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Abstract

The aims of this study were i) to characterize the global changes in the composition of the uterine luminal fluid (ULF) from pregnant

heifers during pregnancy recognition (day 16) using nano-LC MS/MS; ii) to describe quantitative changes in selected proteins in the ULF

from days 10, 13, 16 and 19 by Isobaric tags for Relative and Absolute Quantification (iTRAQ) analysis; and iii) to determine whether

these proteins are of endometrial or conceptus origin, by examining the expression profiles of the associated transcripts by RNA

sequencing. On day 16, 1652 peptides were identified in the ULF by nano-LC MS/MS. Of the most abundant proteins present, iTRAQ

analysis revealed that RPB4, TIMP2 and GC had the same expression pattern as IFNT, while the abundance of IDH1, CST6 and GDI2

decreased on either day 16 or 19. ALDOA, CO3, GSN, HSP90A1, SERPINA31 and VCN proteins decreased on day 13 compared with day

10 but subsequently increased on day 16 (P!0.05). Purine nucleoside phosphorylase (PNP) and HSPA8 decreased on day 13, increased

on day 16 and decreased and increased on day 19 (P!0.05). The abundance of CATD, CO3, CST6,GDA,GELS, IDHC, PNPH and TIMP2

mRNAs was greater (P!0.001) in the endometrium than in the conceptus. By contrast, the abundance of ACTB, ALDOA, ALDR, CAP1,

CATB, CATG, GD1B, HSP7C, HSP90A, RET4 and TERAwas greater (P!0.05) in the conceptus than in the endometrium. In conclusion,

significant changes in the protein content of the ULF occur during the pre-implantation period of pregnancy reflecting the morphological

changes that occur in the conceptus.
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Introduction

Available evidence supports an unequivocal role
for endometrial secretions as primary regulators of
conceptus survival, growth and development during
pregnancy (Gray et al. 2002, Spencer & Gray 2006).
In cattle, following successful fertilization, the embryo
enters the uterus at approximately day 4 (el-Banna &
Hafez 1970, Hackett et al. 1993), where it undergoes a
number of cell divisions to form a blastocyst by day 7.
On days 9–10 following fertilization, the embryo hatches
from the zona pellucida and undergoes significant
morphological changes that result in the formation
of an ovoid conceptus (embryo proper and associated
extra-embryonic membranes) on day 13. Prior to initia-
tion of implantation on days 19–20 (Bazer et al. 2009),
the conceptus trophectoderm elongates to form
a filamentous conceptus that eventually occupies both
uterine horns. While the conceptus undergoes these
morphological changes, the endometrium undergoes
changes to establish uterine receptivity to implantation,
defined as a physiological state of the uterus when
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conceptus growth and implantation for establishment of
pregnancy is possible.

During this period of elongation, the conceptus is
bathed in, and supported by, uterine secretions from the
epithelial cells of the endometrium, which exhibit high
secretory activity and expression of nutrient transporters
during the luteal phase of the oestrous cycle and pre-
implantation period of pregnancy (Guillomot et al. 1981).
Both the onset and rate of conceptus elongation in
ruminants are dependent on uterine secretions. For
example, while elongation in vitro can be physically
provoked by culture of blastocysts in agar tunnels
(Brandao et al. 2004, Vajta et al. 2004), the embryonic
disk characterizing the pre-streak stage 1 is never esta-
blished (Vejlsted et al. 2006). Furthermore, uterine gland
knockout ewes (Gray et al. 2002) exhibit recurrent early
pregnancy loss due to inadequate conceptus elongation;
the absence of specific components of uterine luminal
fluid (ULF) derived from the endometrial glands and likely
luminal epithelia is proposed to be the primary cause of
this recurrent pregnancy loss (Gray et al. 2002).
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Changes in the rate of conceptus elongation have been
clearly demonstrated by modulating circulating concen-
trations of progesterone (P4) in both sheep and cows
(Garrett et al. 1988, Carter et al. 2008, Satterfield et al.
2009). While supplementation of culture media with P4

in vitro has no effect on the rate of elongation after
transfer of blastocysts to recipient heifers (Clemente et al.
2009), supplementation of animals with P4 advances
conceptus elongation in both cattle (Carter et al. 2008,
Clemente et al. 2009) and sheep (Satterfield et al. 2006).
Conversely, reduction of P4 output from the corpus
luteum (CL) results in delayed elongation (Forde et al.
2011a, 2011b), with these alterations to the rate of
conceptus elongation mediated through changes to the
endometrial transcriptome (Forde et al. 2009, 2010,
2012a, 2012b, Satterfield et al. 2009).

The composition of ULF is only partially defined and
consists of a rather complex mixture of proteins, amino
acids, sugars, lipids and ions that are derived from genes
expressed in the endometrium as well as molecules that
are transported selectively from maternal blood,
primarily via the uterine epithelia. The protein content
of ULF in the bovine uterus is not well defined but
includes enzymes, growth factors and cytokines
(Spencer et al. 2008). Recent studies have defined
transcriptomic changes that occur in the endometrium
of cattle during the oestrous cycle (Bauersachs et al.
2005, Forde et al. 2011a, 2011b) and peri-implantation
period of pregnancy (Mansouri-Attia et al. 2009, Forde
et al. 2011a, 2011b, Bauersachs et al. 2012) as well as in
response to P4 (Forde et al. 2009, 2010, 2011a, 2011b).
In particular, the transcriptomic changes induced by
manipulation of P4 concentrations and timing of the
post-ovulatory increase in P4 have demonstrable effects
on conceptus elongation following transfer of blastocysts
into synchronized recipients on day 7 (Clemente et al.
2009, Forde et al. 2011a, 2011b). In cattle, changes in
concentrations of circulating P4 affect the abundance of
candidate proteins (Costello et al. 2010, Mullen et al.
2012a, 2012b) as well as amino acids, glucose and ion
content of the ULF (Hugentobler et al. 2010).

Despite extensive knowledge of the endometrial
transcriptome, relatively little information has been
published on the physical content of bovine ULF,
particularly during early pregnancy. Some recent studies
have described the protein content of ULF in cyclic
heifers (Mullen et al. 2012a, 2012b), at a single time-
point either considerably before (day 7: Faulkner et al.
2012) or after (day 18: Ledgard et al. 2009) pregnancy
recognition, or in non-physiological models involving
the transfer of up to 50 embryos per recipient (day 7:
Munoz et al. 2012). This study provides new knowledge
regarding the composition and quantitative changes in
ULF during key morphological events in early pregnancy
in cattle. The specific aims were to i) characterize the
global changes in the composition of the ULF from
pregnant heifers during pregnancy recognition (day 16)
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to identify the proteins that are present and potentially
implicated in driving conceptus elongation; ii) describe
quantitative changes in ULF protein content from
hatching of the embryo from the zona pellucida (days
9–10) through the initiation of conceptus elongation
(day 13) to pregnancy recognition (day 19) and
beginning of implantation (day 19); and iii) determine
whether these proteins are of endometrial or conceptus
origin, by examining the expression profiles of the
associated transcripts in both tissue types on day 16 of
pregnancy using RNA sequencing technology.
Materials and methods

