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Abstract 

Chemical synapses in the brain connect neurons to form neural circuits, providing the structural and functional bases 

for neural communication. Disrupted synaptic signaling is closely related to a variety of neurological and psychi-

atric disorders. In the past two decades, proteomics has blossomed as a versatile tool in biological and biomedical 

research, rendering a wealth of information toward decoding the molecular machinery of life. There is enormous 

interest in employing proteomic approaches for the study of synapses, and substantial progress has been made. Here, 

we review the findings of proteomic studies of chemical synapses in the brain, with special attention paid to the key 

players in synaptic signaling, i.e., the synaptic protein complexes and their post-translational modifications. Looking 

toward the future, we discuss the technological advances in proteomics such as data-independent acquisition mass 

spectrometry (DIA-MS), cross-linking in combination with mass spectrometry (CXMS), and proximity proteomics, 

along with their potential to untangle the mystery of how the brain functions at the molecular level. Last but not 

least, we introduce the newly developed synaptomic methods. These methods and their successful applications 

marked the beginnings of the synaptomics era.
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Introduction
In the nervous system, the term synapse refers to the 
junction between two neurons or between a neuron and 
its target effector cells. Chemical synapses, compris-
ing a presynaptic terminal, a postsynaptic terminal, and 
the synaptic cleft between them, are specialized struc-
tures for fast and precise unidirectional signal transduc-
tion and are classified primarily according to the type of 
transmitters involved [1]. As the minimal computational 
units in the central neural system, synapses interconnect 
billions of neurons into neural circuits, playing a crucial 
role in neuronal communication and functioning of the 
brain. Growing evidence has implicated synaptic abnor-
malities in various brain disorders, including psychiatric, 

neurodevelopmental, and neurodegenerative disorders 
[2, 3].

Proteomics is the characterization of all of the proteins 
in a biological system, such as an organelle, a cell, a tissue, 
or even an organism. Classified by research perspectives, 
there are expression proteomics, structural proteomics, 
and functional proteomics. Gel-based proteomics stud-
ies have been flourishing for a while [4, 5], and begin-
ning from this century, liquid chromatography–mass 
spectrometry (LC–MS)-based shotgun proteomics stud-
ies emerged, with advantages such as robustness, high 
throughput, low labor requirement, and compatibilities 
with hydrophobic proteins and labeling strategies [6]. 
After two decades of rapid development, tens of thou-
sands of proteins can now be studied in a high-through-
put manner [7, 8]. Proteomics has already become an 
indispensable research tool for protein expression profil-
ing, post-translational modifications (PTMs) detection, 
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protein–protein interactions (PPIs) exploration, and 
biomarker discovery and validation, providing multidi-
mensional insights into dynamic physiological and path-
ological processes in cells [9].

Proteomics met neuroscience in 1999, when a rat brain 
protein database containing 210 different proteins was 
constructed by combining two-dimensional electropho-
resis (2-DE) and matrix-assisted laser desorption ioniza-
tion mass spectrometry (MALDI-MS) [10]. �e concept 
“neuroproteomics” was proposed in 2009, with a high 
expectation that proteomics could explain the complexity 
of the brain at the molecular level, from aspects including 
protein expression, function, bioinformatics and clinical 
application [11]. Over the past 20 years, proteomic tech-
nologies have increasingly been applied in neuroscience, 
and several excellent reviews have covered the achieve-
ments and challenges in this area [11–16].

Here, we focus on the proteomic studies of chemi-
cal synapses for the important role they played in brain 
development and functioning. We scrutinize the synaptic 
proteome in a functional context, look into the molecu-
lar mechanisms underlying brain disorders, and discuss 
the current opportunities, challenges, and trends in neu-
roproteomics. Proteomics approaches are widely used in 
the search for biomarkers of neurological and psychiatric 
disorders; however, these studies are beyond the scope of 
this review, and interested readers are referred to a recent 
review for an overview of this research field [17].

Mapping the synaptic proteome
Despite being small in size, the synapse is surprisingly 
complex [18, 19]. It contains thousands of various pro-
teins, whose spatiotemporal expression and dynam-
ics remain a daunting challenge for researchers. In this 
section, we review the discoveries made over the past 
20  years regarding the synaptic proteome, with discus-
sions about sample preparation and the molecular com-
ponents of the different subsynaptic structures.

Sample preparation

A typical proteomic experiment contains major steps 
of sample homogenization, protein extraction, protein/
peptide separation, and MS detection. In a synaptic pro-
teomic analysis, usually the first step is to prepare syn-
aptic samples from brain tissues or cultured cells. After 
being extracted from the samples, synaptic proteins can 
be separated by sodium dodecyl sulfate-polyacrylamide 
gel electrophoresis (SDS-PAGE) or 2-DE, and the pro-
tein-containing gels are cut into pieces and enzymatically 
digested; the other path is to digest the collected proteins 
first, then use chromatographic techniques, usually the 
combination of strong cation-exchange (SCX) chroma-
tography and capillary reversed-phase high-performance 

liquid chromatography (RP-HPLC), for peptide fraction-
ation. Usually, the last step is mass spectrometry (MS) 
detection: properly separated peptides were sent to MS 
for identification and/or quantification. Data-dependent 
acquisition (DDA) and data-independent acquisition 
(DIA) are two modes used for data collection in MS-
based proteomic analysis, which we’ll discuss later. Fig-
ure 1 illustrated the major steps and methods commonly 
used in proteomic analysis of synapses.

