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Abstract

Background: Leaf rust, caused by the biotrophic fungal pathogen Puccinia hordei, is one of the most important

foliar disease of barley (Hordeum vulgare) and represents a serious threat in many production regions of the world.

The leaf rust resistance gene Rph15 is of outstanding interest for resistance breeding because it confers resistance

to over 350 Puccinia hordei isolates collected from around the world. Molecular and biochemical mechanisms

responsible for the Rph15 effectiveness are currently not investigated. The aim of the present work was to study the

Rph15-based defence responses using a proteomic approach.

Results: Protein pattern changes in response to the leaf rust pathogen infection were investigated in two barley

near isogenic lines (NILs), Bowman (leaf rust susceptible) and Bowman-Rph15 (leaf rust resistant), differing for the

introgression of the leaf rust resistance gene Rph15. Two infection time points, 24 hours and four days post

inoculation (dpi), were analysed. No statistically significant differences were identified at the early time point, while

at 4 dpi eighteen protein spots were significantly up or down regulated with a fold-change equal or higher than

two in response to pathogen infection. Almost all the pathogen-responsive proteins were identified in the

Bowman-Rph15 resistant NIL. Protein spots were characterized by LC-MS/MS analysis and found to be involved in

photosynthesis and energy metabolism, carbohydrate metabolism, protein degradation and defence. Proteomic

data were complemented by transcriptional analysis of the respective genes. The identified proteins can be related

to modulation of the photosynthetic apparatus components, re-direction of the metabolism to sustain defence

responses and deployment of defence proteins.

Conclusions: The identification of leaf rust infection-modulated defence responses restricted to the resistant NIL

support the hypothesis that basal defence responses of Bowman, but not the Rph15 resistance gene-based ones,

are suppressed or delayed by pathogen effectors to levels below the detection power of the adopted proteomic

approach. Additionally, Rph15-mediated resistance processes identified mainly resides on a modulation of primary

metabolism, affecting photosyntesis and carbohydrate pool.
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Background
The fungus Puccinia hordei is a biotrophic pathogen

causal agent of leaf rust, a serious leaf disease of barley

worldwide. This pathogen causes serious economic

losses with yield reductions by up to 62% [1,2] and ad-

versely affects grain quality by reducing grain weight and

increased levels of undesirable protein in the barley

growing region of the world [3]. Rust fungi have a com-

plex life cycle that involves two parasitic stages, dikaryo-

tic and monokaryotic [4]. The dikaryotic stage is the

form causing rust disease by attacking mesophyll tissues

until pathogen injures the epidermis to release uredios-

pores [5].

Barley resistance to leaf rust pathogens is governed

by major resistance (R) genes (Rph genes) that are

race-specific. Most Rph genes confer complete seedling

resistance associated with necrosis (or hypersensitive

response, HR) of the plant cells attacked by the pathogen

sporelings [6], while some Rph resistance genes confer

incomplete resistance, in which the fungus forms small

uredinia surrounded by chlorotic or necrotic plant tis-

sues. This second resistance type is a non-HR (non-

hypersensitivity resistance) polygenically inherited leaf

rust resistance, which was termed “partial resistance”

and is not associated with plant cell necrosis [7]. Several

seedling resistance genes were identified from cultivated

and wild barley, of which 19 were designed Rph1 to

Rph19 [8]. The resistance provided by single Rph genes

has often been overcome by new pathotypes, believed to

have arisen after gene mutations. As a direct conse-

quence, the number of effective Rph genes available to

breeders is decreasing rapidly, suggesting the need for a

new gene deployment strategy [9]. The leaf rust resist-

ance gene Rph15, located on chromosome 2HS [1], was

derived from PI 355447, an accession of wild barley

(Hordeum vulgare subsp. spontaneum) collected in

Israel. When evaluated for its reaction toward a world-

wide collection of over 350 P. hordei isolates, it con-

ferred resistance to all but the isolates 90–3, from Israel.

Rph15 is one of the most broadly effective resistance

genes and it is therefore useful in barley breeding pro-

grams for leaf rust resistance.

Barley interaction with the leaf rust pathogen repre-

sents a model to understand the molecular basis of both

race-specific and partial resistance. Molecular basis of

partial resistance were recently investigated using eQTL

(expression Quantitative Trait Loci) analyses carried out

in P. hordei infected doubled haploid lines and QTL-

NILs (QTL-Near Isogenic Lines) [10,11]. These studies

provided an overview of the responsive dynamic defence

process and identified several candidate genes as being

co-localized with the phenotypic QTL. No additional

published microarray studies were dedicated to barley-P.

hordei interaction.

In addition to transcriptional studies, proteomic tech-

niques can provide insight into the molecular mechan-

isms underpinning resistance gene-based plant defence

responses. The compatible interaction between wheat

and the leaf rust pathogen P. triticina was investigated at

3, 6 and 9 dpi (days post inoculation) and only at the lat-

ter time point of inoculation seven plant proteins

involved in translation and stress responses were identi-

fied as pathogen-responsive [12]. No published prote-

omic studies have been performed on barley leaves

infected with leaf rust.

In this work, barley responses to leaf rust infection

were investigated, in two barley near isogenic lines dif-

fering for the introgression of the broad effective leaf

rust resistance gene Rph15. A proteomic study was per-

formed at early (24 hours) and late (4 dpi) infection

times and, after analysis of protein pattern changes, it

was observed that only at the late time points and in the

resistant NIL differential protein accumulation occurs in

response to pathogen inoculation. The differentially

expressed proteins were involved in photosynthesis,

carbon metabolism, defence responses and secondary

metabolism.

Results and discussion
Experimental design and 2-DE analysis

In this study, the defence responses to leaf rust of two

near-isogenic barley lines, Bowman and Bowman-Rph15

differing for the presence/absence of the broad effective

leaf rust resistance gene Rph15, were investigated using

a proteomic approach. The utilization of NILs allows to

relate the pathogen-responsive changes in protein accu-

mulation observed between the two NILs to the resist-

ance gene activity. Two time points of inoculation were

selected for the analyses. At the first time point investi-

gated, 24 hours post inoculation (hpi), bibliographic data

report that the leaf rust pathogen has established hau-

storia in the mesophyll cells and has started intercellular

hyphal growth [13,14; Brian J. Steffenson, personal com-

munication]. At 4 days post inoculation (dpi), the num-

ber of cells with established haustoria is higher than at

24 hpi and hyphae completed their intercellular growth.