All experimental procedures involving animals were licensed
by the Department of Health and Children, Ireland, in
accordance with the Cruelty to Animals Act 1876 (Ireland)
and the European Community Directive 86/609/EC and were
sanctioned by the Animal Research Ethics Committee of
University College Dublin. Unless otherwise stated, all
chemicals and reagents were sourced from Sigma.
Animal model

The oestrous cycles of cross-bred beef heifers were synchro-
nized using a controlled internal drug release (CIDR) device
(1.38 g P4; InterAg, Hamilton, New Zealand) placed intra-
vaginally for 8 days. A 2 ml i.m. injection of a prostaglandin
F2a (PG) analogue (Estrumate, Shering-Plough Animal Health,
Welwyn Garden City, Herts, UK: equivalent to 0.5 mg
cloprostenol) was administered 1 day prior to CIDR removal.
Following CIDR removal, animals were observed for oestrous
behaviour and only those observed in standing oestrus (day 0;
nZ45) were inseminated with semen from a bull of proven
fertility. Heifers were then assigned randomly for killing
on day 10, 13, 16 or 19 following oestrus representing the
beginning of conceptus elongation, pregnancy recognition and
initiation of implantation respectively. At killing, the reproduc-
tive tract of each heifer was recovered and both uterine horns
were flushed with 20 ml of a 10 mM Tris solution (pH 7.2).
Only those heifers from which an appropriately developed
conceptus was recovered were further processed, i.e. day 10
hatched blastocyst, day 13 ovoid conceptus and day 16
elongated conceptus (10G0.7 cm). Following recovery of
the ULF from the uterine horn ipsilateral to the corpus luteum,
samples were centrifuged at 1000 g for 15 min at 4 8C.
The supernatant was removed from the pelleted debris and
snap frozen in 1 ml aliquots and stored at K80 8C prior
to analysis.
Global proteomic analysis of ULF collected during
pregnancy recognition in cattle

Identification of proteins in ULF was performed by Applied
Biomics, Inc. (Hayward, CA, USA). In order to identify what
proteins are present in the ULF of pregnant heifers on day 16,
nano-LC MS/MS was carried out on nZ4 individual samples
of ULF from confirmed pregnant heifers on day 16 of pregnancy.
www.reproduction-online.org
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Samples were exchanged into 50 mM ammonium bicarbonate
buffer. Dithiothreitol was then added to a final concentration of
10 mM, and samples were incubated at 60 8C for 30 min
followed by cooling to room temperature (RT). Iodoacetamide
was added to a final concentration of 10 mM and incubated in
the dark for 30 min at RT. A tryptic digestion was performed at
37 8C overnight. Nano-LC was carried out using a Dionex
Ultimate 3000 (Thermos Scientific, Milford, MA, USA). Tryptic
peptides were loaded into an a-Precolumn Cartridge and
separated using an acetonitrile gradient (ranging from 5 to
60%) on the nano-LC column. Fractions were collected at 20-s
intervals followed by mass spectrometry analysis on AB SCIEX
TOF/TOF 5800 System (AB SCIEX, Framingham, MA, USA).
Mass spectra were acquired in reflectron-positive ion mode.
TOF/TOF tandem MS fragmentation spectra were acquired for
each ion, averaging 4000 laser shots per fragmentation
spectrum (excluding trypsin autolytic peptides and other
known background ions). Identification of the resulting peptide
mass and the associated fragmentation spectra were submitted
to GPS Explorer workstation equipped with MASCOT search
engine (Matrix Science, London, UK) to search the
non-redundant database of National Center for Biotechnology
Information. Searches were performed without constraining
protein molecular weight or pI, with variable carbamido-
methylation of cysteine and oxidation of methionine residues,
and with one missed cleavage also being allowed in the
search parameters. In addition, a false discovery rate of 3.11%
for day 16 was identified by submitting the list of identified
peptides to a decoy database and significant hits were
determined when P!0.05.
Overrepresented ontology groups and pathway analysis

To further interrogate the data generated, the list of proteins
identified in at least 3/4 samples generated by nano-LC MS/MS
was analysed using the functional annotation tool in DAVID
(http://david.abcc.ncifcrf.gov/). The lists of detected proteins
were converted into their corresponding gene identifiers and
the overrepresented gene ontologies and KEGG pathways
associated with the lists of proteins were determined, i.e. more
proteins present in a given ontology or pathway than would be
expected by chance.
Quantitative changes in protein abundance during the
pre-implantation period of pregnancy

Quantitative changes in the protein content of the ULF were
carried out by the Proteome Factory (Berlin, Germany) via
Isobaric tags for Relative and Absolute Quantification (iTRAQ)
eight-plex analysis. For each individual ULF sample (nZ4
confirmed pregnant heifers from days 10, 13, 16 and 19 of
pregnancy), 2 ml was precipitated in 10 ml 100% EtOH
overnight. The resulting pellet was washed twice and
resuspended in 40 ml of lysis buffer (20 mM TEAB, 5 mM
TCEP, 0.1% SDS, 2 mM pefablock, 2.1 mM leupeptin and 2 mM
benzamidine) and centrifuged at 13 000 g. The supernatant
was transferred to a clean tube, to which 10 mM iodoaceta-
mide was added and this was incubated for 30 min at RT in the
dark. Protein concentration was determined by Bradford assay
www.reproduction-online.org
and 100 mg total protein was subjected to trypsin digestion
(Promega) at 37 8C overnight. Additional trypsin was added
and the reaction continued for a further 3 h. The resulting
peptides were acidified with formic acid (pH 2.0), desalted
with Macro spin tips containing Vydac C18 material (Nest
Group, Southborough, MA, USA) and lyophilized.

All samples were dissolved in 45 ml iTRAQ buffer (AB SCIEX)
and 30 ml of each sample were reacted with appropriate iTRAQ
reagent (Supplementary Tables 10 and 11, see section on
supplementary data given at the end of this article) for 2 h at RT
as per the manufacturer’s protocol. The reaction was stopped
with 50 ml of 20% formic acid (pH 2.0) and dried by
lyophilization. Strong cation exchange (SCX) was performed
on a PolySULFOETHYL A column (200 mm!2.1 mm, 5 mm,
200 Å, PolyLC, Columbia, MD, USA) using an Agilent 1100
HPLC system (Agilent, Karlsruhe, Germany) with 18 fractions
collected per sample. Protein identification and quantification
of iTRAQ reporter ions for each of the 18 SCX fractions were
performed once using nano-LC-ESIMS/MS. The MS system
consisted of an Agilent 1100 nano-LC system (Agilent), PicoTip
emitter (New Objective, Langhorne, PA, USA) and a QExactive
quadrupole-Orbitrap mass spectrometer (ThermoFisher Scien-
tific, Bremen, Germany). The dried SCX peptide fractions were
resuspended in 80 ml of MilliQ water containing 0.1% formic
acid and 1% acetonitrile. After trapping 40 ml of each sample,
the peptides were desalted for 5 min on an enrichment column
(Zorbax SB C18, 0.3 mm!5 mm, Agilent) using a solution of
1% acetonitrile and 0.1% formic acid solution. All peptides
were separated on a Zorbax 300 SB C18, 75 mm!150 mm
column (Agilent) for 110 min, using an acetonitrile gradient
containing 5–25% acetonitrile in 0.1% formic acid. The mass
spectrometer was operated in a data-dependent mode by
subjecting the ten most abundant ions of each survey spectrum
(nominal resolution 35 000 at m/z 200) to HCD fragmentation
(normalized collision energy at 40%, resolution 17 500 at m/z
200). MS/MS peak lists were extracted to mascot generic format
files and searched by the Mascot search algorithm against
the bovine IPI database (version 3.66) that had been curated
from duplicate entries. The mass tolerance was set to 5 ppm
for peptide masses and 0.02 Da for fragment ions. Protein
identification and quantification were performed using
Mascot version 2.2 (Matrix Science). For protein quantification,
a significance threshold of P!0.05 (false discovery rate (FDR)
1%) and at least two peptides were required with the additional
settings of protein ratio typeZweighted, normalizationZ
summed intensities and automatic outlier removal used.
Gene expression analysis in the endometrium and
conceptus