�e characterization of subcellular compartments 
relies primarily on the capability of subcellular fractiona-
tion techniques to reduce sample complexity and detect 
low-abundance proteins [20, 21]. One of two approaches 
is typically used to prepare synaptic samples: the bio-
chemical fractionation approach utilizes differential and 
density-gradient centrifugation methods to isolate syn-
aptic vesicles or artificial vesicles derived from synapses 
based on their unique density, while the protein-based 
approaches, including immunoisolation [22–25], affin-
ity purification [26], fluorescence-activated synaptosome 
sorting [27] and proximity labeling methods [28, 29], iso-
late synaptic protein complexes or assemblies associated 
with the targeted proteins (Fig.  1). Both approaches are 
widely used and have their advantages. Generally speak-
ing, biochemical fractionation enriches synapse-related 
vesicles with similar biophysical and biochemical prop-
erties, while the protein-based approaches have higher 
selectivity and can discriminate subtypes of synaptic vesi-
cles [27] or synaptic assemblies derived from different 
types of synapses [22, 23].

Synaptosome

�e term synaptosome, created in 1964, refers to the 
membrane-bound sac containing vesicles that separate 
from synapses when brain tissue is homogenized under 
certain conditions [30]. As the synaptosome preserves 
all the main structural features of the nerve terminals, 
is relatively homogeneous, and has physical properties 
resembling those of other subcellular organelles, it has 
become an important window to examine the molecular 
machinery of the synapses. In 2003, a study combined 
MS with several separation techniques, including SDS-
PAGE, SCX chromatography, and capillary RP-HPLC, 
to study the synaptic plasma membrane proteins. �e 
authors identified several relevant synaptic proteins, 
including various transporters, receptors, ion channels, 
and enzymes, showing the effectiveness of this multidi-
mensional separation method in profiling the proteome 
of membrane-associated organelles [31]. �e scope of 
synaptosome proteomics has since expanded from com-
paring protein components of different synaptic vesicle 
pools [25] and screening synaptosome subtypes [27] to 
identifying long-lived synaptic proteins [32] and age- and 
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brain region-specific changes in synaptic protein expres-
sion in animal disease models [20], which have greatly 
enriched our understanding of the molecular basis of 
synaptic signaling.

Presynaptic components

�e presynaptic terminal is the distal termination of an 
axon where neurotransmitters are released. �e function 
of the presynaptic terminal is precisely regulated and is 
associated with brain function and diseases such as Alz-
heimer’s and Parkinson’s [33–35]. Integrated proteom-
ics and systems biology approaches have been applied 
to obtain the molecular map of this neuronal sub-com-
partment, resulting in a core list of 117 proteins and 92 
predicted presynaptic proteins [35]. �e presynaptic 
active zone (PAZ) is a specialized region of the presynap-
tic plasma membrane, where synaptic vesicles dock and 
fuse and neurotransmitters are released by exocytosis 
[36]. Using antibodies against synaptic vesicle protein 2, 
researchers were able to isolate and analyze the presyn-
aptic compartment containing the PAZ, leading to the 
identification of 240 proteins, including synaptic vesicle 
proteins, adhesion molecules, and proteins involved in 
intracellular signal transduction [24].

�e presynaptic proteome becomes dysregulated under 
certain disease conditions. For example, the expression of 

several presynaptic markers is reduced in the hippocam-
pal synaptic proteome of mice with a cognitive defect, 
consistent with the evidence of compromised presynaptic 
morphology and abnormal synaptic function in this brain 
region [37]. Proteomics approaches have also been used 
to reveal the proteins in presynaptic mitochondria that 
are important during brain development. Specifically, 
two independent quantitative proteomics approaches, 
i.e., the sequential window acquisition of all theoreti-
cal fragment ion mass spectra (SWATH-MS) and stable 
isotope labeling by amino acids in cell culture (SILAC), 
identified 40 mitochondrial proteins that are differen-
tially expressed in mice between postnatal day 7 and day 
42, including MitoNEET (Cisd1), which was revealed as 
a key regulator of mitochondrial function and postnatal 
brain development [38].

Chemical synapses rely on synaptic vesicles for signal 
transmission. A review of proteomic studies of synaptic 
vesicles published in 2007 compared different methods 
for synaptic vesicle separation and characterization, and 
highlighted the importance of analyzing subpopulations 
of synaptic vesicles [39]. A quantitative comparison of 
glutamatergic and GABAergic synaptic vesicles revealed 
that only a small portion of their proteins differ from each 
other (50 of > 450) [23]. Consistent with this result, quan-
titative comparison of glutamate- and GABA-specific 

Fig. 1 Major steps and methods in proteomic analysis of chemical synapses
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docking complexes revealed only a few proteins that 
were differentially enriched in these two types of syn-
apses, indicating high conservation of the core molecular 
machinery of the presynaptic docking sites [22].

