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Abstract

Introduction Despite intensive study of the mechanisms of
chemotherapeutic drug resistance in human breast cancer, few
reports have systematically investigated the mechanisms that
underlie resistance to the chemotherapy-sensitizing agent tumor
necrosis factor (TNF)-α. Additionally, the relationship between
TNF-α resistance mediated by MEK5/Erk5 signaling and
epithelial-mesenchymal transition (EMT), a process associated
with promotion of invasion, metastasis, and recurrence in breast
cancer, has not previously been investigated.

Methods To compare differences in the proteome of the TNF-α
resistant MCF-7 breast cancer cell line MCF-7-MEK5 (in which
TNF-α resistance is mediated by MEK5/Erk5 signaling) and its
parental TNF-a sensitive MCF-7 cell line MCF-7-VEC, two-
dimensional gel electrophoresis and high performance capillary
liquid chromatography coupled with tandem mass spectrometry
approaches were used. Differential protein expression was

verified at the transcriptional level using RT-PCR assays. An
EMT phenotype was confirmed using immunofluorescence
staining and gene expression analyses. A short hairpin RNA
strategy targeting Erk5 was utilized to investigate the
requirement for the MEK/Erk5 pathway in EMT.
Results Proteomic analyses and PCR assays were used to
identify and confirm differential expression of proteins. In MCF-
7-MEK5 versus MCF-7-VEC cells, vimentin (VIM), glutathione-
S-transferase P (GSTP1), and creatine kinase B-type (CKB)
were upregulated, and keratin 8 (KRT8), keratin 19 (KRT19) and
glutathione-S-transferase Mu 3 (GSTM3) were downregulated.
Morphology and immunofluorescence staining for E-cadherin
and vimentin revealed an EMT phenotype in the MCF-7-MEK5
cells. Furthermore, EMT regulatory genes SNAI2 (slug), ZEB1
(δ-EF1), and N-cadherin (CDH2) were upregulated, whereas E-
cadherin (CDH1) was downregulated in MCF-7-MEK5 cells

CHAPS: 3-[(3-Cholamidopropyl)dimethylammonio]-1-propanesulfonate; CKB: creatine kinase B-type; 2-DE: two-dimensional electrophoresis; DTT: 
dithiothreitol; EMT: epithelial-mesenchymal transition; Erk: extracellular signal-regulated kinase; GSTM3: glutathione-S-transferase Mu 3; GSTP1: glu-
tathione-S-transferase P; HSP: heat shock protein; IPG: immobilized pH gradient; KRT: keratin; MAPK: mitogen-activated protein kinase; MEK: 
mitogen-activated protein kinase kinase; PBS: phosphate-buffered saline; RT-PCR: reverse transcription polymerase chain reaction; shRNA: short 
hairpin RNA; VIM: vimentin; ZEB1: δ-EF1.
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versus MCF-7-VEC cells. RNA interference targeting of Erk5
reversed MEK5-mediated EMT gene expression.
Conclusions This study demonstrates that MEK5 over-
expression promotes a TNF-α resistance phenotype associated
with distinct proteomic changes (upregulation of VIM/vim,

GSTP1/gstp1, and CKB/ckb; and downregulation of KRT8/
krt8, KRT19/krt19, and GSTM3/gstm3). We further
demonstrate that MEK5-mediated progression to an EMT
phenotype is dependent upon intact Erk5 and associated with
upregulation of SNAI2 and ZEB1 expression.

Introduction
Drug resistance represents a major obstacle to successful

therapy of breast cancer, a leading cause of death among

women in Western countries [1]. It is well known that several

ATP-binding cassette transporters, such as MDR (multidrug

resistance), MRP (multidrug resistance associated protein),

and BCRP (breast cancer resistance protein), are related to

the development of drug resistance in breast cancers [2-4].

However, many other proteins – including glutathione-S-trans-

ferase [5], β2-microglobulin [6], heat shock protein (HSP)27

[7,8], 14-3-3σ [9,10], and vimentin [11] – have also been

implicated in breast cancer drug resistance. These findings

were based upon studies using various chemoresistant breast

cancer cell lines such as adriamycin, verapamil, tamoxifen, vin-

blastine, and paclitaxel resistant MCF-7 cells. Although some

aspects of the mechanisms of drug resistance have been char-

acterized, the highly variable response to chemotherapy in the

treatment of breast cancers remains poorly understood. Eluci-

dating these drug resistance mechanisms is essential for

improving tumor responses to clinical chemotherapies.

A growing area of interest that may reveal one such mecha-

nism is the association of drug resistance with epithelial-mes-

enchymal transition (EMT) in cancer. EMT is the process by

which adherent epithelial cells convert to motile mesenchymal

cells and is essential in embryonic development. However, it

appears that aberrant activation of EMT occurs in cancer pro-

gression [12], and is involved in highly aggressive, poorly dif-

ferentiated breast cancers with increased potential for

metastasis and recurrence [13]. EMT has been linked to

resistance to various drugs in cancer, including tamoxifen

resistance in breast carcinoma cells [14], paclitaxel resistance

in epithelial ovarian carcinoma cells [15], oxaliplatin resistance

in colorectal cancer cells [16], gemcitibine resistance in pan-

creatic tumor cells [17], cetuximab resistance in hepatoma

cells [18], and erlotinib resistance in non-small-cell lung carci-

nomas [19]. The activities of several genes are known to con-

tribute to EMT, including decreased expression of E-cadherin,

and increased expression of snail, slug, and δ-EF1 (ZEB1)

[20]. Increased expression of vimentin [21] and N-cadherin

[22] are also seen in EMT. Evaluation of these markers in a

drug-resistant cell line may shed light on the relationship

between EMT and drug resistance.

