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Background: Surface-enhanced laser desorption/ioniza-
tion (SELDI) is an affinity-based mass spectrometric
method in which proteins of interest are selectively
adsorbed to a chemically modified surface on a biochip,
whereas impurities are removed by washing with
buffer. This technology allows sensitive and high-
throughput protein profiling of complex biological
specimens.
Methods: We screened for potential tumor biomarkers
in 169 serum samples, including samples from a cancer
group of 103 breast cancer patients at different clinical
stages [stage 0 (n � 4), stage I (n � 38), stage II (n � 37),
and stage III (n � 24)], from a control group of 41
healthy women, and from 25 patients with benign breast
diseases. Diluted serum samples were applied to immo-
bilized metal affinity capture Ciphergen ProteinChip®

Arrays previously activated with Ni2�. Proteins bound
to the chelated metal were analyzed on a ProteinChip
Reader Model PBS II. Complex protein profiles of
different diagnostic groups were compared and ana-
lyzed using the ProPeak software package.
Results: A panel of three biomarkers was selected based
on their collective contribution to the optimal separa-
tion between stage 0–I breast cancer patients and non-
cancer controls. The same separation was observed
using independent test data from stage II–III breast
cancer patients. Bootstrap cross-validation demon-
strated that a sensitivity of 93% for all cancer patients
and a specificity of 91% for all controls were achieved by
a composite index derived by multivariate logistic re-
gression using the three selected biomarkers.

Conclusions: Proteomics approaches such as SELDI
mass spectrometry, in conjunction with bioinformatics
tools, could greatly facilitate the discovery of new and
better biomarkers. The high sensitivity and specificity
achieved by the combined use of the selected biomark-
ers show great potential for the early detection of breast
cancer.
© 2002 American Association for Clinical Chemistry

On the basis of National Cancer Institute incidence and
National Center for Health Statistics mortality data, the
American Cancer Society has estimated that breast cancer
will be the most commonly diagnosed cancer among
women in the US in 2002. Breast cancer is expected to
account for 31% (203 500) of all new cancer cases among
women, and 39 600 will die from this disease (1 ). Pre-
symptomatic screening to detect early-stage cancer while
it is still resectable with potential for cure can greatly
reduce breast cancer-related mortality. Unfortunately,
only �50% of the breast cancers are localized at the time
of diagnosis (2 ). Despite the availability and recom-
mended use of mammography as a routine screening
method for women 40 years of age and older, its effec-
tiveness in reducing overall population mortality from
breast cancer is still being investigated (3 ). Currently,
serum tumor markers, such as CA15.3, that have been
investigated for use in breast cancer detection still lack
the adequate sensitivity (23%) and specificity (69%) to
be applicable in detecting early-stage carcinoma in a large
population (4 ). The Food and Drug Administration-
approved tumor markers, such as CA15.3 and CA27.29,
are recommended only for monitoring therapy of ad-
vanced breast cancer or recurrence (5 ). New biomarkers
that could be used individually or in combination with an
existing modality for cost-effective screening of breast
cancer are still urgently needed.
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The classical approach for discovering disease-associ-
ated proteins is two-dimensional polyacrylamide gel elec-
trophoresis (2D-PAGE).1 Although 2D-PAGE is unchal-
lenged in its ability to resolve thousands of proteins, it is
labor-intensive, requires large quantities of protein, and is
not easily converted into a diagnostic test. Recent ad-
vances in mass spectrometry (MS), such as matrix-assisted
laser desorption/ionization time-of-flight MS, are begin-
ning to offer an alternative to 2D-PAGE. In this technique,
purified or partially purified proteins are mixed with a
crystal-forming matrix, placed on an inert metal target,
and subjected to a pulsed laser beam to produce gas-
phase ions that traverse a field-free flight tube and then
are separated according to their mass-dependent veloci-
ties (m/z) (6 ). However, some limitations in matrix-
assisted laser desorption/ionization, such as extensive
sample preparation and signal background problems re-
sulting from inorganic and organic contaminants, have
hindered it from being used as a high-throughput screen-
ing tool for proteins of interest in complex biological
samples. The development of surface-enhanced laser
desorption/ionization time-of-flight (SELDI-TOF) MS (7 ),
has largely overcome many of these limitations. SELDI is
an affinity-based MS method in which proteins are selec-
tively adsorbed to a chemically modified surface (Cipher-
gen ProteinChip® Arrays), and impurities are removed by
washing with buffer. The use of several different chro-
matographic arrays and wash conditions enables high-
speed, high-resolution chromatographic separations (8 ).
This technology has been used successfully to detect
several disease-associated proteins in complex biological
specimens, such as cell lysates, seminal plasma, and
serum (9–13).