Synaptic clefts

�e synaptic cleft is the space between pre- and postsyn-
aptic terminals, which is now considered a structurally 
and functionally integral compartment of the synapse. 
Although the inability to biochemically isolate the clefts 
make the characterization of this structure challenging, 
the emerging proximity labeling proteomics approaches 
bring opportunities to explore the protein composition 
and changes in this specialized compartment. By per-
oxidase-mediated biotin labeling methods, researchers 
revealed that numerous ion channels, G protein-coupled 
receptors, adhesion proteins, and transporters reside in 
the synaptic cleft along with novel cleft candidates, and 
uncovered differences between excitatory glutamatergic 
and inhibitory GABAergic synaptic clefts [28, 29]. �ese 
studies not only demonstrated the power of proximity 
labeling approaches for parsing the molecular properties 
of traditionally unpurifiable structures, but also enriched 
our understanding of synaptic signaling and inspired bio-
logical hypotheses (e.g., the potential role of Mdga2 as a 
specificity factor at inhibitory synapses [29]).

On the postsynaptic side

�e main function of the postsynaptic terminal is to 
receive signals from the presynaptic terminal and trans-
duce them to intracellular electrical and biochemical 
signals, thus activating downstream cascades leading to 
various cellular processes.

�e postsynaptic density (PSD) is a complex, dynamic 
specialized region of the excitatory synapse that is 
observed as an approximately 30  nm-thick electron-
dense membrane-associated structure under an electron 
microscope [40]. Over the past few decades, effort has 
been made to obtain a comprehensive picture of this pro-
tein-dominant compartment, with more than 2100 pro-
teins identified and quantified [41–48]. �e reported PSD 
proteome comprises various neurotransmitter recep-
tors, cell adhesion molecules, signal enzymes, scaffold 
proteins, cytoskeleton proteins, and membrane trans-
porters. �e PSD composition of excitatory synapses 
is highly conserved between mice and humans, but the 
abundances of some key proteins differ, including that of 
some receptors and adaptor proteins that are reported to 
be involved in synaptic plasticity [49].

Many of the PSD proteins have been implicated in 
a wide range of brain disorders [50, 51]. A study in 
2011 isolated PSD from human neocortex and identi-
fied 1,461 proteins [52]. Bioinformatic analysis revealed 

that mutations in these proteins were related to 133 
neurological and psychiatric diseases and were par-
ticularly enriched in neural phenotypes involving cog-
nition and motor functions [52]. Moreover, 143 of 700 
proteins identified from PSD fractions of anterior cin-
gulate cortex were differentially expressed in patients 
with schizophrenia, implicating NMDA-interacting 
and endocytosis-related proteins in the pathophysiol-
ogy of schizophrenia [53]. �ese authors also identified 
288 differentially expressed proteins in bipolar disorder, 
highlighting the important role of synaptic function and 
energy pathways in psychiatric diseases [54]. �e role of 
PSD components in neurodevelopmental and neurode-
generative disorders has also been investigated [55, 56]. 
Nevertheless, our current understanding of this highly 
complex and dynamic structure remains limited and 
much work is still needed to elucidate its role in various 
pathological processes. As shown in a meta-analysis of 
mental disorder-related neuroproteomic studies, identi-
fication of key neural pathophysiological pathways was 
hindered by the poor reproducibility among independent 
experiments, and there were at least two reasons for this 
problem: one was technical reasons common to all prot-
eomic experiments and the other was non-technical fac-
tors that specific to brain studies, including the high level 
of heterogeneity in the molecular pathophysiology of 
mental illnesses and the high biological variability found 
among human samples [57]. While it’s impossible to 
change the intrinsic features of biological samples, there 
are things doable to address the challenges, e.g., to use 
much larger number of samples (especially when work-
ing with human samples), more replicates, highly stand-
ardized procedures and detailed reports of parameters 
throughout the entire experiment from sample collection 
to data processing and report.

Inhibitory synapses

Normal functioning of the brain depends on the orches-
tration of excitatory and inhibitory synapses, and an 
imbalance between them is implicated in many neuro-
pathological processes [58]. Excitatory and inhibitory 
postsynaptic assemblies differ in protein components, 
molecular organizations, and biological functions [59]. 
However, compared with the number of studies on 
excitatory synapses, there are relatively few studies on 
inhibitory synapses. An early study once reported that 
inhibitory synapses lack cell signaling proteins because 
they didn’t find any in their study of inhibitory synaptic 
complexes isolated by affinity purification [26]; however, 
a later study using a more sensitive proximity-labeling 
approach has revealed that there is a huge and elabo-
rate protein network that reside at inhibitory PSD and 
mediates postsynaptic inhibition [60]. �is network was 
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composed of a wide variety of proteins including neu-
rotransmitter receptors, adhesion molecules, scaffold 
proteins, transporters and cytoskeletal regulators, and 
shared a number of signaling proteins such as Cnksr2 
and Arhgap39 with excitatory PSD, suggesting a much 
higher complexity of the inhibitory synapse than previ-
ously appreciated [60].

Synaptic proteomics in a functional context
While mapping of the proteome is an important step 
toward a complete understanding of synapse, investi-
gation of the organization and regulatory mechanisms 
of synaptic proteins in a functional context is needed 
to comprehend synaptic signaling. With the inherent 
advantages in studying PPIs and PTMs, MS-based prot-
eomic approaches have already become an indispensable 
tool in parsing the protein complexes and their dynamics 
in synaptic signaling.

