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The pestilential pathogen SARS-CoV-2 has led to a seemingly ceaseless pandemic of

COVID-19. The healthcare sector is under a tremendous burden, thus necessitating

the prognosis of COVID-19 severity. This in-depth study of plasma proteome alteration

provides insights into the host physiological response towards the infection and also

reveals the potential prognostic markers of the disease. Using label-free quantitative

proteomics, we performed deep plasma proteome analysis in a cohort of 71 patients

(20 COVID-19 negative, 18 COVID-19 non-severe, and 33 severe) to understand the

disease dynamics. Of the 1200 proteins detected in the patient plasma, 38 proteins

were identified to be differentially expressed between non-severe and severe groups.

The altered plasma proteome revealed significant dysregulation in the pathways related

to peptidase activity, regulated exocytosis, blood coagulation, complement activation,

leukocyte activation involved in immune response, and response to glucocorticoid

biological processes in severe cases of SARS-CoV-2 infection. Furthermore, we

employed supervised machine learning (ML) approaches using a linear support

vector machine model to identify the classifiers of patients with non-severe and

severe COVID-19. The model used a selected panel of 20 proteins and classified

the samples based on the severity with a classification accuracy of 0.84. Putative

biomarkers such as angiotensinogen and SERPING1 and ML-derived classifiers

including the apolipoprotein B, SERPINA3, and fibrinogen gamma chain were validated

by targeted mass spectrometry-based multiple reaction monitoring (MRM) assays. We

also employed an in silico screening approach against the identified target proteins for

the therapeutic management of COVID-19. We shortlisted two FDA-approved drugs,

namely, selinexor and ponatinib, which showed the potential of being repurposed
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for COVID-19 therapeutics. Overall, this is the first most comprehensive plasma

proteome investigation of COVID-19 patients from the Indian population, and provides

a set of potential biomarkers for the disease severity progression and targets for

therapeutic interventions.

Keywords: COVID-19 plasma, host response, mass spectrometry, molecular pathways, prognostic biomarkers,

proteomics, drug-repurposing, machine learning

INTRODUCTION

A previously unknown infectious virus has triggered a raging
pandemic of COVID-19 in the year 2020. It has left behind a trail
of more than a million dead and destroyed life and livelihood.
The viral pathogen that we now know as the Severe Acute
Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) (Wu et al.,
2020) is that a beta coronavirus belongs to the order Nidovirales
of the Coronaviridae family. Thus, the virus has the same
lineage as other highly infectious viruses SARS-CoV and Middle
East respiratory syndrome coronavirus (MERS-CoV) which has
caused outbreaks in the preceding decades (Bradley and Bryan,
2019). In humans, SARS-CoV-2 attaches to the angiotensin-
converting enzyme 2 (ACE2) and infects the respiratory tract
and lungs, mostly leading to typical flu-like symptoms such as
dry cough, body ache, and fever (Li et al., 2020). In some cases,
it can also lead to acute respiratory distress syndrome. Patients
with such severe symptoms deteriorate leading to multiorgan
dysfunction and eventually death (Huang et al., 2020; Zhou
et al., 2020) despite intense medical intervention. Although
SARS-CoV-2 primarily targets the respiratory tract and lung,
several research studies have reported that the virus also infects
other organs like the gastrointestinal tract, liver, kidney, cardiac
muscles, central nervous system, musculoskeletal system, and
even reproductive system in males (Kimhofer et al., 2020;
Nie et al., 2020).

The rapid diagnosis of the COVID-19 has been possible due
to the increased availability and deployment of RT-PCR assays
(Corman et al., 2020), or serological test kits, and scaling-up
of testing rates globally (Hosseini et al., 2020). However, the
prognosis of the disease remains to be a challenge since the
precise pathophysiological pathways that get perturbed during
the disease progression remain largely unexplored. Blood is the
only body fluid that reaches all organ systems of the body and
potentially carries information of physiological perturbations.
Further, owing to its minimally invasive nature, it has been the
mainstay of several diagnostic tests used for assaying multiple
clinical parameters to assess the physiological state of the human
body. Indeed, blood is the biofluid of choice to understand
physiological aberrances, and thus blood plasma proteome is
an excellent source for assessing host response and identifying
prognostic markers (Geyer et al., 2017).