SELDI-TOF MS offers high-throughput protein profil-
ing. Like many other types of high-throughput expression
data, protein array data are often characterized by a large
number of variables (the mass peaks) relative to a small
sample size (the number of specimens). An important
issue in analyzing such data to screen for disease-associ-
ated biomarkers is to extract as much information as
possible from a limited number of samples and to avoid
selecting biomarkers whose performances are influenced
mostly by non-disease-related artifacts in the data. The
effective and appropriate use of bioinformatics tools be-
comes very critical.

Here we report the use of SELDI with immobilized
metal affinity ProteinChip Arrays to screen for potential
serum biomarkers for early detection of breast cancer. A
total of 169 retrospective serum samples from patients
with or without breast cancer were obtained from Johns
Hopkins Clinical Chemistry serum banks and analyzed

simultaneously. Proteins bound to the chelated metal
(through histidine, tryptophan, cysteine, or phosphory-
lated amino acids) were analyzed on a ProteinChip
Reader Model PBS II (Ciphergen Biosystems). The com-
plex protein profiles were analyzed using a collection of
bioinformatics tools. A panel of three biomarkers was
selected based on their consistently significant contribu-
tion to the optimal separation of stage 0–I breast cancer
patients vs the noncancer controls (healthy � benign). The
effectiveness of the selected biomarkers was then tested
using independent data from stage II–III breast cancer
patients and through bootstrap cross-validation. Finally,
correlation of the concentrations of these biomarkers to
tumor size and lymph node metastasis was also investi-
gated.

Materials and Methods
samples
Retrospective serum samples were obtained from the
Johns Hopkins Clinical Chemistry serum banks. A total of
169 specimens were included in this study. The cancer
group consisted of 103 serum samples from breast cancer
patients at different clinical stages: stage 0 (n � 4), stage I
(n � 38), stage II (n � 37) and stage III (n � 24). Diagnoses
were pathologically confirmed, and specimens were ob-
tained before treatment. Age information was not avail-
able on six of these patients. The median age of the
remaining 97 patients was 56 years (range, 34–87 years).
The noncancer control group included serum from 25
patients with benign breast diseases (BN) and 41 healthy
women (HC). Exact age information was not available
from 21 healthy women. The median age of the remaining
20 healthy women was 45 years (range, 39–57 years). The
median age of the BN group was 48 years (range, 21–78
years). All samples were stored at �80 °C until use.

proteinchip array analysis
To 20 �L of each serum sample, we added 30 �L of a
solution containing 8 mol/L urea and 10 g/L CHAPS
in phosphate-buffered saline, pH 7.4. The mixture was
vortex-mixed at 4 °C for 15 min and diluted 1:40 (5 �L of
mixture plus 195 �L of phosphate-buffered saline) in
phosphate-buffered saline. Immobilized metal affinity
capture arrays (IMAC3) were activated with 50 mmol/L
NiSO4 according to manufacturer’s instructions (Cipher-
gen). Diluted samples (50 �L) were applied to each spot
on the ProteinChip Array by a 96-well bioprocessor
(Ciphergen). After the samples were allowed to bind at
room temperature for 60 min on a platform shaker, the
array was washed twice with 100 �L of phosphate-
buffered saline for 5 min, followed by two quick rinses
with 100 �L of distilled H2O. After air-drying, 0.5 �L of
saturated sinapinic acid prepared in 500 mL/L acetoni-
trile–5 mL/L trifluoroacetic acid was applied twice to
each spot. Proteins bound to the chelated metal (through
histidine, tryptophan, cysteine, or phosphorylated amino
acids) were detected with the ProteinChip Reader. Data

1 Nonstandard abbreviations: 2D-PAGE, two-dimensional polyacrylamide
gel electrophoresis; MS, mass spectrometry; SELDI-TOF, surface-enhanced
laser desorption/ionization time-of-flight; UMSA, Unified Maximum Separa-
bility Analysis; and AUC, area under the curve.
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were collected by averaging 80 laser shots with an inten-
sity of 240 and a detector sensitivity of 8. Reproducibility
was estimated using two representative serum samples:
one from the healthy controls and one from the cancer
patients. Each serum sample was spotted on all eight bait
surfaces of one IMAC-Ni array in each of the two biopro-
cessors. The CV was estimated for the selected mass
peaks.