Synaptic protein complexes

Multiprotein complexes play essential roles in the organi-
zation and functioning of the synapse. �ey provide 
unique intracellular microenvironments for proteins 
to interact and for reactions to occur precisely and effi-
ciently. �is is most obvious in the PSD, as it contains a 
collection of scaffold proteins which become the hubs of 
the postsynaptic signaling network [61]. Coupled with 
subsequent MS identification, affinity pulldown and co-
immunoprecipitation (co-IP) are regularly used methods 
for protein complex characterization. �e Grant lab was 
one of the pioneers in utilizing proteomic tools to study 
synaptic complexes. �ey explored the organization and 
functional implications of the NMDA receptor complex 
[62, 63] and PSD95 complex [64], and published a series 
of enlightening reviews in the early days of the proteomic 
era that predicted the wide use of proteomic approaches 
in neuroscience research [65–68]. Later, complexes 
of other key synaptic proteins were resolved one after 
another, including PSD95 [69, 70], the SHANKs [71], 
SynGAP [72], PSD-93 [73], FMRP [74–76], and metabo-
tropic glutamate receptors [77–80]; besides, the interac-
tions among them mediated by some specific domains 
also attracted much attention [81, 82]. �e interactome 
of GTPase-activating proteins and guanine exchange fac-
tors in PSD indicated their close association with the core 
scaffolding machinery of glutamate receptors, reflecting 
their active role in regulating GTP signaling from recep-
tors to downstream targets [83]. Another study identified 
the interactomes of Kalirin-7 and Trio, demonstrating 
the importance of the interaction between Kalirin-7 and 
neuroligin-1 for normal synaptic function [84]. At the 
same time, other groups have expanded the focus from 
single protein complexes to dynamic PPI networks. In 

one of our previous work, we conducted a large-scale 
postsynaptic interactome study and identified 2876 pro-
teins across 41 in vivo interactomes in the mouse cortex, 
thus presenting a spatiotemporal profile of the PSD sign-
aling network and a glimpse of the assembly process of 
the PSD core network during development [61].

Although synaptic proteins have been implicated in 
many brain disorders and injuries [2, 51], their patho-
physiology remains largely unknown. In recent years, a 
number of genetic research and genome-wide association 
studies have identified groups of synaptic proteins as risk 
factors in psychiatric disorders such as schizophrenia and 
autism spectrum disorders (ASD) [85–88], suggesting the 
central role of synaptic dysfunction in the etiologies of 
these diseases. Translation of these genetic findings into 
a physiological understanding of the underlying molecu-
lar mechanisms is a challenge faced by researchers, and 
proteomics has appeared as a powerful tool to fill the gap. 
For example, a comparison of glutamate synapse pro-
tein interactomes from different autism mouse models 
revealed specific and overlapping signal networks that 
molecularly distinguish the disease [89]. More recently, 
it was reported that PSD-93 interacts with SynGAP and 
mediates its ubiquitination and degradation, a process 
that may aggravate ischemic brain injury [73].

PTM analysis

Versatile and dynamic PTMs are key features of the 
synaptic proteome, and accumulating evidence have 
indicated that the dysregulation of PTM homeostasis is 
associated with several pathological processes in the cen-
tral nervous system, including neurodegenerative and 
neurodevelopmental disorders [90, 91]. MS-based pro-
teomics is currently the most widely used approach in 
PTM analysis, shedding light on the functioning of the 
synaptic signaling machinery [92].

Phosphorylation endows the synaptic signaling net-
work with high information-processing capacity and 
functional diversity, which are closely related to synaptic 
functions, including synaptic plasticity [93, 94]. It is also 
the most widely studied PTM, with mature phosphopro-
teomic procedures established over the years [95, 96]. 
Since the first mouse synaptic phosphoproteome map 
drawn in 2005 [97], much work, including ours, has been 
done to dissect the phosphorylation sites and changes 
under different physiological conditions, rendering valu-
able clues toward the mechanisms underlying synaptic 
functions [93, 98–102]. One of our previous work com-
pared the phosphorylation status of the PSD proteins 
from mouse hippocampus before and after the induction 
of long-term potentiation, and found that the phospho-
proteins regulated by long-term potentiation represented 
“PSD risk factors” for a number of psychiatric disorders 



Page 6 of 18Xu et al. Mol Brain           (2021) 14:37 

[102]. Another study focusing on the presynaptic side 
used KCl to stimulate cultured hippocampal neurons and 
identified six temporal patterns of coregulated phospho-
proteins, in which PAZ scaffold proteins showed a high 
level of activity-dependent phosphorylation-based regu-
lation [98]. Phosphoproteomic approaches have been 
used to investigate the synaptic changes related to sleep 
by three groups independently, with interesting discov-
eries showing widespread alterations in the phospho-
rylation status of synaptic proteins during sleep and the 
profound molecular disturbances caused by sleep depri-
vation [99–101].

