including kinases,

phosphatases, and transmembrane receptors [52,53].

The transcriptional co-activator transducer of regulated

CREB activity 2 (TORC2) is a pivotal component of glu-

coneogenesis [54]. Phosphorylated TORC2 is seques-

tered in the cytoplasm via a phosphorylation-dependent

interaction with 14-3-3 proteins and degraded by 26S

proteasome to inhibit the gluconeogenic program [55].

A report suggested that inhibition of enhanced gluco-

neogenesis induced by high-fat and high-fructose diet

could improve lipid metabolism and hepatic steatosis in

mice [56]. Thus, up-regulation of 14-3-3 protein by

EGCG treatment in FFA-induced HepG2 cells might in-

dicate that the hepatic steatosis induced by overloaded

FFA was improved through inhibition of gluconeogene-

sis. PHB comprise two evolutionarily conserved proteins,

prohibitin-1 (PHB1) and prohibitin-2 (PHB2), and are

present in a high molecular-weight complex in the inner

membrane of mitochondria [57,58]. PHB1 decreased

insulin-stimulated oxidation of glucose and fatty acids,

implying that PHB1 may play a role in promoting fat ac-

cumulation [59]. A microarray analysis showed that the

expression levels of PHB were increased during 3T3-L1

cell adipogenesis [60]. Several studies showed that deple-

tion of PHB1 or PHB2 in C. elegans or 3T3-L1 cells

could significantly decrease adipose accumulation and

adipogenesis [61]. In the current study, EGCG decreased

the expression of PHB, which might be one of the rea-

sons that EGCG could inhibit lipid accumulation in

FFA-induced HepG2 cells.

Conclusions
In summary, this study demonstrates that EGCG can sig-

nificantly suppress the lipid accumulation in FFA-induced

HepG2 cells. Using a proteomic approach, we identified

18 differentially expressed proteins responsive to EGCG

treatment involving multiple cellular processes. From the

proteomic analysis, we supposed that EGCG reduced cel-

lular lipid accumulation in FFA-induced HepG2 cells

through the activation of AMPK resulting from the gener-

ation of ROS. The induction of ROS may be because

EGCG regulated the antioxidant defense system in HepG2

cells (Figure 4). Activation of AMPK shifted some FFA to-

ward oxidation, away from lipid and triglyceride storage,

and suppressed hepatic gluconeogenesis in HepG2 cells.

Findings of this study provide information to improve our

understanding of the molecular mechanisms of the inhib-

ition of lipid accumulation by EGCG in HepG2 cells.

Methods
Materials

All chemicals used were of analytic grade. EGCG was

obtained from Sigma (St. Louis, MO, USA), the purity of

EGCG was ≥95%. Oleic acid and palmitic acid were also

obtained from Sigma. Antibodies to β-actin and Prdx6

were obtained from GeneTex (Irvine, CA, USA). Anti-

bodies to SDHA and GALK were obtained from Abcam

(Cambridge, UK).

Figure 4 A simple model of the proposed mechanism by which EGCG inhibits lipid accumulation in FFA-induced HepG2 cells.

Arrowheads indicate the direct or indirect interactions. The up-regulated proteins are marked with red and the down-regulated proteins are

marked with blue.
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Cell culture and EGCG stimulation

Experiments were approved by the ethics committee of

Tsinghua University. HepG2 cells (human liver hepato-

cellular carcinoma cell line) were obtained from the cell

bank of the Type Culture Collection of Chinese Acad-

emy of Sciences, and were cultured in DMEM medium

(Thermo, South Logan, UT, USA) with 10% fetal calf

serum, 100 U/mL penicillin, 100 μg/mL streptomycin,

and 2 mM L-glutamine and kept at 37°C in a humidified

atmosphere (Nuaire, Plymouth, MN, USA) with 5%

CO2. To induce fat-overloading, HepG2 cells were ex-

posed to 1 mM of FFA mixture (OA / PA, 2:1) mixed

with 1% FFA-free bovine serum albumin [17,28,62].

Stock solutions of 50 mM FFA were prepared as

reported previously [63]. When the cells reached 70%

confluence, they were incubated in serum-free medium

for 24 h before treatments. Then, the cells were stimu-

lated with 1 mM FFA and co-treated with EGCG

for 24 h.