Previously generated RNA sequencing data were interrogated
in an attempt to determine the origin (endometrium or
conceptus) of the proteins detected in the ULF. RNA was
extracted from intercaruncular endometrial or conceptus
tissues from pregnant heifers on days 13 or 16 (nZ5 per day)
as described previously (Mamo et al. 2011, Forde et al. 2012a,
2012b). Library preparation and cluster generation were
performed as per manufacturer’s instructions (www.illumina.
com) and gene expression analysis was carried out on the
Reproduction (2014) 147 575–587
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Figure 2 Gene ontology (GO) analysis depicting the proteins in uterine
luminal fluid on day 16 of pregnancy that are overrepresented in
(A) all molecular functions and (B) GO fat terms for molecular
functions. The numbers represent the number of proteins associated
with a given molecular function (or GO FAT Term) identified on day 16
of pregnancy. All molecular functions are significantly overrepresented
in each sample set, i.e. more proteins detected in a specific biological
process than would be expected by chance.
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Figure 1 Gene ontology (GO) analysis depicting the proteins in uterine
luminal fluid on day 16 of pregnancy that are overrepresented in
(A) all biological processes and (B) GO fat terms for biological
processes. The numbers represent the number of proteins associated
with a given biological process (or GO FAT Term) identified on day 16
of pregnancy. All biological processes are significantly overrepresented
in each sample set, i.e. more proteins detected in a specific biological
process than would be expected by chance.
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Illumina GA2 sequencer using the standard Illumina protocol

for sequencing cDNA samples. The resulting 32 bp reads were
processed through the standard software pipeline for the

Genome Analyzer and aligned against the BosTau4 genome.
A pseudochromosome containing potential splice junction
sequences was generated. The ensGene table from the UCSC

genome browser (http://hgdownload.cse.ucsc.edu/goldenPath/
bosTau4/database/ensGene.txt.gz: Oct 2007 BosTau4) was

used to provide exon location information to the CASAVA
module. The moderated negative binomial test from the edgeR

Bioconductor library (Robinson et al. 2010) was used to
generate the lists of differentially expressed RNAseq transcripts,

which were displayed as transcripts per million. An FDR
adjusted P value of !0.05 was used as the cut-off for

determining significance. The comparative analysis was
restricted to the 26 957 protein coding transcripts in version 52
of Ensembl (www.ensembl.org) (Figs 1, 2 and 3).
Reproduction (2014) 147 575–587
Results

Changes in the ULF proteome during pregnancy
recognition in cattle

Analysis of the ULF revealed 1652 detectable peptide
sequences on day 16 of pregnancy with a range of 610–
728 per sample (Supplementary Tables 1, 2, 3, 4, 5, 6, 7,
8 and 9, see section on supplementary data given at the
end of this article). Three hundred and five proteins were
detected in three of the four samples analysed while 600
were identified in two of the four samples. On day 16 of
pregnancy, the most abundant proteins detected were
three isoforms of albumin, haemoglobin subunit b, three
www.reproduction-online.org
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Overrepresented cellular component

Overrepresented cellular component

Figure 3 Gene ontology (GO) analysis depicting the proteins in uterine
luminal fluid on day 16 of pregnancy that are overrepresented in
(A) all cellular components and (B) GO fat terms for cellular
component. The numbers represent the number of proteins associated
with a given cellular component (or GO FAT Term) identified on day 16
of pregnancy. All cellular components are significantly overrepresented
in each sample set, i.e. more proteins detected in a specific biological
process than would be expected by chance.

Protein abundance in bovine uterine luminal fluid 579
isoforms of serotransferrin precursor (TF), two of
ovalbumin as well as isocitrate dehydrogenase [NADP]
cytoplasmic (IDHA), purine nucleoside phosphorylase
(PNP), cystatin-M precursor (CST6), retinol-binding
protein 4, aldose reductase (ALDR), cathepsin D
(CATD), heat-shock cognate 71 kDa protein (HSP7C),
actin, cytoplasmic 1 (ACTB), prepro complement
component C3 (CO3), cathepsin B precursor (CATB),
PREDICTED: transitional endoplasmic reticulum ATPase
isoform 3 (Canis lupus familiaris), heat-shock protein
HSP 90-alpha, fructose-bisphosphate aldolase A
(ALDOA), guanine deaminase (GDA), rab GDP dis-
sociation inhibitor beta (GD1B), legumain precursor,
metalloproteinase inhibitor 2 precursor (TIMP2), CAP1
protein (CAP1), gelsolin isoform b (GELS), serpin A3-1
www.reproduction-online.org
precursor (SERPINA31) and vitamin D-binding protein
precursor (Table 1).
Overrepresented gene ontology categories and
pathways associated with proteins in the ULF during
pregnancy recognition

On day 16 of pregnancy, there were 177 overrepresented
biological processes associated with proteins in the ULF.
The top ten terms identified, i.e. those with the largest
numbers of proteins, were associated with metabolic
process (47.6% of all genes associated with this gene
ontology (GO) term: Fig. 4 left panel), cellular process
(46.7%), primary metabolic process (40.2%), cellular
metabolic process (32.7%) and response to stimulus
(18.2); catabolic process (14.9%), multicellular organis-
mal process (14.0%), developmental process (12.6%),
regulation of biological quality (12.2%) and anatomical
structure development (12.2%). The top ten GO FAT
biological processes (Fig. 4 right panel) were generation
of precursor metabolites and energy (16 proteins),
homeostatic process (16), monosaccharide metabolic
process (15), proteolysis (15), hexose metabolic process
(14), carbohydrate catabolic process (13), glucose
metabolic process (13), oxidation reduction (13), cellular
carbohydrate catabolic process (12) and glucose cata-
bolic process (11).

Proteins involved in the top ten molecular functions of
catalytic activity (40.7%), protein binding (38.3%),
hydrolase activity (21.5%), nucleoside binding
(10.7%), ATP binding (10.3%), adenyl ribonucleotide
binding (10.3%), enzyme regulator activity (9.8%),
enzyme inhibitor activity (7.5%), cytoskeletal protein
binding (7.5%) and endopeptidase inhibitor activity
(6.5%) were detected in ULF on day 16 (Fig. 5 left
panel), with similar GO FAT molecular function terms
including enzyme inhibitor activity (16 proteins),
cytoskeletal protein binding (16), endopeptidase
inhibitor activity (14), peptidase inhibitor activity (14),
actin binding (13), peptidase activity, acting on L-amino
acid peptides (12), peptidase activity (12), serine-type
endopeptidase inhibitor activity (9), magnesium ion
binding (9) and peroxiredoxin activity (5: Fig. 5 right
panel). Similar GO and GO FAT terms for cell
component were observed as overrepresented on
day 16 of pregnancy and included extracellular region
(36 proteins), extracellular region part (21), vesicle (20),
membrane-bounded vesicle (19), cytoplasmic vesicle
(19), lytic vacuole (18), lysosome (18), vacuole (18),
cytoplasmic membrane-bounded vesicle (18) and extra-
cellular space (18: Fig. 5).