�e phosphorylation status of single synaptic proteins 
and their subsequent functional influences have also 
been under investigation. �e synaptic protein CASK, a 
member of the membrane-associated guanylate kinase 
family, can be phosphorylated by the kinase-like pro-
tein CDKL5 to promote synaptogenesis [103]. A study of 
ubiquitin protein ligase UBE3A found that protein kinase 
A phosphorylates its T485 residue to regulate the devel-
opment of dendritic spines and forestall the development 
of ASD [104]. �e protein TAOK2, whose genetic locus 
was associated with ASD and schizophrenia in a copy 
number variation study [105], mediates PSD-95 stability 
and dendritic spine maturation through phosphorylation 
of Septin7 [106].

How the phosphoproteome is regulated with efficiency 
and precision is a fascinating question. A recent review 
summarized the phosphoproteomic studies of the PSD 
over the years, with a focus on the components of the 
phosphorylation regulatory machinery, i.e., the kinases, 
phosphatases, and several protein domain modules, and 
described the general rules of the phosphoproteome-
associated PSD signaling organization [107].

Besides phosphorylation, other forms of PTMs in syn-
apses have started to receive attention in recent years. 
A research published in 2019 reported that DIP2A, 
encoded by a gene associated with susceptibility for 
ASD, affects synaptic transmission and morphology by 
regulating the acetylation of cortactin [108]. Ubiquitina-
tion plays multifaceted roles in a number of neuronal 
processes by controlling the quality and abundance of 
various proteins and has been implicated in neurode-
velopmental disorders such as ASD and Angelman syn-
drome [109, 110]. A quantitative proteomic study showed 
that the ubiquitin protein ligase UBE3A mediates the 
ubiquitination and degradation of phosphotyrosyl phos-
phatase activator and affects spine morphology through a 
signaling pathway involving protein phosphatase 2 [111]. 
Table 1 summarizes proteomic studies of some key PSD 
proteins, providing classified information of their subcel-
lular locations, associated diseases, molecular functions, 
PPI and PTM studies, and related references.

Trends in neuroproteomics
Advances in proteomic technologies have created more 
opportunities for deeper exploration of the brain. With 
the iterative upgrade of mass spectrometers and the 
development of novel experimental methods, including 
DIA, chemical cross-linking in combination with mass 
spectrometry (CXMS) and proximity proteomics, it will 
be possible to achieve in-depth analysis of protein PTMs 
and signaling network dynamics. At the same time, to 
answer the fascinating biological questions, such as the 
spatiotemporal landscapes of synaptic proteome and 
the molecular bases of various brain diseases, the great 
potential of proteomic tools needs to be further explored 
(Fig. 2). It is the interplay of advancing proteomic tech-
nologies and the emerging scientific questions that form 
the current trends and driving forces of neuroproteom-
ics, leading to profound insights into neurobiology.

Advances in proteomic technologies

DIA and in‑depth PTM analysis

Although the importance of PTMs in cell signaling has 
long been recognized, our understanding of most PTMs 
is still in its infancy. PTMs typically feature low abun-
dance, multiple locations, and dynamic changes, which 
make in-depth analyses extremely difficult. �e concept 
of DIA was proposed in 2004 as a new MS method, in 
which the spectrum data were acquired based on the 
sequential isolation and fragmentation of preset pre-
cursor windows until a desired mass range was cov-
ered, independent of the m/z value or signal strength 
of the peaks [171]. In the past decade, DIA developed 
rapidly and has been successfully implemented in many 
domains of biological research [172], largely due to 
the development of various DIA schemes (e.g., all-ion 
fragmentation [173], SWATH [174, 175], multiplexed 
DIA [176], hyper-reaction monitoring [177], SONAR 
[178], and BoxCar [179]) and robust data processing 
tools (e.g., OpenSWATH [180], DIA-Umpire [181, 182], 
Spectronaut Pulsar [183], and DeepNovo-DIA [184]). 
Compared with the output from traditional DDA 
mode, DIA selects and fragments all peptides with a 
signal stronger than noise, rendering unbiased quanti-
tative data with higher speed, coverage, precision, and 
reproducibility [185], and making large-scale in-depth 
PTM analyses a reality. �rough targeted optimization 
of experimental DIA methods and algorithms, a recent 
study quantified more than 20,000 phosphopeptides 
in a 15 min liquid chromatography–MS analysis [186]. 
Besides phosphorylation, DIA has also been utilized to 
study the changes to histone PTMs induced by the lead 
compound acridone derivative 8a, presenting quanti-
tative methylation and acetylation data for epigenetic 
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Table 1 Proteomic studies of important synaptic proteins

Gene name Associated  diseasea Molecular function Subsynaptic location PPI studies PTM studies Brain region-
speci�c 
 studiesb

GRIA1 Impaired intellectual 
development

AMPA glutamate 
receptor

Postsynaptic [43, 112–120] Phosphorylation [121, 
122]

Nitrosylation [123]

1–7
[124]
2–4
[125]

GRIA2 Neurodevelopmental 
disorder

GRIA3 Intellectual develop-
mental disorder

GRIA4 Neurodevelopmental 
disorders

GRIN1 Neurodevelopmental 
disorder

NMDA glutamate 
receptor

Postsynaptic [63, 126–134] Phosphorylation [93, 
127, 135, 136]

Ubiquitination [133]