TNF-α is a multifunctional cytokine that elicits a variety of bio-

logic responses, such as inflammation and apoptosis [23].

Additionally, TNF-α has been shown to induce EMT [24,25].

Although TNF-α is not currently an anticancer agent for treat-

ment of human cancers (because of side effects such as nor-

mal cell toxicity), low doses of TNF-α can markedly sensitize

cancer cells to chemotherapy-induced apoptosis [26,27]. We

previously demonstrated that MCF-7 cell line variants exhibit

differences in sensitivity to TNF-α and apoptosis induced by

taxol and doxorubicin [28-30]. Specifically, we demonstrated

that apoptosis sensitive MCF-7-N cells (MCF-7 N variant)

exhibited distinct differences in cell survival and apoptotic sig-

naling when compared with inherently resistant MCF-7-M cells

(MCF-7 M variant) [28]. We further demonstrated that apop-

tosis sensitive cells (MCF-7-N) could be driven to a resistant

phenotype through prolonged exposure to increasing concen-

trations of TNF-α, leading to a stable, apoptosis-resistant phe-

notype (MCF-7-TNR) that was in part dependent upon

mitogen-activated protein kinase (MAPK) and nuclear factor-

κB signaling [29]. Gene expression profiling revealed that

MAPK kinase (MEK)5 was over-expressed in the TNF-α resist-

ant MCF-7-M cells versus the TNF-α sensitive MCF-7-N cells

[31]. A similar upregulation of MEK5 in resistant cells was

independently described in MCF-7-F cells, which developed

resistance to the pure anti-estrogen fulvestrant through pro-

longed growth in fulvestrant-containing media [32]. These

studies demonstrate a potential role for the MEK5 pathway in

the regulation of progression to drug resistance in breast can-

cer.

The MEK5/extracellular signal-regulated kinase (Erk)5 tandem

is a component of MAPK cascades that mediate signals from

various extracellular stimuli to the nucleus and regulate most

cellular processes [33], including gene expression, prolifera-

tion, apoptosis, and motility [34,35]. MAPK signaling may also

play a role in EMT [12,36]. Although MEK5/Erk5 signaling has

not been extensively investigated, several studies suggest a

role in cancer progression. For example, MEK5/Erk5 signaling

has been demonstrated in prostate and breast cancer prolifer-

ation and tumorigenesis [37,38]. Furthermore, inhibition of

MEK5/Erk5 signaling in the MDA-MB-231 cell line, an aggres-

sive breast cancer cell line with an EMT phenotype, induces

apoptosis [39].

Based on these findings, which strongly indicate that MEK5/

Erk5 signaling may mediate cancer progression to an aggres-

sive phenotype, we further explored the involvement of MEK5/

Erk5 signaling in resistance to apoptosis as well as EMT. To

test the role played by MEK5/Erk5 activation in progression of

breast carcinoma cells to a resistant phenotype, MCF-7 cells

(N variant) were used to stably express a constitutive active

MEK5 construct. These MCF-7-MEK5 cells exhibit resistance
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to TNF-α as compared with stable vector cells (MCF-7-VEC).

Proteomic analysis based on two-dimensional electrophoresis

(2-DE) and various mass spectrometric techniques has been

employed in several studies of drug resistance of breast can-

cers [8-10,40]. In this study we used a proteomics approach

to define mechanisms of the MEK5 signaling cascade in the

regulation of drug resistance. The differentially expressed pro-

teins identified in proteomic analyses were confirmed at the

gene expression level using reverse transcription RT-PCR

assays. Results using immunofluorescence staining and gene

expression analysis were consistent with an EMT phenotype in

the MCF-7-MEK5 cells. These findings identify a potential role

for the MEK5 pathway in coordinately promoting both an EMT

phenotype and TNF-α resistance in breast cancer.

Materials and methods
Stable transfection of constitutively active MEK5

The DNA expression-construct pCMV-HA-CA-MEK5 [41] was

used to derive MEK5 over-expressing variants of MCF-7 (N

variant) cell line and selected with G418 (Gibco, Paisley, UK).

A total of 5 × 106 MCF-7 cells were plated in 10 mm dishes in

mammary epithelial growth medium and 10% Dulbecco's

modified Eagle's medium, and incubated in 5% carbon dioxide

at a temperature of 37°C. The following day, cells were co-

transfected with pCMV-HA-CA-MEK5/pCMVdsRED-Neo at a

4:1 ratio using FuGENE (Roche, Nutley, NJ), in accordance

with the manufacturer's instructions. Stable transfectants

were selected by culturing cells in the presence of 200 μg/ml

G418 (drug levels maintained during culture of cell stocks but

removed for individual experiments). Medium was removed

and replaced with fresh medium every 3 days until visible

clones appeared. Individual clones were isolated using a ster-

ile cloning ring coated with petroleum jelly and removed with

phosphate-buffered saline (PBS) containing 1 mmol/l EDTA.