Cell proliferation and apoptosis assay

The effect of EGCG on cell proliferation was assessed

using MTT assay as previously reported [64]. Briefly,

HepG2 cells were plated in 96-well plates (5 × 103 cells/

well) and treated with 1 mM FFA with various concen-

trations of EGCG for 24 h. Then cells were incubated

with 100 μL MTT solution (0.5 mg/mL MTT in PBS

buffer) for 4 h. The absorbance was measured with a

Multiskan MK3 (Thermo) at 490 nm. Apoptotic cells

were detected using flow cytometry with PI/annexin V

staining [64]. Cells were seeded in six-well plates (4 ×

106 cells/well) and co-incubated with 0, 50, and 100 μM

of EGCG and 1 mM FFA for 24 h. After harvesting with

0.25% trypsin, cells were resuspended with 200 μL bind-

ing buffer and incubated with 10 μL Annexin V-FITC

and 5 μL PI for 15 min at room temperature. Sample so-

lutions were adjusted to 500 μL using binding buffer and

analyzed with a FACScan flow cytometer (Becton Dick-

inson Biosciences, San Jose, CA, USA) within an hour of

sample preparation. The data were analyzed by

Modfit3.0 (Verity Software House, Topsham, ME, USA).

All treatments were performed in triplicate.

Oil Red O staining

The Oil Red O (ORO) staining was according to

Amacher et al. [65,66]. Briefly, the cells were washed

twice with ice-cold PBS and fixed with 10% formalin for

1 h, and stained with Oil Red O solution for 2 h at room

temperature. After staining, cells were washed twice with

distilled water to remove unbound dye. To quantitate

the intracellular lipid content levels, isopropanol was

added to each sample shaken at room temperature for

5 min, and samples were read spectrophotometrically

at 520 nm.

Triglycerides and cholesterol assay

For lipidic determinations, homogenates from cells were

extracted according to a Heider et al. [67]. Briefly, each

sample was homogenized with isopropyl alcohol. The

resulting mixture was shaken at room temperature for

1 h and then centrifuged at 1200 × g for 10 min. The

supernatant was collected for analysis of hepatic TG and

TC content. The residue was dissolved in 0.1 M sodium

hydroxide and an aliquot was taken for protein determin-

ation with an RC DC Protein Assay Kit (Bio-Rad,

Hercules, CA, USA). Triacylglycerol and cholesterol were

measured using enzymatic method kits (Cell Biolabs, Inc.

San Diego, CA, USA) according to the manufacturer’s

instructions.

Protein extract and sample preparation for 2-DE

The HepG2 cells were harvested by trypsinization and

washed twice with ice-cold PBS buffer. The cells were

lysed in lysis buffer (7 M urea, 2 M thiourea, 4% [w/v]

CHAPS, 65 mM DTT, 2% [v/v] Bio-Lyte pH [3-10], 2%

protease inhibitor cocktail), mixed by vortexing, kept in

an ice bath for 2 h, then sonicated in an ice bath. The

sample was clarified by centrifugation at 15000 × g for

1 h at 4°C, and the supernatants stored at −80°C until

use for 2-DE. Protein content was quantified using the

RC DC Protein Assay Kit (Bio-Rad).