The sensitive and high-throughput mass spectrometers have
allowed scientists to detect even the faintest of changes in host
physiology (Greco et al., 2014). In this study, we employed
a deep proteomics strategy to delineate the systems-wide
perturbations occurring in non-severe and severe COVID-19
patients. We surveyed the plasma proteome of blood collected

from 71 patients of varying disease severity during their
active infection phase. Label-free quantification (LFQ) using
mass-spectrometry analysis identified around 38 differentially
expressed proteins in severe COVID-19 patients when compared
with non-severe. These differentially expressed proteins further
revealed the dysregulations in the molecular pathways, especially
relating to inflammatory pathways, complement activation,
and blood clotting.

Machine learning algorithms can parse through voluminous
data and pick up a pattern that would otherwise go unnoticed to
the human eye. Machine learning (ML) approaches have allowed
biologists to uncover the underlying biology of large-scale omics
datasets. ML has started to make its presence felt in the field
of biomedical sciences, and it has helped scientists understand
many human diseases (Ahmed et al., 2020; Alsuliman et al., 2020;
Ben-Israel et al., 2020; Hofer et al., 2020; Wilkinson et al., 2020)
ranging from cancers (Arif et al., 2020; Chaurasia and Pal, 2020;
Jiang et al., 2020) to Ebola (Colubri et al., 2019) as well as to
design drugs and study their resistance (Nápoles et al., 2014).
ML has also been applied to understand the multifarious aspects
of COVID-19 (Elaziz et al., 2020; Lalmuanawma et al., 2020;
Tog̃açar et al., 2020; Vaid et al., 2020). We have analyzed our
dataset using ML-based techniques to identify clinical classifiers
of COVID-19 severity. This set of identified classifier proteins
could have a role in disease progression and potentially serve as
prognostic biomarkers for the disease.

Further, we have performed targeted mass spectrometry–
based multiple reaction monitoring (MRM) analysis to validate
our finding from the LFQ analysis. We have also screened a
customized drug library against the LFQ identified host proteins
using in silico docking approaches for COVID-19 therapeutics.
The analysis revealed two FDA-approved drugs with the best
binding affinity toward the therapeutic targets reported in the
study. These results provide valuable information on plasma
biomarkers associated with severity of COVID-19 and unravel
the mechanistic pathways related to SARS-CoV-2 infection. The
potential FDA-approved drugs showing inhibition towards the
upregulated marker proteins reported in our study could be ideal
for further clinical trials for COVID-19 therapeutics.

MATERIALS AND METHODS

Sample Collection and Clinical Details
For this study, we procured plasma samples from 74 patients
who visited Kasturba Hospital for Infectious Diseases, Mumbai,
between July and September 2020. All plasma samples were
collected with approval from the Institute Ethics Committee,
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IIT Bombay, and Institutional Review Board, Kasturba Hospital
for Infectious Diseases. Based on RT-PCR results, these patients
were assigned as COVID-19 positive and COVID-19 negative.
Depending on the clinical symptoms, positive patients as
advised by clinicians were further grouped into severe (patients
with mechanical ventilation and having severe symptoms of
acute respiratory distress, bilateral pneumonia) and non-severe
(patients having mild symptoms of cough, fever, fatigue,
and breathlessness without invasive ventilation). The detailed
demographic characteristics for the COVID-19 patients are
shown in Supplementary Table 1.

For plasma proteomic analysis of COVID-19 infected patients,
20 negative, 18 non-severe, and 33 severe cases were taken
forward (Supplementary Table 2). For the MRM validation
experiment, 12 COVID-19 positive patient samples were taken
forward. About 2ml of whole blood was collected for biochemical
and serological tests from COVID-19, RT-PCR confirmed, and
suspected patients. Whole blood was collected in a sterile
Vacutainer by trained medical practitioners under aseptic
conditions. After performing biochemical tests, the leftover
blood (∼1 ml) was collected and centrifuged immediately at
3,000 rpm for 10 min to separate plasma. The plasma was
collected from top of the container to avoid contamination with
platelets. The separated plasma was then incubated at 56◦C for
30 min for viral inactivation (Hu et al., 2020; Burton et al.,
2021) and stored at −80◦C in cryovials until further processing.
The plasma samples were pooled and aliquoted before storing
at −80◦C. The aliquots of heat inactivated plasma were then
transported at 4◦C in random batches to Indian Institute of
Technology Bombay for further processing. The samples were
processed for proteomics analysis at IIT, Bombay. The details
of the standardized blood collection and analytic procedures are
provided in the Supplementary Material.