These clones, called MCF-7-MEK5, were transferred to 24-

well plates and allowed to grow as separate clones in mam-

mary epithelial growth medium and 10% Dulbecco's modified

Eagle's medium. MCF-7-VEC was established simultaneously

as a stable, vector control cell clone. For RNA interference

studies we used an Erk5 targeting pSUPER-EGFP Polymera-

seIII driven RNA interference system (generously provided by

Dr Frank E Jones, University of Colorado, Denver, CO, USA).

Optimized hairpin RNA interference sequences for Erk5 were

identified using OligoEngine software (Oligoengine, Seattle,

WA, USA). The pSuper Erk5 EGFP clone was generated by

ligating the annealed oligo with SalI-BglII digested pSuper-

EGFP vector and confirmed by sequencing.

Western blotting assay for MEK5 and Erk5

MCF-7-MEK5 and MCF-7-VEC cells were characterized by

immunoblotting with antibodies against MEK5 and Erk5.

Western blots of crude whole cell extracts were performed

using standard procedures. About 5 × 106 cells were har-

vested in sonicated buffer for 30 seconds and collected by

centrifugation at 1,000 g for 20 minutes. Fifty micrograms of

protein was resuspended in sample loading buffer, boiled for

5 minutes, and electrophoresed on polyacrylamide gel. The

proteins were transferred electrophoretically to a nitrocellu-

lose membrane, blocked with PBS-Tween (0.05%) in 5% low-

fat dry milk solution at room temperature for 1 hour, incubated

with specific antibodies (overnight at 4°C), and then washed

in PBS-Tween solution three times. Then the immunoreactive

proteins were visualized using an electrogenerated chemilumi-

nescence system (Amersham, Arlington Heights, IL, USA) and

recorded by fluorography on Hyperfilm (Amersham), in

accordance with the manufacturer's instructions.

Colony survival assay for TNF-α in the established MCF-

7-MEK5 cells

Clonogenicity assays were performed as we have described

previously [42,43]. For TNF-α colony survival assay, MCF-7-

MEK5 and MCF-7-VEC cells were plated and treated with dif-

ferent concentrations of TNF-α (0 to 100 ng/ml) for 18 hours.

Cells were then cultured in fresh media without TNF-α and

observed daily for 1 to 2 weeks. Colonies were fixed, stained

with crystal violet and counted. Data are represented as per-

centage clonogenic survival from untreated control cells

(100%) ± standard error of the mean (n = 3).

Immunofluorescence analysis of EMT markers and 

morphology

The expression levels of an epithelial cell marker (E-cadherin)

and a mesenchymal cell marker (vimentin) were assessed by

indirect immunofluorescence using specific antibodies (E-

cadherin: CS-3195 [Cell Signaling Technology, Beverly, MA,

USA]; vimentin: V6630 [Sigma, St. Louis, MO, USA]). The dis-

tribution of filamentous actin (F-actin) was visualized using

Alexa 488 conjugated phalloidin (Invitrogen, Carlsbad, CA,

USA) [44]. Briefly, MCF-7, MCF-7-MEK5, and MDA-MB-231

cells were cultured in eight-well chamber slides for 48 hours.

The cells were fixed in 4% paraformaldhyde/PBS for 10 min-

utes followed by incubation with the primary antibodies and

phalloidin at the desired dilution (E-cadherin: 1:50 dilution;

vimentin: 1:50 dilution; phalloidin: 1:100 dilution). Alexa 594

and 488 conjugated secondary antibodies (1:1,500 dilution)

were used to detect E-cadherin and vimentin, respectively.

The nucleus was stained using DAPI containing VectorShield

mounting medium (Vector Laboratories, Burlingame, CA,

USA). The digital images were captured using Nikon Eclipse

80i along with the accompanying program IPLab, version

3.6.5 (Nikon Inc., Melville, NY, USA).

2-DE and image analysis

A total of 1 × 107 cells for each cell line (MCF-7-MEK5 and

MCF-7-VEC) were collected and homogenized in lysis buffer

(7 mol/l urea, 2 mol/l thiourea, 4% 3-[(3-Cholamidopro-

pyl)dimethylammonio]-1-propanesulfonate (CHAPS), and 50

mmol/l dithiothreitol (DTT)) containing protease inhibitor cock-

tail (Sigma), and sonicated three times for 7 seconds each.

The method of Bradford (BioRad, Hercules, CA, USA) was
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used to detect the protein concentrations, and the samples

were stored at -70°C for further analyses.

First dimensional electrophoresis was performed using a Pro-

tean iso-electronic focus cell unit (BioRad). Precast 11 cm

immobilized pH gradient (IPG) strips with pH ranges 5 to 8

were obtained from BioRad. Lysates were thawed and mixed

(3:1) with rehydration solution (7 mol/l urea, 2 mol/l thiourea,

4% CHAPS, 50 mmol/l DDT, 5% Triton ×100, 5%

ampholytes, and 0.01% of bromophenol blue). Two hundred

microliters (approximately 180 μg) of protein sample mixture

was loaded to each of the IPG strips. The strips were rehy-

drated with the sample mixture and overlaid with a layer of min-

eral oil overnight (16 hours). Iso-electric focusing was carried

out in three steps under gradient mode: 250 V for 20 minutes,

linear ramp; 8,000 V for 2.5 hours, linear ramp; and 8,000 V,

rapid ramp to reach 20,000 V-hours.