In total, the proteins in the ULF on day 16 were
overrepresented in 20 distinct KEGG pathways (Table 2).
The top five pathways included proteins involved in
lysosome (18 proteins), glycolysis/gluconeogenesis (11),
regulation of actin cytoskeleton (10), antigen processing
Reproduction (2014) 147 575–587
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and presentation (9) and leukocyte transendothelial
migration (7).
Quantitative changes in protein abundance in ULF
during the pre-implantation period of pregnancy

The temporal changes in proteins not derived from
albumin that were most abundant on day 16 were
investigated using iTRAQ analysis (Fig. 4A, B, C and D),
which detected 17 of these proteins (for a full list of
proteins detected by iTRAQ analysis, see Supplementary
Tables 10 and 11). Four distinct categories of proteins
were identified. RPB4, TIMP2 and GC had the same
expression pattern as IFNT, with no protein detected
on day 10 or 13 but detected on both days 16 and 19
(Fig. 4A: P!0.05). The abundance of IDH1, CST6 and
GDI2 decreased on either day 16 or day 19 of pregnancy
(Fig. 4B). Three proteins decreased significantly on
day 13 compared with day 10 but subsequently
increased on day 16, which was maintained to day 19
of pregnancy (Fig. 4C). CO3, SERPINA31 and GSN
increased on day 13 but decreased on subsequent days
of pregnancy while PNP and HSPA8 decreased on
day 13, increased on day 16 and decreased and increa-
sed on day 19 respectively (Fig. 4D).
Putative source of protein based on RNA sequencing
analysis of the endometrium and conceptus

In order to gain some insight into whether the proteins
detected in the ULF were predominantly of endometrial
or conceptus origin, RNA sequencing data for both the
endometrium and conceptus on days 13 and 16 was
screened to assess transcript abundance for these
proteins. The abundance of CATD, CO3, CST6, GDA,
GELS, IDHC PNPH and TIMP2 mRNAs was greater
(P!0.001) in the endometrium than in the conceptus
on both days examined (Fig. 5A and B). By contrast,
the abundance of ACTB, ALDOA, ALDR CAP1, CATB,
CATG, GD1B, HSP7C, HSP90A, RET4 and TERA was
greater (P!0.05) in the conceptus than in the endo-
metrium on one or both days examined (Fig. 5B
and C: P!0.05).
Discussion

This study characterized the protein content of ULF
during key stages of peri-implantation conceptus
development in cattle and demonstrates that significant
changes in the abundance of a number of proteins occur
as pregnancy progresses towards implantation. These
novel proteomic data have been expanded by placing
them in the context of RNA sequencing data to try to
identify the putative source of the most abundant
proteins identified in the ULF during the pregnancy
recognition period. The abundance of CATD, CO3,
Reproduction (2014) 147 575–587
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CST6, GDA, GELS, IDHC PNPH and TIMP2 mRNAs
indicates that their protein products are predominantly
derived from the endometrium, while the expression of
ACTB, ALDOA, ALDR CAP1, CATB, CATG, GD1B,
HSP7C, HSP90A, RET4 and TERA suggests that they
may be predominantly conceptus derived.

The proteomic content of the ULF on day 16 of
pregnancy reflects the physiological processes that occur
both in overrepresented molecular functions and in
biological processes. During this time period, IFNT,
along with other conceptus-derived factors such as PGs
(Dorniak et al. 2011a), acts on the endometrium to
further stimulate the expression of genes (and their
protein products) that drive conceptus elongation in
ruminants (Gray et al. 2004, Song et al. 2005, 2006,
2008, Simmons et al. 2009). In cattle, by day 16
conceptus-derived IFNT acts on the endometrium to
induce the expression of both classical (Mansouri-Attia
et al. 2009, Forde et al. 2011a, 2011b, 2012a,
2012b) and non-classical (Bauersachs et al. 2012) IFN-
stimulated genes and it is likely the protein products
of some of these IFNT-induced genes are secreted into
the ULF and contribute to the composition observed.

One of the key morphological events that charac-
terizes early pregnancy in ruminants is rapid growth of
the conceptus trophectoderm; therefore, changes in the
protein content of ULF during these key stages are
implicated in driving the process of elongation. It is
hypothesized that proliferation of certain cells is driven
by aerobic glycolysis despite the presence of sufficient
oxygen, known as the Warburg effect (Vander Heiden
et al. 2009). The premise of this type of cellular
metabolism is that, despite the fact that the citric acid
cycle produces more ATP than glycolysis in proliferating
cells, energy, i.e. ATP, is only one of the requirements of
the cells. Therefore, despite the fact that aerobic
glycolysis is less efficient in terms of ATP production,
it allows production of all types of cellular components,
not just energy in the form of ATP. These cellular
components are required by proliferating cells as their
major function is to double all the components of the
cell. There is some evidence in the literature that the
Warburg effect may be utilized by both bovine (Cagnone
et al. 2012) and porcine (Redel et al. 2012) blastocysts
under different in vitro culture conditions; however, no
data are available on the utilization of this pathway by
the elongating conceptus. Given that some of the most
abundant proteins in the ULF (IDHC), in addition to
proteins in the overrepresented pathways of glycolysis/
glyconeogenesis (LDHA, ALDOA, ALDOC, ENO1,
ENO2, ENO3, PGAM1 and TPIS), are intermediaries
involved in the Warburg effect (Krisher & Prather 2012),
we hypothesize that secretion of these proteins into the
uterine lumen may be required to aid cellular metab-
olism in order to drive rapid proliferation during the
elongation process.
www.reproduction-online.org

Downloaded from Bioscientifica.com at 08/25/2022 07:31:05PM
via free access



Ta
b
le

2
O

ve
rr

ep
re

se
n
te

d
p
at

h
w

ay
s

as
so

ci
at

ed
w

it
h

p
ro

te
in

s
id

en
ti

fi
ed

b
y

n
an

o
-L

C
M

S/
M

S
an

al
ys

is
o
f

u
te

ri
n
e

lu
m

in
al

fl
u
id

o
f

p
re

gn
an

t
h
ei

fe
rs

(n
Z

4
)

o
n

d
ay

1
6

o
f

p
re

gn
an

cy
.

O
ve

rr
ep

re
se

n
te

d
p
at

h
w

ay
an

al
ys

is
w

as
p
er

fo
rm

ed
b
y

D
A

V
ID

(h
tt
p
:/

/d
av

id
.a

b
cc

.n
ci

fc
rf

.g
o
v/

)
o
n

th
e

li
st

o
f

p
ro

te
in

s
id

en
ti

fi
ed

o
n

d
ay

1
6

in
at

le
as

t
th

re
e

o
r

fo
u
r

b
io

lo
gi

ca
l

re
p
li

ca
te

s.