Proteomics Analysis by LFQ
All plasma samples were depleted using top 12 abundant protein
depletion spin column (Pierce) to improve the detectability of
low-abundance plasma proteins. Then 15 µl of plasma samples
was added into the spin column and incubated for 1 h using
a rotating shaker. The samples were eluted by centrifugation at
1,500 × g for 2 min. The sample was concentrated by vacuum
drying it to 1/4 the initial volume. The depleted plasma sample
was taken forward for quantification by Bradford assay, taking
BSA as standard. To 30 µg of the depleted plasma sample, 6
M urea was added. Before digestion of the protein, the plasma
protein extract was reduced with TCEP (final concentration
20 mM) at 37◦C for 1 h and then alkylated with iodoacetamide
(final concentration 40 mM) for 30 min under dark condition.
The solution was diluted six times with 50 mM ammonium
bicarbonate to reduce urea concentration and to adjust the
pH. The reduced and alkylated proteins were finally subjected
to enzymatic digestion by trypsin at an enzyme/substrate ratio
of 1:30 for 16 h at 37◦C. The digested peptides were then
vacuum dried and reconstituted in 0.1% (v/v) formic acid
(FA) for desalting using C18 stage tips. The desalted peptides
were further dried and reconstituted in 0.1% (v/v) FA. The
peptide concentration was calculated using the Scopes method

by measuring O.D. values at 205 nm and 280 nm. Peptides
(1 µg) were loaded onto the LC column followed by separation
along a LC gradient comprising 80% ACN and 0.1% FA for
120 min at a flow rate of 300 nl/min using easy nano LC 1200
system. TheMS analysis was performed using an Orbitrap Fusion
Tribrid Mass Spectrometer (Thermo Fischer Scientific). BSA was
run at the starting and endpoint of each set of the MS run to
check the quality of the instrument. Mass spectrometric data
acquisition was done in data-dependent acquisition mode with a
mass scan range of 375–1700m/z and amass resolution of 60,000.
Mass tolerance was set to 10 ppm, with a dynamic exclusion
window of 40 s. Data Dependent MSn Scan was performed
using high collision–induced dissociation with collision energy
mode fixed to 30%. The detector was set to orbitrap in MS 60k
and MS/MS 15k and maximum injection time of 30 ms. The
detailed parameters for the experiment have been provided in
Supplementary Figure 2.

Proteomics Data Analysis and Machine
Learning
The raw datasets were processed with MaxQuant (v1.6.6.0)
against the Human Swiss-Prot database (downloaded on
09.07.2020), searched with the built-in Andromeda Search
Engine of MaxQuant (Tyanova et al., 2016). Raw files were
processed within LFQ parameters setting label-type as “standard”
with a multiplicity of 1 and match between runs were selected.
The Orbitrap was set to Orbitrap Fusion mode. Trypsin was
used for digestion with a maximum missed cleavage of 2.
Carbamidomethylation of cysteine (+57.021464 Da) was set
as the fixed modification, whereas oxidation of methionine
(+15.994915 Da) was set as the variable modification. The false
discovery rate was set to 1% for the protein and peptide levels
to ensure high protein detection/identification reliability. Decoy
mode was set to “reverse,” and the type of identified peptides was
set to “unique + razor.”