Since infection conditions applied in the present work

are basically the same as those previously reported

[13,14], we assumed that in our experiments the differ-

entiation of infection structures and colonization process

followed the same timing as described above. In agree-

ment with previous observations, no disease symptoms

were observed in both the NILs at 24 hpi, while at 4 dpi

few chlorotic areas were observed in the susceptible NIL

Bowman only (Figure 1A). In order to assess the success

of the inoculation process, single plants of each bio-

logical replicate were left until 8 dpi. At this stage sporu-

lating colonies were observed in Bowman while
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Bowman-Rph15 exhibited only few chlorotic areas. To

further verify that defence responses were properly

deployed in the infected leaves used for proteomic ana-

lyses, quantitative RT-PCRs were conducted on genes en-

coding for oxalate oxidase, an H2O2 generating enzyme

[15], and callose synthase, an enzyme involved in cell wall

reinforcement [16]. For both genes expression was sig-

nificantly increased by inoculation at 1 and 4 dpi (P<0.05,

Methods) and was unresponsive by 8 dpi, with higher

transcription level in Bowman compared to Bowman-

Rph15 (Figure 1B). These results demonstrate that active

defence responses were triggered in both the genotypes

at the inoculation time points used to detect leaf rust

infection-dependent changes in protein accumulation.

Proteins obtained from the two infection time points

were subjected to the proteomic analysis and three tech-

nical replicates were performed for each of two bio-

logical replicates. In the 2-DE maps, an average of 850

protein spots were visualized with the SYPRO Ruby

fluorescent staining. After image and statistical analyses,

no significantly differentially accumulated proteins were

identified at 24 hpi in both genotypes (data not shown).

In agreement with our results, no changes in protein

accumulation were also detected at 3 dpi in the inter-

action between the leaf rust pathogen P. triticina and

a susceptible wheat line [12]. Nevertheless, it is im-

portant to observe that at 18 hpi more than 1000

genes were differentially expressed in barley leaves of

genotypes carrying QTLs for partial resistance to P. hor-

dei in accordance with an active defence response at this

infection time [10,11]. These findings underline, as

expected, that a longer time is required to detect the re-

sponse at protein level. Moreover, because of the prote-

omic approach adopted, only a part of the proteome was

investigated in this study and this do not permit a satis-

factory comparison between transcriptomic and prote-

omic data.

Figure 2 reports 2-DE representative maps of proteins

isolated from both the Bowman and the Bowman-Rph15

in mock-inoculated and leaf rust inoculated conditions

at 4 dpi. Eighteen protein spots showing significant dif-

ferential accumulation in response to pathogen infection

were identified at 4 dpi; differential accumulation was

claimed only for spots in which normalized volumes of

six replicates for each condition was showing an average

fold change in their relative volumes of at least two folds

(Table 1; Figures 2 and 3). In the susceptible NIL (Bow-

man) at 4 dpi only a few differences were detectable

(Figure 2 A vs 2 B). In particular, two spots (2333 and

3150) were more abundant and one spot (2613) was less

Figure 1 Phenotype and defense genes activation of barley leaves subjected to proteomic analyses. (A) Barley leaves images of the two

NILs Bowman and Bowman-Rph15 inoculated with the leaf rust pathogen at the indicated time points and utilized for the proteomic analyses.

After sampling, in some plants for each biological replicate the disease was left to proceed until 8 dpi to assess the success of the infection

experiments. (B) The same genotypes and time points of inoculation as in (A) were verified for the transcriptional activation of the defense

related genes coding for oxalate oxidase and callose synthase using quantitative RT-PCR analysis. Normalization was carried out with the β-actin

constitutively expressed gene. Values are expressed as log2 fold changes of transcript levels in the inoculated samples with respect to the

transcript levels in un-inoculated barley leaves. Error bars represent SD across all RT-PCR replicates (three from each of two independent

inoculations). Statistical significance of differential expression was evaluated with a Wilcoxon two group test (P<0.05, Methods).
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abundant in the rust inoculated sample with respect to

the mock inoculated one. In the resistant NIL (Bowman-

Rph15) a total of 15 spots were significantly down accu-

mulated or absent (spot 3142) in the inoculated samples

with respect to its control, while the levels of three pro-

tein spots rose in the inoculated sample with respect to

the control condition (Figure 2 C vs 2 D).

Identification of Rph15-resistance gene-related proteins

The 18 spots (Table 1 and numbers in Figures 2 and 3)

of interest were characterized by LC-ESI-MS/MS. The

differentially modulated proteins could be grouped into

the following five different functional classes: photosyn-

thesis and energy metabolism, carbohydrate metabolism,

protein biosynthesis and degradation, defence responses

and secondary metabolism.

Photosynthesis and energy metabolism

Twelve of the identified proteins corresponded to photo-

synthetic or chloroplast-related proteins, including Ru-

BisCo large chain (RuLC) and RuBisCo activase, while

one spot represented an ATP synthase protein (spot

number 3004).

RuBisCo is the most expressed protein in leaves, with

about 30% of total leaf proteins [17,18] and an increase

of RuBisCO degraded forms was generally observed in

wheat leaves after Fusarium graminearum infection [19].

Many spots were identified in the present work as deg-

radation products of RuLC; the experimental molecular

weights were significantly lower than their theoretical

values (Table 1), thus indicating a degradation of RuLC

in the samples analyzed [20,21]. Degradation of photo-

synthetic apparatus may contribute to restrict pathogen

growth into barley cells by promoting the activation of

defences in non-infected cells because small peptide and

amino acids derived from degradation can be directed to

other metabolic pathways involved in defence [22,23].

We observed higher levels of RuLC fragments in the

control samples than in the inoculated tissues of Bow-

man-Rph15, supporting that turnover of RuLC was

markedly reduced in this genotype after infection. Inter-

estingly, no statistically significant differences in RuLC

fragments accumulation were observed between control

and inoculated conditions in Bowman. To confirm the

proteomics data, a Western blot analysis using an anti

RuLC antibody was performed on the protein extracts of

the two NILs under control and inoculated conditions

(Figure 4). Results from this experiment support a

reduction of RuLC degraded forms (indicated as num-

bers 1 to 5 in Figure 4A) occurring on infected

Bowman-Rph15 with respect to control tissues. In

Bowman-Rph15 inoculated sample was in fact evaluated

a reduction of 38.2%, 84.1%, 75.28% and 10.12% of the

RuLC degraded forms with respect to the control sample

respectively for the major bands of the degradation forms

numbered from 1 to 5 (Figure 4B). A similar RuLC deg-

radation trend was observed in rice as induced by bacter-

ial blight infection, in lesion mimic mutants [24-26] and

in wheat after Fusarium graminearum infection [19].