O
ve
rr
ep

re
se
n
te
d
p
at
h
w
ay

N
o
.
o
f

p
ro
te
in
s

P
ro
te
in

n
am

es

Ly
so

so
m

e
1
8

A
ci

d
ce

ra
m

id
as

e
p
re

cu
rs

o
r

(B
o
s
ta
u
ru
s)

,
p
ro

ac
ti
va

to
r

p
o
ly

p
ep

ti
d
e

p
re

cu
rs

o
r

(B
o
s
ta
u
ru
s)

,
N

A
G

A
p
ro

te
in

(B
o
s
ta
u
ru
s)

,
ly

so
so

m
al

a
-g

lu
co

si
d
as

e
p
re

cu
rs

o
r

(B
o
s
ta
u
ru
s)

,
ca

th
ep

si
n

D
(B
o
s
ta
u
ru
s)

,
d
eo

xy
ri

b
o
n
u
cl

ea
se

-2
-a

p
re

cu
rs

o
r

(B
o
s
ta
u
ru
s)

,
ca

th
ep

si
n

D
p
re

cu
rs

o
r

(B
o
s
ta
u
ru
s)

,
ar

yl
su

lf
at

as
e

A
p
re

cu
rs

o
r

(B
o
s
ta
u
ru
s)

,
N

(4
)-

(b
-N

-a
ce

ty
lg

lu
co

sa
m

in
yl

)-
L-

as
p
ar

ag
in

as
e

(B
o
s
ta
u
ru
s)

,
ca

th
ep

si
n

S
p
re

cu
rs

o
r

(B
o
s
ta
u
ru
s)

,
b
-h

ex
o
sa

m
in

id
as

e
su

b
u
n
it
b

p
re

p
ro

p
ro

te
in

(B
o
s
ta
u
ru
s)

,
b
-g

al
ac

to
si

d
as

e
p
re

cu
rs

o
r

(B
o
s
ta
u
ru
s)

,
cl

at
h
ri

n
h
ea

vy
ch

ai
n

1
(B
o
s
ta
u
ru
s)

,
b
-h

ex
o
sa

m
in

id
as

e
su

b
u
n
it
a

p
re

cu
rs

o
r
(B
o
s
ta
u
ru
s)

,N
-a

ce
ty

lg
lu

co
sa

m
in

e-
6
-s

u
lf

at
as

e
p
re

cu
rs

o
r
(B
o
s
ta
u
ru
s)

,c
at

h
ep

si
n

Z
p
re

cu
rs

o
r
(B
o
s
ta
u
ru
s)

,
ca

th
ep

si
n

B
p
re

cu
rs

o
r

(B
o
s
ta
u
ru
s)

,
le

gu
m

ai
n

p
re

cu
rs

o
r

(B
o
s
ta
u
ru
s)

,
si

al
id

as
e-

1
p
re

cu
rs

o
r

(B
o
s
ta
u
ru
s)

G
ly

co
ly

si
s/

gl
u
co

n
eo

g
en

es
is

1
1

Fr
u
ct

o
se

-b
is

p
h
o
sp

h
at

e
al

d
o
la

se
C

(B
o
s
ta
u
ru
s)

,
tr

io
se

p
h
o
sp

h
at

e
is

o
m

er
as

e
(B
o
s
ta
u
ru
s)

,
fr

u
ct

o
se

-b
is

p
h
o
sp

h
at

e
al

d
o
la

se
A

(B
o
s
ta
u
ru
s)

,
P
G

M
2

p
ro

te
in

(B
o
s
ta
u
ru
s)

,a
lc

o
h
o
ld

eh
yd

ro
ge

n
as

e
[N

A
D

P
(C

)]
(B
o
s
ta
u
ru
s)

,a
-e

n
o
la

se
(B
o
s
ta
u
ru
s)

,p
h
o
sp

h
o
gl

yc
er

at
e

ki
n
as

e
1

(B
o
s
ta
u
ru
s)

,b
-e

n
o
la

se
(B
o
s
ta
u
ru
s)

,
p
h
o
sp

h
o
gl

yc
er

at
e

m
u
ta

se
1

(B
o
s
ta
u
ru
s)

,
a

-e
n
o
la

se
(B
o
s
ta
u
ru
s)

,
la

ct
at

e
d
eh

yd
ro

ge
n
as

e-
A

(B
o
s
ta
u
ru
s)

,
gl

u
co

se
-6

-p
h
o
sp

h
at

e
is

o
m

er
as

e
(B
o
s
ta
u
ru
s)

R
eg

u
la

ti
o
n

o
f

ac
ti

n
cy

to
sk

el
et

o
n

1
0

a
-a

ct
in

in
-4

(B
o
s
ta
u
ru
s)

,P
R

ED
IC

T
ED

:a
ct

in
,b

-l
ik

e
2

(B
o
s
ta
u
ru
s)

,a
-a

ct
in

in
-2

(B
o
s
ta
u
ru
s)

,g
el

so
li

n
is

o
fo

rm
b

(B
o
s
ta
u
ru
s)

,a
-a

ct
in

in
-1

(B
o
s
ta
u
ru
s)

,
ra

d
ix

in
(B
o
s
ta
u
ru
s)

,
ac

ti
n
-r

el
at

ed
p
ro

te
in

2
/3

co
m

p
le

x
su

b
u
n
it

5
-l

ik
e

p
ro

te
in

(B
o
s
ta
u
ru
s)

,
m

o
es

in
(B
o
s
ta
u
ru
s)

,
ez

ri
n

(B
o
s
ta
u
ru
s)

,
a

-a
ct

in
in

-3
(B
o
s
ta
u
ru
s)

A
n
ti

ge
n

p
ro

ce
ss

in
g

an
d

p
re

se
n
ta

ti
o
n

9
R

ec
N

am
e:

fu
ll
Z

h
ea

t-
sh

o
ck

7
0

kD
a

p
ro

te
in

1
B

;
A

lt
N

am
e:

fu
ll
Z

h
ea

t-
sh

o
ck

7
0

kD
a

p
ro

te
in

2
;

sh
o
rt
Z

H
SP

7
0
.2

,
h
ea

t-
sh

o
ck

p
ro

te
in

H
SP

9
0
-a

(B
o
s
ta
u
ru
s)

,s
im

il
ar

to
b
-2

-m
ic

ro
gl

o
b
u
li

n
(B
o
s
ta
u
ru
s)

,R
ec

N
am

e:
fu

ll
Z

h
ea

t-
sh

o
ck

co
gn

at
e

7
1

kD
a

p
ro

te
in

;A
lt

N
am

e:
fu

ll
Z

h
ea

t-
sh

o
ck

7
0

kD
a

p
ro

te
in

8
,
h
ea

t-
sh

o
ck

p
ro

te
in

H
SP

9
0
-b

(B
o
s
ta
u
ru
s)

,
ca

th
ep

si
n

B
p
re

cu
rs

o
r

(B
o
s
ta
u
ru
s)

,
le

gu
m

ai
n

p
re

cu
rs

o
r

(B
o
s
ta
u
ru
s)

,
ca

th
ep

si
n

S
p
re

cu
rs

o
r

(B
o
s
ta
u
ru
s)