1–4, 6, 8, 9, 10
[130]

GRIN2A Epilepsy

GRIN2B Mental retardation; 
Epileptic encepha-
lopathy

GRIN2C N/A

GRIN2D Epileptic encepha-
lopathy

GRM1 Spinocerebellar ataxia G-protein coupled 
receptor for gluta-
mate

Postsynaptic [79, 80, 137–143] Phosphorylation [144] 2, 3
[77]GRM3 N/A

GRM4 N/A

GRM5 N/A

GRM6 Congenital stationary 
night blindness

GRM7 Neurodevelopmental 
disorder

DLG1 N/A Scaffold protein Postsynaptic [64, 69, 70, 145–147] N/A N/A

DLG2 N/A

DLG3 Mental retardation

DLG4 Intellectual develop-
mental disorder

CAMK2A Mental retardation Calcium/calmodulin-
dependent protein 
kinase

Postsynaptic [148, 149] Phosphorylation 
[149–154]

Carbonylation [155]

N/A

CAMK2B Mental retardation

CAMK2D N/A

CAMK2G Intellectual develop-
mental disorder; 
early infantile epilep-
tic encephalopathy

SHANK1 N/A Scaffold protein Postsynaptic [71, 156, 157] Phosphorylation [158] 3, 5
[159, 160]
2, 3, 5
[161]

SHANK2 Autism

SHANK3 Schizophrenia; 
Phelan-McDermid 
syndrome

SYNGAP1 Mental retardation RAS GTPase activating 
protein

Postsynaptic [83, 162] Phosphorylation [72, 
163, 164]

Ubiquitination [73]

2
[165]

HOMER1 N/A Adaptor proteins Postsynaptic [101, 166] N/A N/A

HOMER2 Deafness

HOMER3 N/A

NLGN1 Autism Adhesion proteins Postsynaptic [167, 168] N/A N/A

NLGN2 N/A

NLGN3 Autism

NLGN4 Autism; Mental retar-
dation
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analyses [187]. �ere is reason to believe that with the 
continuous improvement of experimental methods 
and software toolkits, sophisticated DIA workflows 
will greatly accelerate PTM research in the near future, 
becoming a powerful tool for the in-depth study of syn-
aptic signaling mechanisms.

CXMS and the investigation of direct PPIs

Most proteins accomplish their tasks through interac-
tions with other proteins. Only with a detailed under-
standing of a protein’s interactors can we begin to probe 
its function and the consequences of its mutation. Pop-
ular methods for PPI identification include the yeast 

a Data were collected from the Online Mendelian Inheritance in Man database (https ://www.omim.org/)

b Brain regions represented by numbers (1) Olfactory bulb; (2) Cortex; (3) Hippocampus; (4) Cerebellum; (5) Striatum; (6) Thalamus; (7) Brain stem; (8) Putamen; (9). 

Colliculus; (10) Hindbrain

Table 1 (continued)

Gene name Associated  diseasea Molecular function Subsynaptic location PPI studies PTM studies Brain region-
speci�c 
 studiesb

NRXN1 Pitt-Hopkins-like 
syndrome 2; schizo-
phrenia

Adhesion proteins Presynaptic [169, 170] N/A N/A

NRXN2 N/A

NRXN3 N/A

Fig. 2 Trends in neuroproteomics

https://www.omim.org/
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two-hybrid system [188], Förster resonance energy trans-
fer (FRET) method [189, 190], and MS-based methods 
such as affinity chromatography [191] and co-IP [192]. 
However, these methods have limitations. In the yeast 
two-hybrid system, the yeast cell may not provide a suit-
able cellular environment for in  vivo PPIs that occur in 
mammalian cells; FRET measured by fluorescence life-
time microscopy is expensive and low throughput, which 
makes it most suitable for hypothesis-driven experi-
ments; with affinity chromatography and co-IP, it is dif-
ficult to tell between direct and indirect PPIs.

CXMS uses chemical agents to link two amino acids 
that are within a certain spatial distance (usually 7–40 Å, 
depending on different cross-linkers) and can react with 
the cross-linker via valence bonds [193]. �e cross-linked 
products are analyzed by MS-based proteomics to iden-
tify interactors and direct interface regions [194, 195]. 
�e advantages of CXMS include relatively low cost, 
suitability for detecting transient and loose interactions, 
ease of excluding contaminants, and the ability to differ-
entiate between direct and indirect interactions. �e last 
decade has seen an increase in studies employing CXMS 
for protein complex analysis [196]. �e first application 
of CXMS for the study of synaptic protein complexes was 
published recently, in which researchers identified nearly 
12,000 unique cross-links within and between 2362 pro-
teins [197]. Most cross-links identified here were loop 
links, i.e., the cross-linker reacted with two amino acids 
within the same protein; nevertheless, it marked the first 
direct PPI map of mouse brain synapses and was seen as 
an illuminating proof of the concept of applying CXMS 
in complex biological samples.