Taken together, our results support the conclusion that

Figure 2 2-DE maps. Representative 2-DE maps of soluble protein fractions extracted from Bowman and Bowman-Rph15 leaves at 4 days after

mock inoculation (A and C, respectively) or after inoculation with leaf rust spores (B and D, respectively). Proteins (300 μg) were analyzed by IEF

at pH 4–7, followed by 12.5% SDS-PAGE and visualized by SYPRO-staining. Numbers, corresponding to those in Table 1 and Figure 3, indicate the

spots, identified by LC-ESI-MS/MS, showing significant changes of at least two-fold in their relative volumes (t-test, p < 0.05) after 4 dpi. Proteins

that increased or decreased after this treatment are reported in red or in green, respectively. Spot 3142 is highlighted in blue, indicating its

absence in the Bowman-Rph15 inoculated sample.
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in the resistant genotype Bowman-Rph15 the Rubisco in-

tegrity was more preserved after infection with respect to

control sample.

RuBisCo activase (RuACS) regulates RuBisCo activity

by hydrolysing ATP to promote the dissociation of

inhibitory sugar phosphates [27]. RuACS accumulation

is reduced in the Bowman-Rph15 NIL infected sample

(protein spots numbers 2577, 2581) (Figure 3). In the

susceptible NIL Bowman, no substantial alterations of

RuLC and RuACS were observed. It can be hypothesized

Table 1 List of the 18 spots identified by LC-ESI-MS/MS whose concentration is modulated by leaf rust infection in

barley leaves

Spot ID Accession number Species Protein description EC Abb. Mr
a / pI a Mr

b / pI b Cov. (%) c

Photosynthesis and energy metabolism

2577 Q40073 Hordeum vulgare Ribulose bisphosphate
carboxylase/oxygenase
activase A, chloroplastic

RuACS (b) 40.2 / 5.3 46.1 / 5.6 e 43.5 e

2581 Q40073 Hordeum vulgare Ribulose bisphosphate
carboxylase/oxygenase
activase A, chloroplastic

RuACS (c) 40.8 / 5.2 46.1 / 5.6 e 34.6 e

2760 P05698 Hordeum vulgare Ribulose bisphosphate
carboxylase large chain

4.1.1.39 RuLC 25.4 / 6.4 52.9 / 6.2 e 16.3 e

2776 P05698 Hordeum vulgare Ribulose bisphosphate
carboxylase large chain

4.1.1.39 RuLC 24.2 / 6.4 52.9 / 6.2 e 22.6 e

2866 P05698 Hordeum vulgare Ribulose bisphosphate
carboxylase large chain

4.1.1.39 RuLC 22.3 / 5.2 52.9 / 6.2 e 8.0 e

2952 P05698 Hordeum vulgare Ribulose bisphosphate
carboxylase large chain

4.1.1.39 RuLC 21.3 / 5.1 52.9 / 6.2 e 9.0 e

2983 P05698 Hordeum vulgare Ribulose bisphosphate
carboxylase large chain

4.1.1.39 RuLC 20.1 / 5.3 52.9 / 6.2 e 4.6 e

3004 XP_002465461 Sorghum bicolor ATP synthase β chain d ATPase β 19.4 / 4.1 22.8 / 5.3 6.1

3009 P05698 Hordeum vulgare Ribulose bisphosphate
carboxylase large chain

4.1.1.39 RuLC 19.2 / 5.2 52.9 / 6.2 e 4.2 e

3118 P05698 Hordeum vulgare Ribulose bisphosphate
carboxylase large chain

4.1.1.39 RuLC 19.7 / 5.0 52.9 / 6.2 e 6.9 e

3142 P05698 Hordeum vulgare Ribulose bisphosphate
carboxylase large chain

4.1.1.39 RuLC 20.4 / 4.7 52.9 / 6.2 e 4.4 e

3150 P05698 Hordeum vulgare Ribulose bisphosphate
carboxylase large chain

4.1.1.39 RuLC 20.7 / 4.8 52.9 / 6.2 e 4.8 e

Carbohydrate metabolism

2333 CAZ64535 Hordeum vulgare Sucrose synthase 2.4.1.13 SuSy 88.2 /5.9 92.2 / 5.8 18.4

2962 CAC32847 Hordeum vulgare Adenosine diphosphate
glucose
pyrophosphatase

AGPPase 21.0 / 5.1 19.5 / 5.7 e 17.4 e

Protein degradation

2449 XP_002454700 Sorghum bicolor Leucine aminopeptidase 2,
chloroplastic d

3.4.11.1 LAP 2 57.0 / 5.6 61.8 / 7.6 20.0

Defence responses

2886 CAA55345 Hordeum vulgare chitinase 3.2.1.14 CHI 22.3 / 5.2 26.6 / 6.1 29.4

2956 BAD31057 Oryza sativa Chitinase III-like protein CHI III 21.2 / 5.3 18.9 / 6.5 12.7

Secondary metabolism

2613 CAA54616 Hordeum vulgare Flavonoid
7-O-methyltransferase

2.1.1.6 F-OMT 39.2 / 5.4 42.3 / 5.4 29.5

Statistical information about LC-ESI-MS/MS analysis are reported in Additional files 1 and 2.

Abb.: abbreviation.

a: experimental molecular weight and pI.

b: theoretical molecular weight and pI.

c: amino acid coverage (%).

d: annotation obtained by BLAST-P alignment analysis against the Viridiplantae subset of the nr-database at NCBI.

e: value referred to the mature form of the protein.
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Figure 3 (See legend on next page.)
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that this effect on RuACS is linked to a different strategy

to modulate the phothosynthesis in Bowman-Rph15, the

genotype in which the pathogen negatively affect Ru-

BisCo degradation.