,
P
R

ED
IC

T
ED

:
h
ea

t-
sh

o
ck

7
0

kD
a

p
ro

te
in

6
(B
o
s
ta
u
ru
s)

Le
u
ko

cy
te

tr
an

se
n
d
o
th

el
ia

l
m

ig
ra

ti
o
n

7
a

-a
ct

in
in

-4
(B
o
s
ta
u
ru
s)

,
P
R

ED
IC

T
ED

:
ac

ti
n
,
b
-l

ik
e

2
(B
o
s
ta
u
ru
s)

,
a

-a
ct

in
in

-2
(B
o
s
ta
u
ru
s)

,
a

-a
ct

in
in

-1
(B
o
s
ta
u
ru
s)

,
m

o
es

in
(B
o
s
ta
u
ru
s)

,
ez

ri
n

(B
o
s
ta
u
ru
s)

,
a

-a
ct

in
in

-3
(B
o
s
ta
u
ru
s)

O
th

er
gl

yc
an

d
eg

ra
d
at

io
n

6
b
-h

ex
o
sa

m
in

id
as

e
su

b
u
n
it
b

p
re

p
ro

p
ro

te
in

(B
o
s
ta
u
ru
s)

,
b
-g

al
ac

to
si

d
as

e
p
re

cu
rs

o
r

(B
o
s
ta
u
ru
s)

,
b
-h

ex
o
sa

m
in

id
as

e
su

b
u
n
it
a

p
re

cu
rs

o
r

(B
o
s
ta
u
ru
s)

,
ti

ss
u
e
a

-L
-f

u
co

si
d
as

e
p
re

cu
rs

o
r

(B
o
s
ta
u
ru
s)

,
N

(4
)-

(b
-N

-a
ce

ty
lg

lu
co

sa
m

in
yl

)-
L-

as
p
ar

ag
in

as
e

(B
o
s
ta
u
ru
s)

,
si

al
id

as
e-

1
p
re

cu
rs

o
r

(B
o
s
ta
u
ru
s)

P
en

to
se

p
h
o
sp

h
at

e
p
at

h
w

ay
6

Fr
u
ct

o
se

-b
is

p
h
o
sp

h
at

e
al

d
o
la

se
C

(B
o
s
ta
u
ru
s)

,
fr

u
ct

o
se

-b
is

p
h
o
sp

h
at

e
al

d
o
la

se
A

(B
o
s
ta
u
ru
s)

,
P
G

M
2

p
ro

te
in

(B
o
s
ta
u
ru
s)

,
tr

an
sk

et
o
la

se
(B
o
s
ta
u
ru
s)

,
6
-p

h
o
sp

h
o
gl

u
co

n
at

e
d
eh

yd
ro

ge
n
as

e,
d
ec

ar
b
o
xy

la
ti

n
g

(B
o
s
ta
u
ru
s)

,
tr

an
sk

et
o
la

se
(B
o
s
ta
u
ru
s)

,
gl

u
co

se
-6

-p
h
o
sp

h
at

e
is

o
m

er
as

e
(B
o
s
ta
u
ru
s)

G
lu

ta
th

io
n
e

m
et

ab
o
li

sm
6

G
lu

ta
th

io
n
e

sy
n
th

et
as

e
(B
o
s
ta
u
ru
s)

,
is

o
ci

tr
at

e
d
eh

yd
ro

ge
n
as

e
[N

A
D

P
],

m
it

o
ch

o
n
d
ri

al
p
re

cu
rs

o
r

(B
o
s
ta
u
ru
s)

,
gl

u
ta

th
io

n
e

S-
tr

an
sf

er
as

e
M

u
1

(B
o
s
ta
u
ru
s)

,
is

o
ci

tr
at

e
d
eh

yd
ro

ge
n
as

e
[N

A
D

P
]

cy
to

p
la

sm
ic

(B
o
s
ta
u
ru
s)

,
6
-p

h
o
sp

h
o
gl

u
co

n
at

e
d
eh

yd
ro

ge
n
as

e,
d
ec

ar
b
o
xy

la
ti

n
g

(B
o
s
ta
u
ru
s)

,
gl

u
ta

th
io

n
e

S-
tr

an
sf

er
as

e
P

(B
o
s
ta
u
ru
s)

A
d
h
er

en
s

ju
n
ct

io
n

6
a

-a
ct

in
in

-4
(B
o
s
ta
u
ru
s)

,
P
R

ED
IC

T
ED

:
ac

ti
n
,
b
-l

ik
e

2
(B
o
s
ta
u
ru
s)

,
a

-a
ct

in
in

-2
(B
o
s
ta
u
ru
s)

,
a

-a
ct

in
in

-1
(B
o
s
ta
u
ru
s)

,
a

-a
ct

in
in

-3
(B
o
s
ta
u
ru
s)

,
M

et
p
ro

to
-o

n
co

ge
n
e

p
re

cu
rs

o
r

(B
o
s
ta
u
ru
s)

C
o
m

p
le

m
en

t
an

d
co

ag
u
la

ti
o
n

ca
sc

ad
es

6
a

-1
-a

n
ti

p
ro

te
in

as
e

p
re

cu
rs

o
r

(B
o
s
ta
u
ru
s)

,
co

m
p
le

m
en

t
fa

ct
o
r

B
p
re

cu
rs

o
r

(B
o
s
ta
u
ru
s)

,
p
re

p
ro

co
m

p
le

m
en

t
co

m
p
o
n
en

t
C

3
(B
o
s
ta
u
ru
s)

,
D

A
F-

1
(B
o
s
ta
u
ru
s)

,
an

ti
th

ro
m

b
in

-I
II

p
re

cu
rs

o
r

(B
o
s
ta
u
ru
s)

,
C

D
5
9

gl
yc

o
p
ro

te
in

p
re

cu
rs

o
r

(B
o
s
ta
u
ru
s)

Ti
gh

t
ju

n
ct

io
n

6
a

-a
ct

in
in

-4
(B
o
s
ta
u
ru
s)

,
P
R

ED
IC

T
ED

:
ac

ti
n
,
b
-l

ik
e

2
(B
o
s
ta
u
ru
s)

,
a

-a
ct

in
in

-2
(B
o
s
ta
u
ru
s)

,
a

-a
ct

in
in

-1
(B
o
s
ta
u
ru
s)

,
a

-a
ct

in
in

-3
(B
o
s
ta
u
ru
s)

,
P
R

ED
IC

T
ED

:
m

em
b
ra

n
e-

as
so

ci
at

ed
gu

an
yl

at
e

ki
n
as

e,
W

W
an

d
P
D

Z
d
o
m

ai
n
-c

o
n
ta

in
in

g
p
ro

te
in

1
is

o
fo

rm
1

(B
o
s
ta
u
ru
s)

C
ys

te
in

e
an

d
m

et
h
io

n
in

e
m

et
ab

o
li

sm
5

A
d
en

o
sy

lh
o
m

o
cy

st
ei

n
as

e
(B
o
s
ta
u
ru
s)

,
p
u
ta

ti
ve

ad
en

o
sy

lh
o
m

o
cy

st
ei

n
as

e
3

(B
o
s
ta
u
ru
s)

,
as

p
ar

ta
te

am
in

o
tr

an
sf

er
as

e,
cy

to
p
la

sm
ic

(B
o
s
ta
u
ru
s)