The second dimensional electrophoresis was carried out in a

BioRad Criterion electrophoresis cell system. IPG strips were

equilibrated in two steps: 20 minutes in 60 mmol/l DTT and 20

minutes in 200 mmol/l of iodoacetamide; both were dissolved

in equilibration buffer (6 mol/l urea, 1% SDS, 30% glycerol,

and 40 mmol/l Tris-base). IPG strips were sealed on the top of

SDS gels (Criterion 8% to 16% Tris-HCl Gel obtained from

BioRad) with 0.5% agarose. SDS-PAGE was performed at a

constant voltage of 200 V for 55 minutes. Gels were washed

with 200 ml de-ionized water three times for 5 minutes each.

Bio-safe staining solution (50 ml; BioRad) was added to each

gel, and the gels were then placed on a shaker for 2 hours. The

staining solution was discarded and the stained gels were

rinsed with de-ionized water (3×, 30 minutes per wash).

Stained gels were scanned with a Gel Doc-XR image system

(BioRad) and analyzed with the PDQuest software (version

8.01) (Bio-Rad, Hercules, CA, USA). The proteins of interest

were marked for excision. The spots were excised from the

gels by a Quest Spot cutter (BioRad), and digested with

trypsin (Promega, Madison, WI, USA) in 25 mmol/l ammonium

bicarbonate overnight at 37°C to release tryptic peptides

using a Progest digestion system (Genomic Solutions, Ann

Arbor, MI, USA). Recovered peptides were dried in a Lab-

conco NewCentriVap concentrator (Labconco, Kansas City,

MO, USA).

Liquid chromatography tandem mass spectrometry 

analyses and data processing

The dried protein digests from the 96-well plates were ana-

lyzed using an LC-Nanospray-MSn system (Thermo Scientific,

Waltham, MA, USA), equipped with a Finnigan Micromass AS

automatic sampling system. A BioBasic C18 PicoFrit Column

(75 μm × 10.2 cm, tip 15 μm; New Objective, Woburn, MA,

USA) was used for separation. The mobile phases consisted

of (A) 0.1% formic acid in water and (B) 0.1% formic acid in

acetonitrile, at a linear gradient from 0% B to 35% B within 35

minutes, along with a gradient from 35% B to 98% B within 8

minutes, kept at 98% B for 2 minutes and then back to 0% B

within 2 minutes. The total acquisition time was 60 minutes for

each run. The tandem mass spectrometry spectra were ana-

lyzed against the ipi.human.v3.27 database using SEQUEST

software (Thermo Scientific, Waltham, MA, USA), and the

results were tabulated for each identified protein.

Reverse transcription polymerase chain reaction

Total RNAs from MCF-7-MEK5 and MCF-7-VEC cells were

extracted using a PureLink total RNA purification system (Inv-

itrogen) or RNeasy® mini kit (Qiagen Sciences, Germantown,

MD, USA). The reverse transcription was carried out with a

SuperScript first-strand synthesis system (Invitrogen) using

Oligo(dT)12–18 primers or with iscript™ cDNA synthesis kit

(Biorad Laboratories, Hercules, CA USA). The primer pairs

used to amplify the genes vim (vimentin), krt8 (keratin 8),

krt19, hspa4 (HSPA4), gstp1 (glutathione-S-transferase P),

gstm3 (glutathione-S-transferase Mu 3) and ckb (creatine

kinase B-type), and the genes involved in EMT including cdh1
(E-cadherin), ctnnb1 (β-catenin), snail, slug and δ-ef1 (δ-EF1)

were designed using the online tool of Oligo Perfect Designer

(Invitrogen), and the endogenous actb (β-actin) was employed

as an internal standard. The primer pairs are provided in the

additional materials [see Additional data file 1]. Primer specif-

icity was confirmed by BLAST (Basic Local Alignment Search

Tool) analysis. Standard PCR was performed using a Platinum

blue PCR supermix kit (Invitrogen). Briefly, denaturation was

carried out at 94°C for 2 minutes, and 30 cycles (94°C for 30

seconds, 58°C for 30 seconds, and 72°C for 30 seconds), fol-

lowed by a 5 minute period for elongation at 72°C. The PCR

products were isolated by 1.5% agarose gel electrophoresis,

and the bands were visualized by SYBR green staining. For

real-time PCR analyses, an iCycler iQ5 real time PCR detec-

tion system (BioRad), and a SYBR GreenER qPCR supermix

kit (Invitrogen) were used as follows: 50°C for 2 minutes, 95°C

for 8 minutes and 30 seconds, and 50 cycles (15 seconds at

95°C, 1 minute at 60°C). The data were analyzed with a nor-

malized gene expression method (ΔΔ Ct) [45] using the iQ5

Optical System Software (BioRad), and the gene actb was

used as a reference for normalization. All experiments were

repeated three times independently.