Spot 3004 represents an ATP-synthase β chain. This

protein is involved in photosynthesis and oxidative res-

piration to drive synthesis of ATP in chloroplasts and

mitochondria [28]. Accumulation of this protein was

down-regulated after infection in the resistant NIL only

(Figure 3). A decrease of proteins related to carbon me-

tabolism and photosynthesis that include RuLC, RuACS

and ATP synthase has been also observed in orange (Cit-

rus sinensis) leaves after infection with the biotrophic

bacterial pathogen Xanthomonas citri pv. citri [29]. Simi-

larly, a down regulation of ATP-synthase subunits was

observed in grape (Vitis vinifera) response to Flaves-

cence dorée infection [30]. Similar observations were

obtained at the transcriptomic level for barley leaves

infected with the biotrophic powdery mildew fungus

[31] and after an extensive analysis of the effects on

photosynthetic genes of several biotic stresses in eight

plant species [32]. These investigations suggest that a

slow turnover of many photosynthetic proteins represent

an adaptive consequence resulting in reduced energy

supply when plants are facing a biotic attack and require

to re-direct resources in immediate defence needs

[27,32,33]. The reduced accumulation of these three pro-

teins in the resistant NIL is therefore possibly consistent

with a re-direction of the metabolism to fuel defence

responses. Nevertheless, down accumulation of RuLC,

RuACS and ATP synthase proteins was also observed in

the leaves of rice spotted leaf 6 mutants that undergo to

spontaneous programmed cell death (PCD), caused by

oxidative burst and membrane damage, in the absence

of pathogen infection [18]. Since the Rph15 resistance

most likely involves an HR-dependent PCD response,

similarly to that of most Rph genes conferring complete

resistance [6], it cannot be excluded that the down-

regulation of photosynthetic proteins observed in the re-

sistant NIL could also depend from cellular damage

caused by the HR response.

An higher accumulation of RuLC degraded forms was

observed for Bowman-Rph15 with respect to Bowman in

the control samples (Figure 3). Also for RuACS and

AGPPase, higher accumulation was present in Bowman-

Rph15 than in Bowman control samples. Conversely, this

behaviour was not observed for several other protein

(See figure on previous page.)

Figure 3 Changes in protein accumulation in the two NILs in response to leaf rust infection. Changes in the relative volumes of the

identified proteins whose concentration is increased or decreased in the two NILs Bowman (Bow) and Bowman-Rph15 (Bow-Rph15) at 4 days

after mock inoculation (C) or after inoculation with leaf rust spores (I). Values are the means of six 2-DE gels derived from two independent

biological replicates analyzed in triplicate (n=6). Error bars represent SD across all replicates. Numbers identify the spots as indicated in Table 1

and Figure 2; proteins were ordered into five functional classes, as indicated in Table 1.

Figure 4 Western blot analysis with α-Rubisco antibody. (A)

Western blot of five micrograms of proteins extracted from the two

biological replicates of Bowman (Bow) and Bowman-Rph15 (Bow-

Rph15) at 4 days after mock inoculation (C) or after inoculation with

leaf rust spores (I) were separated on 12% SDS-PAGE and hybridized

with a Rubisco antibody. Bands representing the main Rubisco

degradation forms are numbered from 1 to 5 on the Western right

side. (B) Quantification data of Rubisco degradation forms;

evaluation of degradation forms was conducted for the five bands

indicated in (A) in Bowman (Bow) and Bowman-Rph15 (Bow-Rph15)

under control (C) or after inoculation with leaf rust spores (I)

conditions. The data are the mean of three independent

experiments. Different letters on the bars indicate significant

difference P-values (P < 0.05) of the t-TESTs performed comparing

control and inoculated samples.
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spots (i.e. Susy, LAP2, OMT, ATPaseβ, see below), indi-

cating a process specific for proteins involved in the

photosynthetic apparatus. Since data are deriving from

six replicates for each experiment (with two biological

replicates) and SD detected for these proteins was low, it

can be postulated that the observed trend represents a

genuine differential accumulation among Bowman and

Bowman-Rph15 control samples ascribable to an un-

known alteration of the cellular homeostasis orche-

strated by the Rph15 resistance gene or by another

tightly associated sequence.

Carbohydrate metabolism

Two infection-modulated proteins identified in this

study are related to sugar metabolism: sucrose synthase

(SuSy, EC. 2.4.1.13) and adenosine diphosphate glucose

pyrophosphatase (AGPPase). SuSy accumulation was

significantly increased in infected leaves of the resistant

NIL (spot 2333 in Table 1; Figures 2 and 3). SuSy cata-

lyzes the reversible reaction from sucrose to fructose

and UDP-glucose and an increase in this activity usually

results in decreased starch biosynthesis. In addition,

SuSy is the key enzyme of symplastic sucrose unloading

and in concert with invertases, it can modulate the sink

capacity of plant tissues [34]. SuSy has a dual role in

producing both cytosolic ADPG, directed to starch bio-

synthesis, and UDPG, necessary for cell wall material

and glycoprotein biosynthesis [35]. Defense-related SuSy

activity may serve to allocate sucrose into callose depos-

ition and other carbohydrate-consuming defense reac-

tions, as supported by the observation of an increased

SuSy activity in the resistant response of tobacco plants

to Phytophthora nicotianae [36] and in several other

plant–pathogen interactions (reviewed in [37]). A leaf

rust infection-dependent induction of a callose synthase

gene was observed in the present work (Figure 1B), sug-

gesting re-directioning of sugars to structural compo-

nents of the cell wall to constitute physical barriers to

the infection.

A consistent decrease in ADP-glucose pyrophospha-

tase (AGPPase) abundance (spot 2962 in Figures 2 and

3) was observed in infected tissues of the resistant geno-

type only. AGPPase catalyzes ADP-glucose breakdown

to produce AMP and G1P, and its reduced accumula-

tion/activity drastically lead to a reduction in starch bio-

synthesis [38,39].

There are increasing evidences that the availability of

soluble carbohydrates is a major factor in determining

plant resistance to infections. The results of plant-

pathogen interactions also depend on the rapid

mobilization of carbohydrates and on the reprogram-

ming of the carbon flow from sucrose to hexoses [36].

The data about SuSy and AGPPase suggest that in the

resistant genotype under infection there could be a

redirection of primary metabolism that leads to a reduc-

tion of starch biosynthesis in order to provide a strong

supply to the hexoses pool. To further verify the role of

sugar metabolism in Rph15-mediated response to leaf

rust, an evaluation of reducing sugars and sucrose was

conducted on control and inoculated conditions in both

NILs (Bowman and Bowman-Rph15) (Table 2). While

sucrose content was not affected by infection, reducing

sugars were slightly but significantly increased (of about

12%) by inoculation in the resistant NIL and significantly

decreased in the susceptible one. The reducing sugars

increase supports a re-direction of the hexoses pool to

defence pathways activated in the resistant NIL in re-

sponse to the leaf rust pathogen infection.