bioinformatics and biostatistics
All spectra were compiled, and qualified mass peaks
(signal-to-noise ratio �5) with mass-to-charge ratios
(m/z) between 2000 and 150 000 were autodetected. Peak
clusters were completed using second-pass peak selection
(signal-to-noise ratio �2, within 0.3% mass window), and
estimated peaks were added. The peak intensities were
normalized to the total ion current of m/z between 2000
and 150 000. All these were performed using ProteinChip
Software 3.0 (Ciphergen). The only additional preprocess-
ing step was logarithmic transformation of the peak
intensity data. Such a transformation in general reduces
the range of intensity data. As a result, the variance of the
transformed peak intensity (across multiple samples)
tends to be less volatile over the entire length of the
spectrum.

The software package ProPeak (3Z Informatics) was
used to compute and rank the contribution of each
individual peak toward the optimal separation of two
diagnostic groups. ProPeak implements the linear version
of the Unified Maximum Separability Analysis (UMSA)
algorithm that was first reported for use in microarray
data analysis (14 ). The key feature of the UMSA algorithm
is the incorporation of data distribution information into a
structural risk minimization learning algorithm (15 ) to
identify a direction along which the two classes of data
are best separated. This direction is represented as a linear
combination (weighted sum) of the original variables. The
weight assigned to each variable in this combination
measures the contribution of the variable toward the
separation of the two classes of data.

Currently, ProPeak offers three UMSA-based analyti-
cal modules. The first is the Component Analysis Module,
which projects each specimen as an individual point onto
a three-dimensional component space. The components
(axes) are linear combinations of the original spectrum
peak intensities. The axes correspond to the directions
along which two prespecified groups of data achieve
maximum separability. The separation between the two
groups of data in the component space can be inspected in
an interactive three-dimensional display. If the separation
achieved using combinations of all peaks is acceptable for
a particular problem, the second module of ProPeak,
BootStrap Selection, is used to reduce the complexity of
the original data set. This module performs multiple runs
of UMSA. In each run, a fixed percentage of the samples
is randomly left out from both groups. The mean, the

median, and the corresponding SD of the ranks from
multiple runs are estimated for each peak. The bootstrap-
estimated SD of a peak’s rank provides the information
about the consistency of the peak’s ranking across multi-
ple randomly selected subpopulations of the samples. To
establish an objective peak selection criterion, in this
study the same bootstrap procedure was also applied to a
random dataset that, peak by peak, simulates the distri-
bution of the actual data. The minimum of the rank SDs
among all peaks in the simulated random data set was
used as the cutoff value for rank SD of the actual data to
select a subset of peaks that, in addition to being top-
ranked in their contribution to the separation of the data
groups, also demonstrated a consistency that was less
likely attributable to pure chance. Finally, the third mod-
ule of ProPeak applies a backward stepwise selection
procedure to compute a significance score for each peak.
The absolute value of the score is based on the peak’s
contribution to data separation and is in reverse relation
to the order in which it is removed from the initial list of
peaks. A positive or negative score indicates relatively
increased or decreased expression, respectively, of the
corresponding mass peak for the diseased group, whereas
the absolute value of the score represents its relative
importance toward data separation.

To identify potential biomarkers that can detect breast
cancer at early stages, protein profiles of specimens from
stage 0–I breast cancer patients were compared against
those of the noncancer controls. The analysis involved
multiple iterations using all three modules in ProPeak to
select from the original full set of mass peaks a small
panel of peaks that possessed a consistently high degree
of significance in the optimal separation between the two
selected diagnostic groups.

Once the small panel of biomarkers was selected, their
ability to detect breast cancer was evaluated using the
set-aside independent test data set of stages II and III
cancer patients. To assess the complementary perfor-
mance of multiple biomarkers, a composite index was
derived using multivariate logistic regression based on
the entire data set. Descriptive statistics including P
values from two-sample t-tests and ROC curve analysis
were provided for the selected individual biomarkers as
well as the composite index. To partially overcome the
limitation of lacking a full set of independent test data
other than those from the late-stage cancer patients, we
used the bootstrap procedure (16 ) to estimate key perfor-
mance criteria such as the sensitivity and specificity of the
composite index. In this procedure, the patient data set
was repeatedly divided through random sampling into a
training set to derive a composite index through logistic
regression and a test set for computing sensitivities and
specificities. The results from multiple runs were then
aggregated to form the bootstrap estimate of sensitivity
and specificity.
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Results
peak detection and data preprocessing
Serum proteins retained on the IMAC-Ni2� arrays were
analyzed on a PBS II mass reader. The high mass to
acquire was set to 150 kDa, with an optimization range
from 5 kDa to 30 kDa. A mass accuracy of 0.1% was
achieved by external calibration using the All-In-1 Protein
Standard (Ciphergen).