Proximity proteomics and the exploration of protein 

neighbors

Another emerging method for studying protein interac-
tions is proximity proteomics. For this method, certain 
enzymes are attached to the target protein to generate 
small molecules, which can covalently label proteins. �e 
short half-life of the small molecules ensures that only 
the close neighbors of the target protein are labeled for 
subsequent enrichment and analysis [198–200]. It has a 
larger spatial range (from ten to hundreds of nanometers) 
than chemical cross-linking, enabling its use for explor-
ing weak and transient protein interactions as they occur 
in  vivo [201, 202]. Proximity proteomics has found its 
arena in the study of synapses, where receptors, scaffold-
ing proteins, kinases, cytoskeleton proteins, and various 
regulatory molecules are closely arranged to form a pre-
cisely controlled, highly orchestrated signaling network, 
and it has demonstrated its usefulness in the analysis of 
excitatory synaptic clefts, a subcellular compartment that 
cannot be isolated by traditional biochemical methods 

[28]. Based on the enzyme used to generate the small 
tags, proximity labeling methods can essentially be clas-
sified into two categories: peroxidase-based and biotin 
ligase-based proximity labeling [203]. A landmark study 
of the application of proximity proteomics in neurosci-
ence was published in 2016, in which unique features of 
excitatory and inhibitory synaptic clefts was revealed by 
the peroxidase-based APEX proteomics [29]. In the same 
year, researchers from Duke University and their collabo-
rators employed a biotin ligase-based proximity labeling 
approach, the proximity-dependent biotin identification 
(BioID) approach, to identify inhibitory postsynaptic 
proteins, and uncovered a functionally diverse protein 
assemblage that regulates postsynaptic inhibition [60]. 
�ree years later, the same group published their study of 
nascent synapses by in vivo version of BioID (iBioID) and 
revealed a novel mechanism underlying excitatory synap-
togenesis [204]. �e group also shared their protocol for 
the iBioID proximity proteomics method [205], provid-
ing an easily adapted technique for the study of substruc-
tures that are difficult to purify. Although most proximity 
labeling methods are still in the early stages of application 
and have some limitations such as stimulations to cells or 
poor labeling efficiency [203], its unique advantages (e.g., 
not limited by the availability of antibodies, the ability 
to specifically label target proteins in a certain cell type 
when combined with conditional gene expression tech-
niques) are increasingly being noticed by researchers. It 
complements classical IP methods, showing potential for 
a comprehensive map of synaptic PPI network.

Appealing biological questions

Depicting the spatial molecular landscape of the brain

As the most complex organ in mammals, the brain is 
anatomically divided into different regions, each with 
distinct cell types and arrangements, and associated with 
various physiological functions and pathological pro-
cesses [206, 207]. A brain region- and cell type-specific 
proteome map is of unique importance for understand-
ing brain functioning and the molecular basis of related 
diseases. Large-scale proteome analysis of ten brain 
regions and cell types in mice revealed that, in line with 
the functional specificity, protein expression patterns 
showed cell type- and region-related diversity [208]. 
Furthermore, subregions within an area can be distin-
guished, such as the different protein expression profiles 
for CA2 and CA1 subregions within the hippocampus 
[209]. In 2008, a quantitative proteomic study comparing 
PSD preparations from the mouse cortex, midbrain, cere-
bellum, and hippocampus revealed that the hippocampus 
had the highest kinase and phosphatase contents, with 
relatively high overall phosphorylation levels, indica-
tive of a large amount of synaptic signal transduction in 
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this area [210]. Researchers have also found significant 
molecular heterogeneity between PSD fractions purified 
from rat forebrain and cerebellum [211]. A more recent 
study showed high regional diversity of the mouse post-
synaptic proteome, with up to 74% of proteins exhibiting 
differential expression and a unique compositional signa-
ture in each region [212]. �e functions of specific brain 
regions in pathological processes have also been under 
investigation: a team from Switzerland obtained PSD 
proteomes from striatal and hippocampal tissues of adult 
Shank3 mutant mice and revealed novel brain region-
specific alterations associated with ASD risk genes [160]. 
Recently, the same group performed proteomic analysis 
of the pre- and postsynaptic compartments in different 
brain regions of male and female adult mice and reported 
new sets of the region- and sex-specific synaptic proteins 
[213]. Another collaborative study used  Shank3B−/− 
mutant mice to show that during the second and third 
postnatal weeks, the striatal synaptic proteome is exten-
sively remodeled, implicating the abnormal maturation 
of striatal circuits in the behavioral deficits exhibited by 
these mice [214]. Regional profiling of PSD proteins has 
also been conducted using human neocortex samples 
and, by integrated analysis of genetic and proteomic data, 
provided relevant information to identify brain regions 
involved in behavioral pathology [215].

�e brain comprises a complex network of various cell 
types and fiber bundles, and efforts have been made to 
reveal the protein components of specific synaptic types, 
such as the parallel fiber-Purkinje cell synapse [216]. Cell 
type-specific proteomics is an emerging frontier leading 
to discoveries of functional and molecular diversities, 
including recent analyses on brain mitochondria [217] 
and the psychiatric disorder-related protein DISC1 inter-
actome [218]. Furthermore, proteins can have more than 
one subcellular location, executing distinct functions 
with different partners. Many PSD proteins form distinct 
multiprotein complexes inside and outside the PSD [61], 
indicating the need for spatial profiling on a more pre-
cise scale. �e relationships and regulatory mechanisms 
of these complexes may be the key to understanding syn-
apse-to-nucleus signaling.