,
en

o
la

se
-p

h
o
sp

h
at

as
e

E1
(B
o
s
ta
u
ru
s)

,
la

ct
at

e
d
eh

yd
ro

ge
n
as

e-
A

(B
o
s
ta
u
ru
s)

A
rr

h
yt

h
m

o
ge

n
ic

ri
gh

t
ve

n
tr

ic
u
la

r
ca

rd
io

m
yo

p
at

h
y

(A
R

V
C

)
5

a
-a

ct
in

in
-4

(B
o
s
ta
u
ru
s)

,
P
R

ED
IC

T
ED

:
ac

ti
n
,
b
-l

ik
e

2
(B
o
s
ta
u
ru
s)

,
a

-a
ct

in
in

-2
(B
o
s
ta
u
ru
s)

,
a

-a
ct

in
in

-1
(B
o
s
ta
u
ru
s)

,
a

-a
ct

in
in

-3
(B
o
s
ta
u
ru
s)

G
ly

co
sa

m
in

o
gl

yc
an

d
eg

ra
d
at

io
n

4
b
-h

ex
o
sa

m
in

id
as

e
su

b
u
n
it
b

p
re

p
ro

p
ro

te
in

(B
o
s
ta
u
ru
s)

,
b
-g

al
ac

to
si

d
as

e
p
re

cu
rs

o
r

(B
o
s
ta
u
ru
s)

,
b
-h

ex
o
sa

m
in

id
as

e
su

b
u
n
it
a

p
re

cu
rs

o
r

(B
o
s
ta
u
ru
s)

,
N

-a
ce

ty
lg

lu
co

sa
m

in
e-

6
-s

u
lf

at
as

e
p
re

cu
rs

o
r

(B
o
s
ta
u
ru
s)

G
al

ac
to

se
m

et
ab

o
li

sm
4

Ly
so

so
m

al
a

-g
lu

co
si

d
as

e
p
re

cu
rs

o
r

(B
o
s
ta
u
ru
s)

,
b
-g

al
ac

to
si

d
as

e
p
re

cu
rs

o
r

(B
o
s
ta
u
ru
s)

,
P
G

M
2

p
ro

te
in

(B
o
s
ta
u
ru
s)

,
R

ec
N

am
e:

fu
ll
Z

al
d
o
se

re
d
u
ct

as
e;

sh
o
rt
Z

A
R

;
A

lt
N

am
e:

fu
ll
Z

2
0
-
a

-h
yd

ro
xy

st
er

o
id

d
eh

yd
ro

ge
n
as

e;
sh

o
rt
Z

2
0
-a

-H
SD

;
A

lt
N

am
e:

fu
ll
Z

al
d
eh

yd
e

re
d
u
ct

as
e

Fr
u
ct

o
se

an
d

m
an

n
o
se

m
et

ab
o
li

sm
4

Fr
u
ct

o
se

-b
is

p
h
o
sp

h
at

e
al

d
o
la

se
C

(B
o
s
ta
u
ru
s)

,
tr

io
se

p
h
o
sp

h
at

e
is

o
m

er
as

e
(B
o
s
ta
u
ru
s)

,
fr

u
ct

o
se

-b
is

p
h
o
sp

h
at

e
al

d
o
la

se
A

(B
o
s
ta
u
ru
s)

,
R

ec
N

am
e:

fu
ll
Z

al
d
o
se

re
d
u
ct

as
e;

sh
o
rt
Z

A
R

;
A

lt
N

am
e:

fu
ll
Z

2
0
-a

-h
yd

ro
xy

st
er

o
id

d
eh

yd
ro

ge
n
as

e;
sh

o
rt
Z

2
0
-a

-H
SD

;
A

lt
N

am
e:

fu
ll
Z

al
d
eh

yd
e

re
d
u
ct

as
e

C
it

ra
te

cy
cl

e
(T

C
A

cy
cl

e)
4

Is
o
ci

tr
at

e
d
eh

yd
ro

ge
n
as

e
[N

A
D

P
],

m
it

o
ch

o
n
d
ri

al
p
re

cu
rs

o
r

(B
o
s
ta
u
ru
s)

,
m

al
at

e
d
eh

yd
ro

ge
n
as

e,
cy

to
p
la

sm
ic

(B
o
s
ta
u
ru
s)

,
is

o
ci

tr
at

e
d
eh

yd
ro

ge
n
as

e
[N

A
D

P
]

cy
to

p
la

sm
ic

(B
o
s
ta
u
ru
s)

,
ac

o
n
it

at
e

h
yd

ra
ta

se
,

m
it

o
ch

o
n
d
ri

al
p
re

cu
rs

o
r

(B
o
s
ta
u
ru
s)

,
m

it
o
ch

o
n
d
ri

al
ac

o
n
it

as
e

2
(B
o
s
ta
u
ru
s)

Sp
h
in

go
li

p
id

m
et

ab
o
li

sm
4

A
ci

d
ce

ra
m

id
as

e
p
re

cu
rs

o
r

(B
o
s
ta
u
ru
s)

,
b
-g

al
ac

to
si

d
as

e
p
re

cu
rs

o
r

(B
o
s
ta
u
ru
s)

,
ar

yl
su

lf
at

as
e

A
p
re

cu
rs

o
r

(B
o
s
ta
u
ru
s)

,
si

al
id

as
e-

1
p
re

cu
rs

o
r

(B
o
s
ta
u
ru
s)

A
m

in
o

su
ga

r
an

d
n
u
cl

eo
ti

d
e

su
ga

r
m

et
ab

o
li

sm
4

b
-h

ex
o
sa

m
in

id
as

e
su

b
u
n
it
b

p
re

p
ro

p
ro

te
in

(B
o
s
ta
u
ru
s)

,
P
G

M
2

p
ro

te
in

(B
o
s
ta
u
ru
s)

,
b
-h

ex
o
sa

m
in

id
as

e
su

b
u
n
it
a

p
re

cu
rs

o
r

(B
o
s
ta
u
ru
s)

,
gl

u
co

se
-

6
-p

h
o
sp

h
at

e
is

o
m

er
as

e
(B
o
s
ta
u
ru
s)

G
ly

co
sp

h
in

go
li

p
id

b
io

sy
n
th

es
is

3
b
-h

ex
o
sa

m
in

id
as

e
su

b
u
n
it
b

p
re

p
ro

p
ro

te
in

(B
o
s
ta
u
ru
s)

,
N

A
G

A
p
ro

te
in

(B
o
s
ta
u
ru
s)

,
b
-h

ex
o
sa

m
in

id
as

e
su

b
u
n
it
a

p
re

cu
rs

o
r

(B
o
s
ta
u
ru
s)

Protein abundance in bovine uterine luminal fluid 583

www.reproduction-online.org Reproduction (2014) 147 575–587

Downloaded from Bioscientifica.com at 08/25/2022 07:31:05PM
via free access

http://david.abcc.ncifcrf.gov/


584 N Forde and others
Specific protein ontologies are reflective of the
morphological events that occur during pregnancy
recognition

We utilized overrepresented gene ontology analysis to
understand which physiological processes the proteins
identified in the ULF on day 16 were involved with in
the context of both conceptus elongation (which is an
ongoing process during the peri-implantation period
of pregnancy) and maternal recognition of pregnancy.
Three of the top molecular functions identified on day 16
are proteins that serve as enzymes, i.e. peptidases and
endopeptidase inhibition. As an overrepresented group
of proteins in the ULF on day 16, these make sense from
a biological perspective. In cattle and sheep, endo-
metrial derived proteins, e.g. IGFBP1 (Simmons et al.
2009), GRP (Song et al. 2008), LGALS15 (Lewis et al.
2007), CSF2 (Loureiro et al. 2011), actively enhance
migration, proliferation and/or attachment of the con-
ceptus trophectoderm. Therefore, inhibitors of protein
and peptide cleavage in the ULF would be important
to ensure that full-length functional forms of at least
some of these proteins, when transported from the
endometrium into the uterine lumen, are available for
use by the elongating conceptus.