Among a total of 147 qualified mass peaks (signal-to-
noise ratio �5) detected, 61 peaks had m/z values be-
tween 2 and 10 kDa, 30 peaks had m/z values between
10 and 20 kDa, 33 peaks were between 20 and 50 kDa, and
23 peaks were between 50 and 133 kDa. Peaks with a m/z
�2 kDa were mainly ion noise from the matrix and
therefore excluded. Peak intensity was normalized to total
ion current (2–150 kDa), and logarithmic transformation
was applied. The plots in Fig. 1 illustrate the effect of
variance reduction and equalization through logarithmic
transformation.

biomarker selection based on early-stage cancer
and noncancer controls
To identify biomarkers with potential for early detection
of breast cancer, UMSA was performed using early-stage
cancer as the positive group (stage 0–I; n � 42) and the
noncancer controls (HC � BN; n � 66) as the negative
group. Separability between the two groups was first
tested using UMSA-derived liner combination of all 147
mass peaks. The early-stage cancer was separable from
the noncancer group when the entire protein profiles were
compared. Fig. 2A provides a snapshot of the early-stage
cancer (red) and the noncancer (green) data in the UMSA
component three-dimensional space.

To select biomarkers with consistent performance, we
repeatedly applied UMSA for a total of 100 runs, each
with a 30% leave-out rate, using the ProPeak BootStrap
module. We also applied the same procedure to a simu-
lated random data set. The minimal rank SD derived
from the simulated data was 7.0. Among the peaks with
top mean ranks from the actual experimental data, 15 had

Fig. 1. Effect of logarithmic transformation on data variance reduction
and equalization.

Fig. 2. Three-dimensional UMSA component plot of stage 0–I (red) or
stage II–III (blue) breast cancer vs noncancer controls (green).
(A), plot of training data: stage 0–I vs noncancer using UMSA-derived linear
combination of all 147 peaks. (B), plot of training data: stage 0–I vs noncancer
using the three selected peaks. (C), plot of training and test data: stage 0–I
(training data) and stage II–III (independent test data) vs noncancer (training
data), using the three selected peaks.
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a rank SD less than this value. They were selected as
candidate biomarkers for further analysis. Their mean
ranks and the corresponding rank SDs are plotted in
Fig. 3.

To further rank the peaks in this reduced set of
candidate biomarkers, we used the Stepwise Selection
module of ProPeak. The absolute value of the relative
significance scores of the 15 peaks are plotted in descend-
ing order in Fig. 4A, which shows that the majority of
separability between the two groups of data was contrib-
uted by the first six peaks. Among these six peaks, two
were identified by ProteinChip Software 3.0 as doubly
charged forms of the others. The recognition of both the
doubly charged and the singly charged forms of these
peaks suggests their importance in discriminating the
selected two diagnostic groups. Excluding the doubly
charged forms, the four unique peaks were further recom-
bined and evaluated using the Backward Stepwise Selec-
tion module of ProPeak. The recalculated relative signif-
icance scores are plotted in Fig. 4B. The top-scored three
peaks, designated BC1 (4.3 kDa), BC2 (8.1 kDa), and BC3
(8.9 kDa), were finally selected as the potential biomark-
ers for detection of breast cancer. Snapshots of three-
dimensional plots of stage 0–I or stage 0–III breast cancer
against the noncancer controls using these three biomar-
kers are shown in Fig. 2, panels B and C, respectively.
Among the three biomarkers, BC1 appeared to be down-
regulated (scored negative; data not shown), whereas BC2
and BC3 were up-regulated (scored positive; data not
shown). This is easily seen in Fig. 5, in which representa-
tive spectra and gel views of the selected biomarkers are
compared between cancer and noncancer controls.

evaluation of the selected biomarkers
The estimated CVs of the log-transformed peak intensities
were 6% for BC1, 7% for BC2, and 13% for BC3 (data not
shown). Among the three biomarkers, BC3 had the largest