Results
MEK5/Erk5 activation promotes resistance to TNF-α
Stable clones of MCF-7-VEC parental and its CA-MEK5 over-

expressing cells, MCF-7-MEK5, were characterized by immu-

noblotting with antibodies against MEK5 and Erk5 (Figure 1).

We assayed in vitro colony formation of MCF-7-VEC and

MEK5 cells in response to TNF-α treatment. Cells were fixed

and stained after 10 (MEK5) or 15 days (VEC) and stained

with crystal violet. Then the number of colonies was counted

and normalized to the control (= 100%). As shown in Figure

2a, MCF-7-VEC was sensitive to TNF-α in a dose dependent

manner, being unable to form colonies at a final concentration

of 10 ng TNF-α/ml. In contrast, the capacity of MEK5 cells to
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form colonies was only reduced to 64.7 ± 9.3% as compared

with controls. To confirm the requirement for MEK5 in this

resistance, MCF-7-MEK5 cells were transiently transfected

with empty vector (VEC) or a dominant negative MEK5 mutant

construct (DN-MEK5; Figure 2b). In vector transfected

groups, treatment with TNF resulted in 94.6 ± 4.4% colony

formation as compared with control cells. Transfection with

DN-MEK5 reduced colony formation to 42.8 ± 3.6% with TNF

treatment as compared with control. These results demon-

strate that a DN-MEK5 partially suppresses basal clonogenic-

ity as well as enhancing sensitivity to TNF-α.

Differences in protein expressions characterized by 

proteomic analysis

Proteome analysis was performed to compare the differences

in protein expression by examining whole-cell protein extrac-

tions obtained from MCF-7-MEK5 and MCF-7-VEC cells. Fol-

lowing 2-DE and Coomassie blue staining, the gels were

analyzed using the PDQuest image analysis software in tripli-

cate experiments and subjected to capillary liquid chromatog-

raphy-tandem mass spectrometry analysis. A total of 56

protein spots were identified that differed significantly (more

than twofold difference) in the two cell lines, of which seven

proteins were recognized as most relevant to the present

study (Figure 3 and Table 1). These protein spots yielded rich

peptide fragments and were found to have similar theoretical

and experimental molecular weights and isoelectric pH values.

The seven proteins selected for further investigation from the

comparative 2-DE analysis were KRT19, GSTM3, VIM,

HSPA4, GSTP1, CKB, and KRT8. In MCF-7-MEK5 cells, VIM,

HSPA4, GSTP1 and CKB were upregulated, whereas KRT8,

KRT19 and GSTM3 were downregulated as compared with

MCF-7-VEC cells. Indeed, expression of KRT8 in MCF-7-

MEK5 cells was below the detection limit under the current

proteomics conditions. Other differentially expressed proteins

observed in proteomic analysis are described separately the

additional materials [see Additional data file 2].

Figure 1

Generation of stable MCF-7-MEK5 cellsGeneration of stable MCF-7-MEK5 cells. Stable clones of MCF-7 
cells expressing either constitutively active MEK5 (MCF-7-MEK5) or 
vector (MCF-7-VEC) were examined by Western blot analysis for 
expression of MEK5 (upper panel) and Erk5 (bottom panel). Erk, extra-
cellular signal-regulated kinase; MEK, mitogen-activated protein kinase 
kinase.

Figure 2

CA-MEK5-mediated resistance to TNF-α induced loss of clonogenic survivalCA-MEK5-mediated resistance to TNF-α induced loss of clonogenic 
survival. (a) MCF-7-MEK5 and MCF-7-VEC cells were plated for clono-
genic survival assay and treated with different concentrations of TNF-α 
(0 to 100 ng/ml) for 18 hours. Following this, cells were cultured in a 
fresh media without TNF-α and observed daily for 1 to 2 weeks. (b) 
MCF-7-MEK5 cells were plated for clonogenic survival assay and trans-
fected with vector or DN-MEK5 (100 ng/well) for 24 hours. The follow-
ing day cells were treated with vehicle or TNF-α (1 ng/ml) for 18 hours. 
Following this, cells were cultured in a fresh media without TNF-α and 
observed daily for 1 to 2 weeks. Colonies were fixed, stained with crys-
tal violet and counted. Data are presented as percentage clonogenic 
survival from untreated control cells (100%) ± standard error of the 
mean (n = 3). MEK, mitogen-activated protein kinase kinase; TNF, tumor 
necrosis factor.
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Confirmation with RT-PCR analysis of gene expression 

levels

The differences in levels of VIM, KRT8, KRT19, GSTP1,

GSTM3, and CKB protein expression between MCF-7-MEK5

and MCF-7-VEC cells were further confirmed at the gene

expression level by RT-PCR. As shown in Figure 4a, the

expression levels of vim, gstp1, and ckb mRNA increased

markedly, whereas those of krt8 and krt19 in MCF-7-MEK5

cells were decreased compared with MCF-7-VEC cells. The

results were further quantified by real-time PCR. The normal-

ized expression fold changes in MCF-7-MEK5 cells were

814.15 ± 145.23 (vim), 0.01 ± 0.00 (krt8), 0.00 ± 0.00 (unde-

tected; krt19), 1.51 ± 0.56 (hspa4), 40,637.45 ± 15,815.03

(gstp1), 0.13 ± 0.01 (gstm3) and 38.59 ± 7.87 (ckb) as com-

pared with MCF-7-VEC cells (Figure 4b). These results indi-

cate that the expression levels of proteins identified by

proteomic analysis in MCF-7-MEK5 and MCF-7-VEC cells are

consistent with corresponding gene expression levels.