Tracing the temporal changes during development

Brain development is a complex and protracted process 
involving the formation, strengthening, and elimina-
tion of synapses [219]. �e importance of developmental 
analyses has long been recognized, and the first large-
scale proteomic analysis of synaptic development was 
published in 2007, which utilized stable isotope labeling 
in mammals to quantitatively compare synaptic proteins 
in mouse cerebellum at four postnatal stages (post-natal 
day 1 (p1), p10, p20, and p45) of development [220]. 

�ese researchers used the same approach in a subse-
quent study of synaptosomal and mitochondrial frac-
tions from three rat brain regions at four postnatal time 
points to identify novel regulators of neurodevelopment 
[221]. Other quantitative proteomic approaches, includ-
ing the multiplexed iTRAQ method [222] and label-free 
quantitation [61], have also been utilized in the study 
of the synaptic proteome dynamics during rodent brain 
development. Findings from the spatiotemporal profiling 
of the PSD proteome indicated that postnatal day 7 is a 
key time point in synaptic development when a complete 
three-layer scaffold structure of PSD first forms [61]. On 
the timescale of lifespan, tools have been developed to 
identify age-dependent gene regulatory events and the 
results showed the postnatal developmental changes in 
the synaptic proteome and their relevance to the age of 
disease onset for specific neurological disorders, includ-
ing schizophrenia [223]. More recently, the molecular 
and morphological features of five billion excitatory syn-
apses were depicted across the mouse brain from birth to 
old age, representing the most comprehensive analysis of 
synapses during development and aging so far [224].

Unveiling the mysteries of brain disorders

Brain disorders, including developmental, psychiat-
ric, and neurodegenerative disorders, affect individu-
als of different ages and represent a major challenge to 
human health. Proper brain function depends on orderly 
and controlled neuronal excitation and inhibition. As 
the basic connecting and computing unit in the cen-
tral nervous system, synapses are crucial to all forms of 
brain activity and synaptic proteins had been implicated 
in many brain disorders [225]. �us, the development 
of effective therapy for these disorders depends on an 
in-depth understanding of the molecular and functional 
organization of synapses.

Proteomics has long played an indispensable role in 
the discovery and verification of biomarkers for brain 
disorders [17], and studies are increasingly oriented 
towards exploring the pathological mechanisms under-
lying various brain disorders. In a recently published 
work, researchers found that the astrocytic cystine/glu-
tamate antiporter system xc(-) regulated corticostriatal 
neurotransmission, and influenced social preference 
and repetitive behavior in mice, providing important 
clues toward the neural mechanisms related to ASD and 
obsessive–compulsive disorder [226]. Synaptic proteome 
abnormalities related to several psychiatric disorders 
have been revealed in the last decade, and a number of 
signaling pathways are involved [54, 160, 227, 228]. For 
example, GABAA receptor blockade in the hippocam-
pus improved synaptic plasticity in an Alzheimer’s dis-
ease mouse model, leading to the identification of several 
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proteins that contribute to learning and memory func-
tions in this disease [229]. We have studied the spatial 
distribution and maturation of PSD interactomes, as well 
as the phosphorylation network regulated by long-term 
potentiation, and found that these networks converge at a 
number of highly connected nodes, which also represent 
PSD risk factors for many psychiatric disorders [61, 102]. 
�us, pathological processes underlying these disorders 
likely involve the loss of PSD protein interactions and the 
subsequent dysregulation of synaptic signaling.

Future perspectives
Recent years have seen solid progress in the research 
field of synapses boosted by the orchestration of genetic, 
genomic, and proteomic studies. In 2019, a large-scale 
collaborative study established the Synaptic Gene Ontol-
ogy (SynGO) database, an evidence-based, expert-
curated knowledge base for “discovering the synapse” 
[230]. It features detailed and traceable annotations of 
synaptic proteins, offering a universal reference and a 
powerful yet convenient online platform to facilitate the 
study of synapses.

In the latest study from one of the leading labs in the 
field of proteomics, researchers combined technolo-
gies such as DIA-proteomics, DIA-phosphoproteomics, 
proximity labeling, and cross-linking MS to reveal how 
a mutation in the tumor-driving gene Dyrk2 affects 
downstream cellular processes [231], demonstrating the 
great potential of multilayered proteomics for decoding 
the molecular machinery of life. At the same time, with 
continued improvements in mass spectrometers and 
sample processing methods, single-cell proteomics has 
stepped onto the stage, making more specific and accu-
rate descriptions of molecular dynamics feasible [232]. 
Specific to the study of synapses, with the combination of 
genetic labeling and imaging methods, spatial diversity of 
synaptic proteins could now be seen with single-synapse 
resolution across all regions of the mouse brain [233, 
234]. �ese new methods have recently been applied on 
a brain-wide scale to examine the protein composition of 
individual synapses throughout the mouse lifespan, and 
spatiotemporal changes of synapse composition with 
potential relevance to intellectual ability and behavio-
ral disorders have been discovered [224]. �ese brilliant 
works represent the beginnings of synaptomics and will 
be extended with more proteins being examined in vari-
ous physiological and pathological conditions, delivering 
new insights into our understanding of the synapses and 
the brain.
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