Protein degradation

Protein spot number 2449 (Table 1; Figures 2 and 3) was

characterized as a leucine aminopeptidase (LAP2) pro-

tein. LAP2 accumulation was observed in the inoculated

sample of the resistant NIL only. Aminopeptidases rep-

resent plant responses to wound and pathogen stresses

[40,41] and their activity (in association to other pepti-

dases) is involved in the turnover of unfolded or

damaged proteins that accumulate as a result of the oxi-

dative burst. Furthermore, the role of aminopeptidases

in the genesis of bioactive peptides in animals [42] and,

more recently, in plants [43] highlighted their possible

contribution in defence responses signalling. The modu-

lation of the levels of LAP2 observed was Rph15 resist-

ance gene-dependent, consequently this protein could

have a role both at the level of protein turnover, since

the Rph15 resistance response would most likely involve

an HR-associated oxidative burst, and/or in resistance

gene signalling. The fact that LAP2 is more abundant in

Bowman-Rph15 line under infection reinforces the idea

that protein degradation could be one of the main

mechanisms contributing to resistance deployment.

Table 2 Levels of reducing sugars and sucrose in the

leaves at 4 dpi or after mock inoculation

Reducing sugars Sucrose

(μmol g-1 fr. wt) (mg g-1 fr. wt)

NILs Bowman Control 6.39a 30.15a

± 0.19 ± 2.66

Inoculated 5.87b 29.52a

± 0.09 ± 2.58

Bowman-Rph15 Control 6.09α 29.02α

± 0.29 ± 2.79

Inoculated 6.85β 29.89α

± 0.25 ± 0.55

The data are the means ± SE of three experiments run in triplicate (n = 9).

Different letters on the values indicate significant difference P-values (P < 0.05)

of the t-TESTs performed comparing control and inoculated samples.
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Defence responses

Two protein spots (2886 and 2956, Table 1, Figures 2

and 3) were respectively identified as chitinase and chiti-

nase III-like. Protein abundance significantly decreased in

the inoculated samples of the resistant NIL only at 4 dpi,

while in the susceptible NIL the levels of chitinases were

not affected. For both chitinases, the level of accumulated

proteins was however constitutively higher in mock-

inoculated tissues of the resistant NIL with respect to the

susceptible one. This behaviour supports the possibility

that a higher constitutive level of these defence proteins is

associated with resistance and it operates as an early de-

fence barriers against the pathogen infection. Similar

results were found in the interaction between wheat and

Septoria tritici where a higher chitinase activity, measured

on whole leaf extracts, was observed in control with re-

spect to inoculated plants during the first 7 dpi but the en-

zymatic activity did not correlate well with resistance in

the host or the infection course of the pathogen [44]. Plant

chitinases, however, are classified into seven classes (I-

VII), on the basis of their structure, substrate specificity,

mechanisms of catalysis, and sensitivity to inhibitors, with

several members for each class [45,46]. Therefore it can-

not be excluded that in the present work only two specific

members of this class of defence proteins with peculiar

roles in defence were detected.

Secondary metabolism

Spot 2613 was identified as a flavonoid 7-O-methyltrans-

ferase and the production of this protein was enhanced

in infected leaves of the resistant NIL while in the sus-

ceptible NIL infection resulted in a significant down ac-

cumulation of the protein (Figures 2 and 3). This

enzyme, that accumulated faster in incompatible interac-

tions between barley and powdery mildew with respect

to compatible interactions, was demonstrated to prefer-

entially catalyze the methylation of the flavone apigenin,

most likely leading to the production of phytoalexins

[47]. Since methylated flavonoids have been found to

have more antifungal activity than their unmethylated

precursors [48,49], it is plausible that the protein accu-

mulation in Bowman-Rph15 represents a resistance

gene-mediated defence response coupled to pathogen

recognition, while in the susceptible NIL a successful

leaf rust colonization is associated to the suppression of

defence responses leading to reduction of 7-O-methyl-

transferase protein. Several fungal pathogens demon-

strate to secrete protein effectors capable in suppressing

resistance gene-based and basal defence responses

[50-53]; it is therefore possible that P. hordei secreted

effectors contribute to pathogen proliferation and dis-

ease development during the interaction with the sus-

ceptible NIL.

Transcript analysis and correlation with proteomic data

Eight genes involved in protein accumulation changes

were evaluated at the transcription level by quantitative

RT-PCR (qRT-PCR) using RNAs obtained from inocula-

tion time course experiments that included also the

inoculations time points used for proteomics analyses

(Figure 5).

No or weak correlations between mRNA and protein

levels were observed for the LAP2, ATP synthase and

SuSy. For the last gene, only a weak correlation with the

proteomic data was observed in Bowman-Rph15 being

SuSy transcription up regulated until 3 dpi but then

down regulated. This transcriptional response is coher-

ent with both the observed increase of Susy protein

(Figure 3) and reducing sugars (Table 2) at 4 dpi. In

Bowman, SuSy gene expression increased from 3 to 4

dpi suggesting a delayed plant response to the fungus.

Nevertheless, bibliographic data indicate that pathogen

responsiveness of SuSy transcription is highly variable

ranging from down regulation during a barley-B. grami-

nis f. sp. tritici non-host interaction [54] to enhanced

transcription observed in Arabidopsis plants infected

with Plasmodiophora brassicae [55] and in phytoplasma-

infected grape plants [56].

In agreement with the proteomic data, expression of

RuACS and AGPPase genes decreased at 3 to 4 dpi,

while transcript levels of the two chitinase genes tested

decreased in the resistant NIL starting from 3 dpi. Pro-

teomics and transcription analyses both suggested an

up-regulation of flavonoid 7-O-methyltransferase in

Bowman-Rph15 after leaf rust infection while the gene

transcription was repressed by pathogen infection in the

susceptible NIL. An up-regulation for the flavonoid

7-O-methyltransferase gene was observed also during a

transcript profiling study of the broad spectrum race-

nonspecific leaf rust resistance gene Lr34 after

interaction with P. triticina, but not in the compatible

interaction or in the race-specific resistance gene Lr1

[5], thus supporting a possible important role of this

enzyme in defence responses involving lignin biosyn-

thesis and production of phytoalexins antimicrobial

compounds [57].