MEK5 expression upregulates mRNA levels of EMT 

regulating genes

Because the observed upregulation of vimentin in the MCF-7-

MEK5 cells was suggestive of EMT, we sought initially to

examine the expression levels of known EMT markers in MCF-

Figure 3

2-DE images of MCF-7-MEK5 and MCF-7-VEC cells2-DE images of MCF-7-MEK5 and MCF-7-VEC cells. (a) 2-DE image of the total proteins extracted from MCF-7-MEK5 and MCF-7-VEC cells. (b) 
A total of seven differentially expressed protein spots were identified, and the changes in protein expressions are presented in Table 1. 2-DE, two-
dimensional electrophoresis; M, molecular weight; MEK, mitogen-activated protein kinase kinase; pI, isoelectric pH.
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7-VEC and MCF-7-MEK5 cells (Figure 5). Analysis of E-cad-

herin expression by RT-PCR (Figure 5a) and quantitative PCR

(Figure 5b) demonstrated a consistent downregulation in the

MCF-7-MEK5 cells as compared with the MCF-7-VEC cells.

N-cadherin, a known EMT marker, was upregulated in the

MCF-7-MEK5 cells (599.6 ± 147.9) as compared with MCF-

7-VEC cells (Figure 5b). SNAI2 (slug), SNAI1 (snail) and

ZEB1 (δEF-1) are known regulators of EMT. The genes SNAI2

(slug; 10.05 ± 0.91), ZEB1 (4,866.96 ± 2,360), and β-catenin

(2.16 ± 0.27) were upregulated in MCF-7-MEK5 cells com-

Figure 4

Differences in vim, krt8, krt19, hspa4, gstp1, gstm3, and ckb between MCF-7-MEK5 and MCF-7-VEC cellsDifferences in vim, krt8, krt19, hspa4, gstp1, gstm3, and ckb between MCF-7-MEK5 and MCF-7-VEC cells. (a) Regular RT-PCR assay. (b) Real-
time PCR assay was used to quantitate relative mRNA expression between MCF-7-VEC and MCF-7-MEK5 cells. The normalized expression folds in 
MCF-7-MEK5 cells were 814.15 ± 145.23 (vim), 0.01 ± 0.00 (krt8), 0.00 ± 0.00 (krt19, undetected), 1.51 ± 0.56 (hspa4), 40,637.45 ± 15,815.03 
(gstp1), 0.13 ± 0.01 (gstm3), and 38.59 ± 7.87 (ckb) compared with MCF-7-VEC cells. The gene actb was used as an internal control. MEK, 
mitogen-activated protein kinase kinase.

Table 1

Identification of the seven protein spots with liquid chromatography-tandem mass spectrometry

Spot number Protein symbol Theoretical MW (kDa) Experimental MW 
(kDa)

Theoretical pI Experimental pI Ratio 
(MCF-7-MEK5 versus 
MCF-7-VEC)

0415 Keratin 19 (KRT19) 44.07 46 4.9 5.2 0.01

1207 Glutathione-S-
transferase Mu 3 
(GSTM3)

26.54 26 5.25 5.7 0.37

1601 Vimentin (VIM) 53.62 55 4.91 5.2 2.14

1806 Heat shock 70 kDa 
protein 4 (HSPA4)

94.24 100 5.03 5.3 1.81

2110 Glutathione-S-
transferase P 
(GSTP1)

23.34 23 5.32 5.8 5.41

2403 Creatine kinase B-
type (CKB)

42.62 45 5.25 5.7 57.67

2503 Keratin 8 (KRT8) 53.67 50 5.38 5.8 0

The spot number corresponds to that reported in Figure 3. MW, molecular weight; pI, isoelectric pH.
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pared with MCF-7-VEC cells (Figure 5b). For comparison pur-

poses, we also analyzed expression of these EMT regulating

genes in additional drug resistant MCF-7 cell systems. The

TNF-resistant MCF-7-TNR cells exhibited an increase in

SNAI2 (34.44 ± 12.38) and ZEB1 (8,574.28 ± 3,820) as

compared with MCF-7-VEC cells. Additionally, the fulvestrant

resistant MCF-7-F cells exhibited a less pronounced increase

in SNAI2 (1.49 ± 0.13) and ZEB1 (4.34 ± 1.3; Figure 5c).