CV of 13%. The descriptive statistics of these three bi-
omarkers are listed in Table 1. Fig. 6 shows results from
the ROC analysis. Among the three biomarkers, BC3
possesses the highest individual diagnostic power [area
under the curve (AUC), 0.934] compared with BC1 (AUC,
0.846) and BC2 (AUC, 0.795). Its distributions over the
diagnostic groups including clinical stages of cancer pa-
tients are plotted in Fig. 7A. The sensitivities and speci-
ficities of using BC3 alone at a cutoff value of 0.8 to
differentiate the diagnostic groups are listed in Table 2A.
The overall sensitivity for breast cancer was 85%, and
specificity was 91%.

combined use of three selected biomarkers
Multivariate logistic regression was used to combine the
three selected biomarkers to form a single-value compos-
ite index. The descriptive statistics of this composite index
are appended in Table 1. Its distributions over the various
diagnostic groups are plotted in Fig. 7B. ROC curve

Fig. 3. Fifteen peaks with top mean ranks (u) and minimal rank SDs
(�) derived from ProPeak Bootstrap Analysis.
Horizontal line at 7.0 was the minimum rank SD computed by applying the same
procedure to a randomly generated data set that simulated the distribution of the
original data.

Fig. 4. Plot of absolute values of the relative significance scores of
selected peaks based on contribution toward the separation between
stage 0–I breast cancer and the noncancer controls.
(A), the 15 peaks selected from ProPeak Bootstrap Analysis with rank SD �7.0.
(B), reevaluated scores of the selected top four peaks.
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analysis of the composite index gave a much improved
AUC (0.972) compared with the AUCs from individual
biomarkers (Fig. 6).

Bootstrap cross-validation was used to estimate the
diagnostic performance of the composite index (20 runs;
in each run, 70% samples were randomly selected for

Fig. 5. Representative spectra and gel views of the selected biomarkers.
(A), BC1 (4.3 kDa), down-regulated in cancer; (B), BC2 (8.1 kDa), up-regulated in cancer; and (C), BC3 (8.9 kDa), up-regulated in cancer. Left panels show the spectrum
views; right panels show pseudo-gel views of the same spectra. Both cancer and noncancer representatives were randomly selected, with no bias on stages in cancer
or between healthy and benign in noncancer.

Table 1. Descriptive statistics for BC1, BC2, BC3, and the logistic regression-derived composite index.a

Noncancer controls (n � 66)

Breast cancer patients

Stage 0–I (n � 42) Stage II–III (n � 61)

Mean SD Mean SD Mean SD

BC1 0.302 0.312 �0.118 0.244 �0.081 0.258
BC2 0.981 0.358 1.411 0.154 1.295 0.205
BC3 0.526 0.252 0.993 0.193 1.003 0.234
Composite index �0.375 0.313 0.425 0.257 0.349 0.242

a Differences between noncancer controls and stage 0–I and between noncancer controls and stage II–III are both statistically significant (P �0.000001) for all three
biomarkers and the composite index.
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composite index derivation and the remaining 30% for
testing). The estimated sensitivity (93%) and specificity
(91%) are listed in Table 2B.

correlation to tumor size and lymph node
metastasis
The concentrations of the three potential biomarkers were
evaluated in relation to pT (tumor size) and pN (lymph
node metastasis) categories. No significant correlation
was observed (data not shown).

Discussion
Because of the multifactorial nature of cancer, it is very
likely that a combination of several markers will be
necessary to effectively detect and diagnose cancer. To
look for such “fingerprints” of cancer, it will require not
only high-throughput genomic or proteomic profiling,
but also sophisticated bioinformatics tools for complex
data analysis and pattern recognition.

Taking advantage of the recent development in SELDI
and of the ProteinChip technology, we were able to
simultaneously analyze the protein profiles of 169 serum
samples from patients with or without breast cancer. The
software package ProPeak allows evaluation of each mass
peak according to its collective contribution toward the
maximal separation of the cancer patients from the non-
cancer controls. These two advances led to the identifica-
tion of three discriminatory biomarkers that, in combina-
tion, achieved both high sensitivity (93%) and high
specificity (91%) in detecting breast cancer patients from
the noncancer controls.