In our experiments we observed that, for the time

points subjected to parallel proteomics and transcrip-

tomic analyses, 62,5% of the protein changes correlate

with the transcriptomic data, since for five genes out of

8 analyzed, an agreement was observed between protein

accumulation and transcriptional change at the corre-

sponding time points. Higher level on incongruent ex-

pression between mRNAs and proteins was however

frequently observed by other groups, in other species

and experimental conditions [58-62] and is most likely a

result of the biology of gene expression which includes

various levels of regulation during protein synthesis:
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Figure 5 Gene expression analysis of eight target genes. Quantitative RT-PCR at 1, 2, 3, 4 and 5 dpi for eight genes in leaves of Bowman

(open circles) and Bowman-Rph15 (open squares). Values are expressed as log2 fold changes of transcript levels in the inoculated samples with

respect to the transcript levels in mock-inoculated barley leaves. Numbers and name abbreviations are corresponding to those in Table 1. Error

bars represent SD across all RT-PCR replicates (three from each of two independent inoculations). Statistical significance of differential expression

for the tested genes was evaluated with a Wilcoxon two group test (P<0.05, Methods).
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post-transcriptional, translational, and post-translational.

Thus, integrated analysis of both mRNAs and proteins is

crucial to gain further insights into complex biological

systems.

Conclusions
In this work, proteomics and a complementary tran-

scriptomic approaches were applied to two NILs differ-

ing for the presence of the highly effective broad

spectrum Rph15 leaf rust resistance gene. The genetic

materials analysed allows to relate the observed

responses to the presence/absence of the resistance gene.

We observed that the susceptible NIL was basically un-

responsive to pathogen infection at the time points ana-

lyzed, indicating that basal defences are suppressed and/

or delayed by pathogen effectors or by the lacking of ef-

fective signalling pathways. In a study on the susceptible

interaction between the leaf rust pathogen P. triticina

and wheat, changes in proteome were identified only

after 6 dpi [12], indicating that a similar delay in defence

towards leaf rusts could represent a common feature of

susceptible genotypes. In Bowman, a substantial tran-

scripts down regulation in infected tissues, with respect

to control samples, was observed for SuSy, LAP2 and

chitinases, while down regulation of both, protein and

transcripts, was observed for flavonoid 7-O-methyltrans-

ferase, supporting a suppression of defence responses by

pathogen effectors. In the resistant genotype we

observed a reduction of RuLC degradation products

together with a down regulation of RuACS and ATP

synthase. These responses could be associated to the re-

direction of the metabolism to sustain defence responses

and, possibly, to cellular damage caused by HR

responses. Protein changes for Bowman-Rph15 also sup-

ports a i) carbohydrate metabolism variation leading to a

reduction in starch biosynthesis possibly connected to

allocation of sugars into carbohydrate-consuming de-

fence reactions (this hypothesis was confirmed by the

quantification of reducing sugars), ii) an increase of pro-

teins related to proteolitic activities and iii) accumulation

of enzymatic proteins involved in phytoalexin and lignin

production. These responses were observed in the resist-

ant NIL only and are therefore dependent from the re-

sistance pathways activated, upon pathogen recognition,

by the Rph15-mediated resistance signalling. Since none

of these changes were highlighted at 24 hpi, it can be

assumed that accumulation of defence-related proteins

starts in the interval between 24 hpi and 4 dpi. In con-

clusion, the proteomic approach adopted, complemented

with transcriptomic analysis, provided a picture about

the timing, entity and the nature of differential defence

responses in basal resistance and Rph15-gene mediated

resistance.

Methods
Fungal and plant materials

The study was performed with barley leaf rust causal

agent Puccinia hordei isolate 4, kindly provided by Prof.

Brian J. Steffenson (Department of Plant Pathology, Uni-

versity of Minnesota, USA). The fungus urediniospores

were propagated on the susceptible barley cv. Bowman

and stored at −80°C. Inoculation was carried out after

spores activation by short thermal shock at 37°C. Active

spores were implemented on Bowman barley leaves and

then collected to infect barley seedlings.

Two barley (Hordeum vulgare) lines, near-isogenic

(NILs) for the leaf rust resistance gene Rph15, were used

in this study. The cv. Bowman is susceptible to the leaf

rust isolate 4 while the line Bowman-Rph15 is resistant.

These barley genotypes were kindly provided by Prof.

Jerry Franckowiak (North Dakota State University,

USA). All barley seedlings were grown at 16 h (21°C) in

the light and 8 h (16°C) in the dark in growth chamber.

Barley seedlings at the first-leaf stage were inoculated

with the spores of the leaf rust isolate 4. Rust spores

were mixed with talcum powder (1:10 v/v) and used for

barley leaves infection at a density of about 200 spores

per cm2. Mock inoculation of the two NILs was carried

out with talcum powder only. Seedlings were transferred

for 24h at 20°C in complete darkness and 100% humid-

ity, and then placed at 20°C with 14 h in the light and 10

h in the dark with 60% humidity. Two biological repli-

cates were performed for each experiment. At the end of

the infection time points, leaf samples were collected

and stored at −80°C.

Protein extraction

Barley leaf tissues were transferred into a pre-chilled mor-

tar where they were ground to a fine powder with a pestle

in liquid nitrogen and homogenized in extraction buffer

(0.5 M Tris–HCl pH 8.0, 0.7 M sucrose, 10 mM sodium

fluoride, 1 mM PMSF, 0.1 mg mL-1 Pefabloc, 0.2% (v/v)

Triton X-100, 2 μL mL-1 Phosphatase Inhibitor Cocktail

(Sigma), 0.2 (v/v) β- mercaptoethanol) and PVPP 1% on

ice. Phenol extraction method of proteins was according

to [63] with few modifications. Samples were centrifuged

at 4500 g at 4°C for 40 min and the pellet was dried. The

pellet was solubilized in isoelectrofocusing buffer (7 M

Urea, 2 M Thiourea, 3% w/v CHAPS, 1% w/v NP40, 50

mM DTT, 2% v/v ampholytes), incubated at room

temperature for 1 h and centrifugated at 10000 rpm for 10

minutes at room temperature. Supernatant was collected

and stored at −80°C until further use. Protein concentra-

tion was determined by 2D Quant Kit (GE Healthcare)

and Bradford method, according to manufacturer’s

instructions (Biorad protein assay kit), using BSA as the

standard. For each sample two different extractions were

performed.
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Two-dimensional electrophoresis