On day 16, a number of GO terms and pathways
related to the pregnancy recognition response were
identified including response to stimulus, complement
and coagulation cascade were associated with ULF
proteins. This is consistent with the fact that, by day 16
of pregnancy, sufficient quantities of IFNT must be
produced to prevent luteolysis in cattle (Betteridge et al.
1980, Northey & French 1980). Moreover, transcrip-
tomic data demonstrated that by days 15–16 of
pregnancy, classical interferon-stimulated genes or
interferon stimulated gene (ISGs) are significantly
up-regulated in the endometrium (Forde et al. 2011a,
2011b, Bauersachs et al. 2012), some of which are
cytokines and secreted proteins. The fact that IFNT
secretion is maximal after day 13 (Farin et al. 1990) is
consistent with the fact that these proteins are over-
represented on day 16. iTRAQ analysis also detected
IFNT in the ULF on day 16 of pregnancy and the
detection of these proteins in the ULF during
pregnancy recognition demonstrates that protein
products associated with the type I IFN response of
the endometrium are secreted into the uterus. In
addition, on day 16, proteins involved in the process
of ion binding were detected in the ULF. Data from
sheep indicates the presence of ions in the ULF during
the pre-implantation period of pregnancy (Gao et al.
2009) and represent a non-protein source of molecules
that contribute to the ULF composition. Given that ion-
binding proteins are detectable during this period,
they may play a role in chaperoning these ions in the
ULF and/or enhancing the availability of these ions to
the conceptus.
Reproduction (2014) 147 575–587
Role for predominantly endometrial-derived proteins
during the pre-implantation period of pregnancy

Based on RNA sequencing data, we propose that the
principal source of CST6, GELS, IDH1, PNP and TIMP2
proteins in the ULF is the endometrium and not the
conceptus. Their transcripts were predominantly
expressed in the endometrium and their protein products
were modulated in the ULF as conceptus elongation
progressed. Both TIMP2 and PNP have been previously
found in the ULF of pregnant heifers, although at earlier
time-points of pregnancy (Ledgard et al. 2012). TIMP2
protein was detectable on day 16 in this study and the
expression of its mRNA was at least two orders of
magnitude greater in the endometrium than the con-
ceptus, suggesting that it may be regulated by the process
of pregnancy recognition in cattle. One of the most
abundant proteins identified in the ULF during the
pregnancy recognition period (day 16) was CST6, a
protease inhibitor that is a member of the cystatin family
of proteins. In some tissues, CST6 functions as a tumour
suppressor (Vigneswaran et al. 2006, Ko et al. 2010),
which seems contradictory in terms of rapid elongation
of the conceptus. On the other hand, over-expression or
up-regulation of CST6 promotes cell growth and
proliferation in other cancer cells (Vigneswaran et al.
2003, Hosokawa et al. 2008). Despite these seemingly
contradictory roles for CST6, previous results indicate
a role for the cystatin/cathepsin families in the endo-
metrium and conceptus during early pregnancy in a
number of species (Afonso et al. 1997, Song et al. 2006,
2007, 2010, Baston-Buest et al. 2010) and CST6 has
been shown to be up-regulated by IFNT in vivo in
sheep (Dorniak 2011a). We propose that CST6, pre-
dominantly derived from the endometrium, is involved
in driving conceptus elongation during the pre-implan-
tation period of pregnancy in cattle. IDH1 is an enzyme
involved in the citric acid cycle and has been previously
identified as more abundant in both the endometrium
(Berendt et al. 2005) and the ULF of gravid compared
with non-gravid uterine horns on day 18 of pregnancy
(Ledgard et al. 2009). In this study, we determined that
IDH1 is most likely secreted from the endometrium
during the initiation of conceptus elongation through to
pregnancy recognition; however, by day 19, when
implantation is beginning, IDH1 is reduced
in abundance in the ULF, which may suggest that it is
only required for a short period of time up to pregnancy
recognition. Alternatively, the elongating conceptus
may be rapidly turning over this protein; hence, we see
a decrease in its abundance in the ULF, despite the
increased mRNA expression in the endometrium during
the peri-implantation period of pregnancy. By contrast,
the protein PNP, an enzyme involved in the metabolism
of nucleotides, is expressed predominantly by the
endometrium and is in the ULF on day 16 of pregnancy
as it increases in abundance as pregnancy progresses.
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Role for predominantly conceptus-derived proteins
during the pre-implantation period of pregnancy

Despite the need for endometrial-derived secretions,
without which conceptus elongation does not occur
(Gray et al. 2002), it is well established that the primary
molecule that modulates endometrial expression/
production of proteins, which in turn drives conceptus
elongation, is conceptus-derived IFNT (Bazer et al.
2010). In addition to IFNT, there is emerging evidence
that other conceptus-derived products impact on the
endometrial transcriptome (Bauersachs et al. 2012). For
example, in cattle, PGs play a role in modulating the
expression of genes in the endometrium involved in
the pregnancy recognition signal (Spencer et al. 2013),
while in sheep they affect the expression of genes that are
known to regulate conceptus elongation in sheep (Dorniak
et al. 2011a) as well as affecting the content of the
ULF (Dorniak et al. 2011b). It is therefore reasonable to
assume that some proteins detected in the ULF as the
conceptus elongates during the pre-implantation period
of pregnancy are derived from the conceptus itself. The
abundance of proteins such as ALDOA, and HSPA8,
increased significantly in the ULF from day 13 to day 19 of
pregnancy, coordinate with the considerable increase in
conceptus size as it transitions from an ovoid (day 13)
through to a fully elongated filamentous conceptus on
day 19 which occupies both uterine horns. ALDOLA and
HSPA8 mRNA were higher in the conceptus than in the
endometrium, raising the possibility that these proteins are
predominantly conceptus derived; however, conclusions
regarding the source of these proteins on the basis of gene
expression should be drawn with caution, considering
the total amount of endometrial tissue compared with
conceptus tissue present in the uterus in early pregnancy.

In conclusion, this study demonstrates that significant
changes in the protein content of the ULF occur during
the transition from hatched blastocyst on day 10 to the
process of conceptus elongation, pregnancy recognition
on day 16 and the peri-implantation period of pregnancy
in cattle, a reflection of the morphological changes that
occur at these key developmental time-points. In addition,
significant changes in the abundance of selected proteins
in the ULF occur during the pre-implantation period
of pregnancy, some of which are derived predominantly
from endometrial or conceptus tissues.
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