Early detection remains one of the most urgent issues
in breast cancer research. To find biomarkers particularly
sensitive to differences between early-stage breast cancer
patients and noncancer controls, the selection of mass
peaks reported here was performed using stage 0–I
cancer and noncancer controls as the training data and

later-stage cancer as test data. However, the biomarkers
that were used in the final selection were not sensitive to
the stages of cancer patients used in the selection process.
In fact, whether the combinations used were stage II vs
noncancer, stage III vs noncancer, or a randomly selected
subset of cancer patients at all stages against noncancer
controls, the same three peaks were always selected as the
best and most consistently ranked biomarkers.

High-throughput profiling of complex protein expres-
sion patterns greatly facilitates the screening of a large
number of potential markers simultaneously. However,
for most currently available data sets, the sample sizes are
relatively small compared with the total number of de-
tected mass peaks. There is a real danger to mistakenly
select mass peaks whose high discriminatory power is
purely by chance because of artifacts in the data that are
unrelated to the disease process. The use of high-order
nonlinear classification models directly on raw spectrum
data may further amplify and mask the influence of such
false markers.

In this study, the UMSA algorithm provided an effi-
cient model to rank a large number of peaks collectively
according to their contribution to the separation of two

Fig. 6. ROC curve analysis of BC1 (�), BC2 (E), BC3 (‚), and logistic
regression-derived composite index (�).
The AUCs are 0.846 for BC1, 0.795 for BC2, 0.934 for BC3, and 0.972 for the
composite index. Significance for AUC comparisons between individual biomar-
kers and the composite index: P �0.0001 for BC1 and BC2 vs the composite
index; P �0.01 for BC3 vs the composite index.

Fig. 7. Distribution of the selected biomarker(s) across all diagnostic
groups including clinical stages of the cancer patients.
(A), BC3 alone; (B), logistic regression-derived (LR) composite index using BC1,
BC2, and BC3.
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predefined diagnostic groups. The ProPeak BootStrap
module introduced random perturbations in multiple
runs to test the consistency of the top-ranked peaks,
measured by the SD of computed ranks from multiple
runs. To establish an upper cutoff value on a peak’s rank
SD for its performance not to be considered as purely by
chance, the same bootstrap procedure was applied to a
randomly generated data set that simulated the distribu-
tion of the real data. The minimum value of rank SDs
from such “simulated peaks” indicates the degree of
consistency that a peak might achieve by random chance.
This minimum value was used as the cutoff to help to
reduce the original 147 peaks to a subset of 15 peaks for
further consideration. The performance of such peaks
should be less likely attributable to random artifacts in the
data.

For simplicity, the composite index described in this
report was derived by simple multivariate logistic regres-
sion. When these selected biomarkers are further vali-
dated, more complex and nonlinear classification models
may be used to combine the multiple biomarkers. The use
of complex modeling methods on carefully screened and
tested biomarkers should in general offer a more robust
performance than the direct application of such methods
on raw data from a large number of mass peaks.

The number of specimens analyzed in this study to
some degree limited the validity of the results. The
bootstrap cross-validation estimation of performance of-
fers statistical confidence on the generalizability of these
biomarkers over future data. Further independent valida-
tion studies are needed. In such studies, the specificity of
these selected biomarkers for detection of breast cancer
needs to be addressed by testing specimens from other
types of cancer. In addition, validation data sets prefera-
bly should be from sources different from that of the
original training data set. This is one way to ensure that
the performance of the selected biomarkers is not influ-
enced by systematic biases between the disease and the
control specimens.

For the three biomarkers selected, no significant corre-
lation was found between the concentrations of the mark-
ers and tumor size or lymph node metastasis. The dis-
criminatory power of these markers therefore most likely
reflects the malignant nature of the tumor rather than its
progression. The origin and identity of BC1, BC2, and BC3
are currently under investigation. Furthermore, it is not
our intent at this stage to suggest a final diagnostic
algorithm based on nonlinear classification.

In conclusion, we have shown that using proteomics
approaches such as Ciphergen ProteinChip Arrays and
SELDI-TOF MS in combination with bioinformatics tools
could facilitate the discovery of new biomarkers. Using
the panel of three selected biomarkers, we could achieve
high sensitivity and specificity for the detection of breast
cancer.

This work was supported in part by a grant from Cipher-
gen Biosystems, Inc (Fremont, CA). We would like to
thank Debra Bruzek and Renu Dua for assistance in
identifying patient serum samples that were used in this
study, and Eric Fung, MD, PhD, for helpful suggestions.
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