Protein samples (300μg) were loaded on pH 4–7, 24 cm

IPG strips (GE Healthcare Life Sciences, USA) passively

rehydrated 10 hours in 7 M urea, 2 M thiourea, 3% (w/

v) CHAPS, 1% (w/v) NP40, 10 mM DTT, 0.5% (v/v)

ampholytes, traces of Orange G before use in reswelling

tray under mineral oil. IEF was conducted at 20°C with

current limit of 75μA/strip in a Ettan IPGphor III (GE

Healthcare Life Sciences, USA) following the manufac-

turer’s protocol. After IEF, strips were equilibrated by

gentle stirring for 15 minutes in an equilibration buffer

(100 mM Tris–HCl pH 6.8, 7 M urea, 2 M thiourea,

30% (w/v) glycerol, 2% (w/v) SDS) added with 0.5% (w/

v) DTT for disulfide bridges reduction, and for add-

itional 15 minutes in the same equilibration buffer sup-

plemented with 4.5% (w/v) iodoacetamide for cysteine

alkylation and 0.002% (w/v) bromophenol blue. Second-

dimensional SDS-PAGE [64] was run in 12.5% acryl-

amide gels using ETTAN DALTsix apparatus (GE

Healthcare Life Sciences, USA). Running was conducted

for 30 min at 5 W/gel followed by 15 W/gel, until the

bromophenol blue dye front left the gel. Three technical

replicates were performed for each biological replicate.

Experimental pI was determined using a 4–7 linear scale

over the total length of the IPG strip. Mr values were

calculated by mobility comparison with protein standard

marker included in fluorescent staining (Molecular

Probes, Inc.)

Protein visualization and data analysis

Silver staining: after SDS-PAGE Tris-Tricine, gels were

fixed in ethanol/acetic acid solution and stained with silver

nitrate as previously described [65]. Coomassie staining:

proteins were visualized using colloidal Coomassie Bril-

liant Blue G-250 (cCBB) procedure, as previously

described [66]. Images of gels stained with silver and Coo-

massie were scanned with an EPSON ScanMaker i900

MicroTek Scanner. Fluorescent staining: as a fluorescent

stain for total proteins, the SYPRO Ruby stain (Molecular

Probes), with a sensitivity of 0.5-5 ng of protein [67], was

used. After 2-DE, gels were fixed twice in 50% (v/v)

methanol and 7% (v/v) acetic acid for 30 minutes. Each

single gel was immersed overnight in SYPRO Ruby and

then destained in 10% (v/v) methanol and 7% (v/v) acetic

acid and finally washed in deionized water. Fluorescent

gel images were acquired on Typhoon 9210 laser scanner

(GE Healthcare) at 280 nm and 450 nm excitation and

610 nm bandpass emission filter. Spot detection, matching

and image analysis were performed using ImageMaster

2D Platinum Software 6.0 (GE Healthcare Life Sciences,

USA). Automatic matching was complemented by manual

matching. Spot volumes were normalized and expressed

as the percentage of the total volume of all the spots

present in the gels (six replicate gels for each condition).

During the analysis, only spots showing at least two-fold

change in their relative volumes were considered for sub-

sequent analyses. In order to find differentially expressed

proteins, the values were log(z+1) transformed and sub-

jected to a two-way ANOVA test to verify if their changes

in expression were statistically significant (p<0.05), using

genotypes and treatments as factors. The softwares Systat

and STATISTICA were used for statistical analysis.

Protein in-gel digestion and mass spectrometry protein

characterization

Spots were excised from cCBB-stained 2-DE gels and in-

gel digested with trypsin [Sequencing grade modified

Trypsin V5111, Promega, Madison] as previously

described [68]. The LC-ESI-MS/MS experiments were

conducted using a Surveyor (MS pump Plus) HPLC sys-

tem directly connected to the Nano-ESI source of a Fin-

nigan LCQ DECA XP MAX ion trap mass spectrometer

(ThermoFisher Scientific Inc., Waltham, USA). Chroma-

tography separations were carried out on a ZORBAX

300SB-C18 column (75 μm I.D × 150 mm length, 3.5

μm particle size, Agilent Tecnologies W), using a linear

gradient from 5 to 60% solvent B [solvent A: 0.1% (v/v)

formic acid; solvent B: ACN containing 0.1% (v/v) for-

mic acid] with a flow of 300 nl/min. Nano-ESI was per-

formed in positive ionization mode with spray voltage

and capillary temperature set to 1.7 kV and 180°C, re-

spectively. Data were collected in the full-scan and data

dependent MS/MS mode with collision energy of 35%

and a dynamic exclusion window of 3 min. Spectra were

searched by TurboSEQUESTW incorporated in Bio-

worksBrowser 3.2 software (ThermoFisher Scientific

Inc., Waltham, USA) against the Hordeum vulgare pro-

tein subset (7825 entries) and against the Hordeum vul-

gare EST subset (525775 entries), both downloaded from

the National Center for Biotechnology Information

(www.ncbi.nlm.nih.gov). The searches were carried out

assuming parent ion and fragment ion mass tolerance of

± 2 Da and ± 1 Da, respectively, one possible missed

cleavage per peptide, fixed carboxyamidomethylation of

cysteine and variable methionine oxidation. Positive hits

were filtered on the basis of peptides scores [Xcorr ≥ 1.5

(+1 charge state), ≥ 2.0 (+2 charge state), ≥ 2.5 (≥ 3

charge state), ΔCn ≥ 0.1, peptide probability < 1 × 10-3

and Sf ≥ 0.70] [69]. If needed, identified peptides were

used in protein similarity search performed against the

Viridiplantae subset of the NCBI-nr database using the

FASTS algorithm [70]. Physical properties of the charac-

terized proteins were predicted by in silico tools at

ExPASy (www.expasy.org) (Additional files 1 and 2).