Figure 5

The differences in genes involved in EMT in MCF-7-MEK5 and MCF-7-VEC cellsThe differences in genes involved in EMT in MCF-7-MEK5 and MCF-7-VEC cells. (a) With RT-PCR assay, the genes slug, δ-ef1, and β-catenin 
were upregulated, whereas E-cadherin and snai1 were downregulated in MCF-7-MEK5 cells compared with MCF-7-VEC cells. (b) With real-time 
PCR, relative expression levels for N-cadherin, E-cadherin, β-catenin, and snail were analyzed in MCF-7-VEC and MCF-7-MEK5 cells. The gene actb 
was used as an internal control. (c) MCF-7, MCF-7-TNR, MCF-7F, and MCF-7-MEK5 cells were analyzed for expression of SNAI2 (slug) or ZEB1 
(δEF-1) by real-time PCR. Expression was normalized to MCF-7 cells, with actb used as an internal control. MEK, mitogen-activated protein kinase 
kinase.
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MEK5 expression promotes an EMT phenotype

Images of stained MCF-7-VEC and MCF-7-MEK5 cell colo-

nies revealed distinct differences in cell and colony morphol-

ogy (Figure 6a). MCF-7-VEC cells formed contiguous colonies

with distinct colony borders. The MCF-7-VEC cells exhibited a

classic epithelial cell morphology with intact cell-to-cell con-

tact. In contrast, MCF-7-MEK5 cells exhibited mesenchymal

cell morphology with a more dispersed colony appearance

and incompletely defined colony borders, both suggestive of

an EMT phenotype. To investigate the potential role of MEK5

signaling in EMT, MCF-7-VEC and MCF-7-MEK5 cells were

stained for epithelial markers E-cadherin and F-actin (Figure

6b) or the mesenchymal marker vimentin (Figure 6c) using

immunofluorescence staining. MDA-MB-231 cells, which are

known to exhibit an EMT phenotype, were used as a positive

control for loss of E-caherin and upregulation of vimentin.

MCF-7-VEC cells exhibited typical epithelial staining pattern of

E-cadherin, which is predominantly expressed on the cell

membrane. Consistently, F-actin in MCF-7-VEC cells was

organized in an epithelial pattern, in that the majority of F-actin

existed in a cortical pattern on the cell membrane along with

minor existence in focal adhesion. In contrast, epithelial signa-

ture expression and organization of E-cadherin and F-actin

were absent in MCF-7-MEK5 and MDA-MB-231 cells. Con-

versely, MCF-7-MEK5 and MDA-MB-231 cells, but not MCF-

7-VEC cells, exhibited robust staining of vimentin, which is typ-

ically observed in mesenchymal cells. These results suggest

loss of epithelial markers and acquisition of mesenchymal

markers in MCF-7-MEK5 and MDA-MB-231 cells.

RNA interference knock-down of Erk5 abrogates 

expression of EMT regulating genes in MCF-7-MEK5 

cells

Erk5 is the immediate downstream target of MEK5. We used

a short hairpin RNA (shRNA) interference strategy to disrupt

Erk5 expression in MCF-7-MEK5 cells and to test effects on

EMT gene regulation (Figure 7). MCF-7-MEK5 cells were

transfected with pSUPER-scrambled or sSUPER-Erk5. We

observed a decrease in both protein (Figure 7a) and mRNA

levels of Erk5 (Figure 7b). shRNA-Erk5 cells exhibited a resto-

ration of E-cadherin levels and reduced ZEB1 and SNAI2

expression. Quantitative PCR revealed that shRNA-Erk5

expression restored E-cadherin levels and reversed expres-

sion of slug, ZEB1, N-cadherin, and vimentin expression (Fig-

ure 7c).

Discussion
Our proteomic analysis of two MCF-7 human breast cancer

cell lines revealed at least seven differentially expressed pro-

tein spots in two-dimensional gels, which may contribute to

the mechanisms of MEK5/Erk5-mediated TNF-α resistance.

These proteins are known to play various roles in cellular proc-

esses, including detoxification, proliferation, metabolism, and

cytoskeletal organization. It is well known that human cytosolic

glutathione-S-transferases, which play important roles in cellu-

lar detoxification pathways, are of direct relevance to many

drug-resistance tumors [46-53]. At least one of these proteins

is also implicated in EMT, suggesting a possible connection

between TNF-α resistance and EMT. Both VIM and KRT

belong to intermediate filaments, which are considered to be

the principle cytoskeletal proteins in mammalian cells [54]. It is

believed that the over-expression of VIM, which is related to

poor prognosis in breast cancer patients presenting with

metastasis potential [55,56], results in a more invasive capac-

ity of breast cancer cells in vitro and in vivo [21,57,58]. Kokki-

nos and colleagues [21] proposed that the intermediate

filament transformed from a KRT-rich to a VIM-rich network in

the process of EMT in cancers [21]. Previous studies have

shown that MCF-7 breast cancer cells do not typically express

VIM but exhibit strong expression of KRT; the acquisition of

VIM expression and the loss of KRT19 expression were asso-

ciated with adriamycin-resistant MCF-7 cells compared with

their parental cells [11]. Our results show increased VIM

expression and decreased KRT19 and KRT8 expression in

TNF-α resistant MCF-7 cells.

These findings, consistent with the cytoskeletal reorganization

seen in both EMT and drug resistance, provoked further eval-

uation of the EMT markers snail, slug, δ-ef1, E-cadherin, and N-

cadherin in the TNF-α resistant MCF-7 cells. The profound

morphologic changes and enhanced invasive capabilities of

EMT in various cancers are thought to be regulated by several

transcription factors, including SNAI1 (snail), SNAI2 (slug),

and ZEB1 (δ-ef1). Increased expression of snail and slug has

been reported in invasive compared with noninvasive breast

tumors and associated with lymph node metastases [59].