2-DE and image analysis

About 1.3 mg protein dissolved in 350 μL rehydration

buffer was applied to IPG strips (17 cm, pH 3–10, Bio-

Rad), which was allowed to rehydrate for 13 h at 50 V

(20°C). Subsequently, isoelectric focusing (IEF) was

performed at using a Protean IEF Cell (Bio-Rad) under

the following conditions: 250 V for 1 h with a slow in-

crease in voltage, 500 V for 1 h with a slow increase in

voltage, 1000 V for 1 h with a slow increase in voltage,

10000 V for 5 h with a linear increase in voltage, and

maintained at 10000 V until 60000 Volt-hours (Vh) was

reached. After IEF, the strips were equilibrated for

15 min in equilibration buffer I (0.375 M Tris–HCl pH

8.8, 6 M urea, 2% SDS, 20% glycerol, 1% DTT), then re-

equilibrated in buffer II containing 2.5% iodoacetamide

instead of DTT for 15 min. The strips were transferred

onto 12% polyacrylamide gels for SDS-PAGE. Electro-

phoresis was performed using the PROTEAN II xi Cell

system (Bio-Rad) at 10 mA per gel for 30 min, followed

by 30 mA until the bromophenol blue marker reached

the end of the gel. Gels were run in triplicate for each

sample. The gels were stained with modified colloidal

CBB G-250 [68] and were scanned using Quantity One

4.6.9 (Bio-Rad) with a Bio-Rad GS800 scanner. Image

and statistical analysis was performed with PDQuest

8.0.1 (Bio-Rad) as previously reported [69]. In the quan-

titative analysis, 1.5 and 0.5 were chosen as the upper
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and lower limits, respectively. Student’s t-test and a sig-

nificance level of 95% were used for the statistical ana-

lysis of the gels. Each sample was performed in triplicate

gels.

Protein in-gel digestion and identification

Protein spots were manually excised from the gel, and

digested as previously reported [69]. Mass spectrometric

analysis was performed with an Ultraflex MALDI TOF/

TOF mass spectrometer (Bruker Daltonik, Bremen,

Germany), under the control of FlexControl™ 2.2 soft-

ware (Bruker Daltonik GmbH). The TOF spectra were

recorded in the positive ion reflector mode in a mass

range from 800–4000 Da. Ten subspectra with 30 shots

per subspectrum were accumulated to generate one

main TOF spectrum. After automated assessment of the

search results with MASCOT software (Matrix Science,

London, UK), the samples not unambiguously identified

by PMF were automatically submitted to MS/MS ana-

lysis using the LIFT technology in TOF/TOF. A max-

imum of three strongest peaks of the TOF MS spectrum

per sample were chosen for MS/MS analysis. Three

subspectra with 50 shots per subspectrum for precursor

ions and 15 subspectra with 50 shots per subspectrum

for fragment ions were accumulated to produce one

main MS/MS spectrum. After the automated analysis,

remaining unidentified samples were manually analyzed.

Database searching

Protein identification from MS/MS sequencing spectra

was accomplished using the MASCOT database search

engine (Matrix Science, London, UK). The searching pa-

rameters were set as follows: taxonomy, Homo sapiens;

database, NCBInr/Swiss-Prot; enzyme, trypsin; fixed

modifications, carbamidomethyl (C); variable modifica-

tions, oxidation (M); no restrictions on protein mass;

allow up to one missed cleavages. Mass values, Monoiso-

topic; Peptide Mass Tolerance was set as ±50 ppm; Frag-

ment Mass Tolerance was set as ±0.5 Da. Positive

protein identification was based on standard MASCOT

criteria for statistical analysis of the LC-MS/MS data.

The peptide assignments in the database search results

were manually inspected for validation.

Western blotting analysis

The HepG2 cells were harvested by trypsinization and

washed twice with ice-cold PBS buffer. The cells were

lysed in RIPA buffer (25 mM Tris–HCl pH 7.6, 150 mM

NaCl, 1% NP-40, 1% sodium deoxycholate, 0.1% SDS,

2% protease inhibitor cocktail). Equal amounts of pro-

tein were separated on a 12% SDS-polyacrylamide gel,

blotted onto a PVDF membrane, which was blocked for

1 h at 25°C with 5% wt/vol BSA/TBST (10 mM Tris

HCl, pH 7.4, 140 mM NaCl, 0.1% Tween-20) and then

incubated with the primary antibody for Prdx6 (1:3000),

SDHA (1:1000) and GALK (1:1000) at 4°C overnight.

After washing with TBST, the membranes were incu-

bated with the appropriate secondary antibodies for 1 h

at 37°C and detected by immuno-staining. After the

membranes were scanned, the signal intensity of each

band was determined using FluorChem FC2 (Alpha

Innotech Co., Ltd, San Leandro, CA, USA).

Statistical analysis

All results were expressed as mean ± SD and analyzed

by student’s t-test. A p ≤ 0.05 was considered to be statis-

tically significant.
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