Western blot analysis

Samples (5 μg) were diluted with an equal volume of

SDS-PAGE buffer [50 mM Tris–HCl (pH 6.8), 4% (w/v)
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SDS, 12% (w/v) glycerol, 2% (v/v) b-mercaptoethanol,

and 0.01% (w/v) bromophenol blue] and heated for

5 min at 90°C, separated by SDS-PAGE using 10.0%

acrylamide according to Laemmli (1970) and then elec-

trophoretically transferred to a polyvinylidene difluoride

(PVDF) filter using a semidry blotting system (NovaBlot,

Pharmacia, Sweden) with a buffer containing 10 mM 3-

cyclohexylamino-1-propanesulphonic acid (CAPS, pH 11

with NaOH) and 10% methanol. Filters were blocked for

1 h with TBS-T buffer [50 mM Tris–HCl (pH 7.6), 200

mM NaCl, and 0.1 % (v/v) Tween 20] supplemented with

3% (w/v) of albumine. The TBS-T buffer was used as an

incubation medium throughout the procedure. Filters

were incubated overnight at 4°C with primary polyclonal

antibodies against Rubisco large subunit using a 1:10.000

dilution (Agrisera, AS03 037). After washing with TBS-T,

the filters were incubated for a further 2 h at room

temperature with a secondary antibody (alkaline-

phosphatase-conjugated anti-rabbit immunoglobulin G).

The blot was developed with nitroblue tetrazolium and

5-bromo-4-chloro-3-indolyl phosphate (FAST BCIP/

NBT, Sigma). Three technical replicates were performed

for the hybridization analyses. Quantification of the

RuBisCO degraded forms was conducted by using the

software Image Quant (Molecular Dynamic), version 5.2.

RNA extraction and quantitative RT-PCR analysis

Eight target genes identified from proteomics analysis

were selected for transcriptional analysis. Total RNA

was extracted from 500 mg of frozen leaves powder of

mock-inoculated and P. hordei-inoculated plants using

TRI reagentW solution (Applied Biosystems, Foster City,

CA, USA), according to manufacturer’s instruction. The

RNA pellet was dissolved in 100 μl of autoclaved DEPC

water and then stored at −80°C. RNA was extracted in a

time course experiments from 24 hours to 5 days after

pathogen inoculation. Nucleic acid quality was estimated

using the Bioanalyzer software (Agilent Technologies,

Santa Clara, CA, USA), while RNA concentrations were

measured with a spectrophotometer (Beckman Coulter,

CA, USA) and only RNA samples with an A260/A280

ratio in the range 1.8-2.0 were used in RT-PCR analysis.

Sequences of the primers and reaction conditions used

for RT-PCRs were as previously described [71]. Quanti-

tative RT-PCR was performed using a One Step Real

Time PCR System (Applied Biosystems, Foster City, CA,

Table 3 List of the genes whose transcription profile was evaluated by qRT-PCR

Gene name Accession
number

Primer 50-30 primer sequences

Oxalate oxidase Y14203 F CTGGCTGTTGAAGGACACAA

R TGACTCCGGAAACAAGCTCT

Callose synthase AY177665 F CATCAAGGAATCAGCTGCAA

R TCGCATGAACAAAGAGTTCG

Sucrose synthase X65871 F AAGCTGAAAGGCCATATCCGTT

R AGAATGCAGGCTGCACAAATG

Adenosine
diphosphate glucose
pyrophosphatase

AJ291451 F TCATCAGCTCCTCCTCCAAC

R TGCCACCGTTGTACTGGTAG

Flavonoid 7-O-methyltransferase X77467 F CGAGGCTTTCCCTTATGTCA

R ACTCCATCATGTCACCAGCA

Leucine Aminopeptidase 2 AK248195 F TCGGGCTCACCAAGGCCAACG

R GAGGATGTCGCCCTTCCAGTCG

Rubisco activase M55447 F TCCAAAAACTTCATGACCCTGC

R CGAACACAAGCTCACACTGGAA

ATP synthase B chain EU963772 F AGAAGGCCGCACTGTTTGACT

R CATCCATGAACTTGCCTAGCG

Chitinase X78672 F GCCACGTCTCCACCCTACTA

R ACCGTTCTGAAGGACACCAC

Chitinase III AK251032 F TAAGCTGTGCCGACTGAATG

R CACTGCAAACCACAACATCC

Actin AJ234400 F ACCTCGCTGGGCGTGACCTAACTG

R TGGTCTATGGATTCCAGCAGCTTCC

For each gene the accession number and primer sequences are provided.
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USA) and 100 ng of total RNA per reaction. Primers

were designed using Primer3 software (http://frodo.wi.

mit.edu/primer3/) (Table 3) and primers specificity was

evaluated by blasting primer sequences against the NCBI

database. The barley β-actin constitutively expressed

gene was used as reference gene for normalization.

Standard variation in all samples was lower than 10%.

PCR amplifications were performed in 25 μl of final

volumes containing 2x QuantiFast SYBRW Green Master

Mix (Qiagen, Hiden, Germany) and including ROX™ as

passive reference dye, 400 μM each primer and 0.25 U/μl

Multiscribe™ Reverse Transcriptase (Applied Biosys-

tems). Three technical replicates for each of the two

biological replicates were performed. Relative gene ex-

pression was calculated using the 2-ΔΔCt method [72].

For all the genes tested by quantitative RT-PCR, a Wil-

coxon two group test [73,74] was used to analyze the

ΔCt values (Ct target-Ct βact) in infected and un-infected

samples at each time point of inoculation. Data from

two biological replicates with three technical replicates

each were used for the analysis. In all the time points

where an increased or decreased transcription of the

genes in response to pathogen inoculation was

observed, the test yielded P-values <0.05, indicating that

ΔΔCt was significantly different from 0 and that there

was a significant effect. No statistically different ΔΔCt

values were observed for samples in which no transcrip-

tional variations were detected by quantitative RT-PCR.

Determination of reducing sugars and sucrose

Reducing sugars, sucrose and amino acids were

extracted by homogenizing frozen tissues in 5 volumes

of ice-cold 0.5 M perchloric acid (PCA). The homogen-

ate was centrifuged for 20 min at 11,000 g at 4°C and

the resulting pellet was washed with the same volume of

PCA and then centrifuged again in the same conditions.

KOH was added to the collected supernatant (to pH 7.6)

to remove excess PCA. Reducing sugars were measured

according to the colorimetric method by [75]. Total sol-

uble sugars were determined by the same method boil-

ing an aliquot of PCA extract for 1 h before

neutralization. Sucrose was estimated from the differ-

ence between total soluble and reducing sugars.

Additional files

Additional file 1: Caption of Additional file 2.

Additional file 2: Data on protein identification by LC-ESI-MS/MS

and bioinformatic analysis. Table shows the sequence of the peptides

identified by MS/MS and the statistical information related to peptides,

proteins and alignment analyses.
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