Increased levels of δ-ef1, also seen in invasive breast tumors,

have been correlated with de-differentiation [60]. These tran-

scription factors, known to regulate EMT in development, have

all been shown to repress E-cadherin, which is the primary cell

adhesion molecule in epithelial tissue [61-65]. The loss of epi-

thelial cell-to-cell adhesion through decreased expression of

E-cadherin is the hallmark of EMT that permits acquisition of a

motile phenotype [65]. Interestingly, N-cadherin has been

demonstrated to correlate with increased invasion and migra-

tion in breast carcinomas in vitro, regardless of E-cadherin sta-

tus [66,67]. Further in vivo studies have shown that N-

cadherin enhances metastasis of breast tumors via Erk signal-

ing [68]. In this study we observed a decrease in E-cadherin

expression and an increase in N-cadherin expression in the

MCF-7-MEK5 cells. Additionally, slug and δ-ef1, but not snail,

were significantly increased in the MCF-7-MEK5 cell line.

Conclusion
In summary, differentially expressed proteins have been identi-

fied by proteome and gene expression analyses, suggesting

that upregulation of VIM/vim, GSTP1/gstp1 and CKB/ckb,

and downregulation of KRT8/krt8 and KRT19/krt19 are

related to MEK5/Erk5-mediated TNF-α resistance in an estab-

lished MCF-7 cell line. Further analyses of this cell line indi-
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Figure 6

Morphologic and immunofluorescence characterization of EMT in MCF-7-MEK5 cellsMorphologic and immunofluorescence characterization of EMT in MCF-7-MEK5 cells. (a) Morphologic comparison of MCF-7-VEC and MCF-7-
MEK5 cells stained by Crystal violet assay. Representative colonies from clonogenicity assay were visualized after crystal violet staining for morphol-
ogy. (b) MCF-7, MCF-7-MEK5, and MDA-MB231 cells were cultured in eight-well chamber slide for 48 hours. Indirect immunofluorescence was car-
ried out to examine the expression of E-cadherin and F-actin, as described in the Materials and methods section. The nucleus was counter-stained 
with DAPI. Subpanels 1 through 4 are representative images of E-cadherin (1), F-actin (2), nucleus (3), and a merge of all three (4) in MCF-7-MEK5 
(MEK5) cells. Subpanels 5 through 8 are representative images of E-cadherin (5), F-actin (6), nucleus (7), and a merge of all three (8) in MDA-MB231 
(MDA) cells. Subpanels 9 to 12 were representative images of E-cadherin (9), F-actin (10), nucleus (11), and a merge of all three (12) in MCF-7 cells. 
Pseudocolors were assigned as follows: red, E-cadherin; green, vimentin; green, F-actin; and blue, nucleus. (c) MCF-7, MCF-7-MEK5, and MDA-
MB231 cells were cultured in eight-well chamber slide for 48 hours. Indirect immunofluorescence was carried out to examine the expression of 
vimentin, as described in the Materials and methods section. The nucleus was counter-stained with DAPI. Subpanels 1 through 3 are representative 
images of vimentin (1), nucleus (2), and a merge of the two (3) in MCF-7-MEK5 (MEK5) cells. Subpanels 4 through 6 are representative images of 
vimentin (4), nucleus (5), and a merge of the two (6) in MDA-MB231 (MDA) cells. Panels 7 through 9 are representative images of vimentin (7), 
nucleus (8), and a merge of the two (9) in MCF-7 cells. Pseudocolors were assigned as follows: red, E-cadherin; green, vimentin; green, F-actin; and 
blue, nucleus. MEK, mitogen-activated protein kinase kinase.
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Figure 7

Erk5-RNA interference partially suppresses MCF7-MEK5 EMT gene expressionErk5-RNA interference partially suppresses MCF7-MEK5 EMT gene expression. (a) MCF-7-MEK5 cells were transfected with pSUPER-scram-
bled (sh-VEC) or pSUPER-Erk5-RNAi (sh-Erk5) and harvested 24 hours later for Western blot analysis of Erk5 expression with actin as control. (b) 
MCF-7-MEK5 cells with sh-VEC or sh-Erk5 were harvested for RNA isolation and RT-PCR analysis of expression of MEK5, Erk5, E-cadherin, SNAI1, 
SNAI2, ZEB1, and GAPDH. MCF-7-VEC cells were analyzed for comparison purposes. (c) MCF-7-MEK5 cells expressing either sh-VEC or sh-Erk5 
were harvested for RNA isolation and real-time PCR analysis for expression of SNAI2, ZEB1, CDH1, CDH2, and VIM. The data are presented as 
mean ± standard error of the mean from three independent experiments.
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cated expression of an EMT phenotype, suggesting an

association between MEK5/Erk5-mediated EMT and TNF-α
resistance. Additional studies are needed to clarify the func-

tions and involvement of these proteins in the mechanisms of

MEK5/Erk5-mediated TNF-α resistance and EMT in human

breast cancers.
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