A sample-wise correlation analysis of 74 samples was
performed to understand the data quality. Of these, three samples
were removed as they did not meet the standards. Proteomic
data of 71 samples were taken forward to perform missing values
imputation using the k-Nearest Neighbors (kNN) algorithm in
Metaboanalyst (Chong et al., 2018). Statistical analysis and data
visualization were carried out in Python and Microsoft Excel.
The significant differentially expressed proteins were determined
using Welch’s t-test where p values less than 0.05 were used as
a cut-off. The violin plots were made with Log2-transformed
data, where the significance level was calculated based on
t-test independent samples with Bonferroni correction (p value
annotation legend: ns: 5.00e-02 < p ≤ 1.00e + 00; ∗: 1.00e-
02 < p ≤ 5.00e-02; ∗∗: 1.00e-03 < p ≤ 1.00e-02; ∗∗∗: 1.00e-
04 < p ≤ 1.00e-03; ∗∗∗∗: p ≤ 1.00e-04. Furthermore, partial
least squares discriminant analysis (PLS-DA) and principal
component analysis (PCA) were performed to understand the
perturbation of the sample cohorts. The variable importance in
projection (VIP) score depicts the weights of each feature in
PLS-DA, which was implemented to perform feature selection.
The VIP score threshold was relaxed to 0.8, as the input dataset
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composed of significantly differentially expressed proteins, and
20 features were selected. We selected support vector machine
(SVM) linear model to classify severe patients from non-severe
patients using Orange 3.0 after comparing multiple popular ML
classification models like Random Forest, Logistic Regression,
Naïve Bayes and k-Nearest Neighbor (KNN) algorithm (Demšar
et al., 2013). A K-fold cross-validation (k = 10) was employed in
the evaluation of models’ performance, in which the data were
split into k randomly chosen subsets of about equal size. One
subset was then used to validate the model trained using the
remaining subsets. This process was iterated k times such that
each subset was used precisely once toward the validation, and
at the end average of all k subsets was taken to evaluate the final
model performance score. The SVM linear model performance
was evaluated and further visually represented by plotting
the ROC-AUC curve, parallel coordinate plot, and confusion
matrix using Python andMATLAB tools1. Furthermore, potential
candidates were individually validated using the SVM linear
classification model from a Python scikit-learn library2.

Targeted Proteomics by MRM Assay
The statistically significant and upregulated proteins in COVID-
19 severe compared with non-severe obtained from the LFQ
data were selected and used for a targeted MRM study. The
list of transitions was prepared for unique peptides of these
selected proteins using Skyline (version 20.2.1.286). The missed
cleavage criterion was 0, and precursor charges +2, +3, and
product charges were set at +1 and +2. Further, y ion transitions
(from ion 3 to last ion -1) were also included. Pooled samples
from both COVID-19 positive and negative patients were run
against all the generated transitions and a final list was prepared
based on the initial screening. This list consisted of 35 peptides
from 13 proteins and included a spiked-in synthetic peptide
(FEDGVLDPDYPR) essential for monitoring the consistency of
the mass spectrometry runs (with a heavy labeled C-terminal
arginine). For the experiment, a Vanquish UHPLC system
(Thermo Fisher Scientific, United States) connected to a TSQ
Altis mass spectrometer (Thermo Fisher Scientific, United States)
was used. The peptides were separated using a Hypersil Gold
C18 column 1.9 µm, 100 × 2.1 mm (Thermo Fisher Scientific,
United States) at a flow rate of 450 µl/min for a total time of
10 min. A binary buffer system comprising 0.1% FA as the buffer
A and 80% ACN in 0.1% FA as buffer B was used. Approximately
1 µg of BSA was also run with the samples to check uniformity in
the instrument response.

A batch of samples that included six severe and six non-
severe COVID-19 samples were run in duplicates and data were
acquired against the aforementioned peptides list containing 36
peptides. The first and second replicates were run 2 days apart
to establish reproducibility. After the data were acquired, the
raw files were imported into Skyline, and peaks were annotated
with the help of a library built from the in-house LFQ data of
COVID-19 samples.

1https://in.mathworks.com/help/stats/classification.html
2https://scikit-learn.org/stable/index.html

Biological Pathway Analysis and
Molecular Docking
The biological pathway analysis was done using Metascape for
GO enrichment analysis (Zhou et al., 2019), whereas STRING
(version 11.0) (Szklarczyk et al., 2019) was used to prepare the
protein–protein interaction network (PPIN). The node colors
in the PPIN represent the biological process, whereas the edge
width depicts the confidence of the association. The trends
of the protein were shown with the help of arrows and the
expressional changes of few proteins were supported by violin
plots. Differentially expressed proteins from our proteomic study
have been taken forward for in silico docking studies where we
retrieved the complete crystal structures of the proteins available
from Protein Data Bank (PDB) (Berman et al., 2002). The known
inhibitors were searched in the literature against the selected
proteins and termed as control inhibitors. The binding affinity
(kcal/mol) was documented for each control. We prepared a
library of 58 small molecular components, of which 30 were FDA
approved, 9 are in clinical trials, and 19 are in pre-clinical phase
trials. Spatial Data File (SDF) for each of the components were
downloaded from the ZINC-15 database (Sterling and Irwin,
2015). The proteins had a complete crystal structure, and known
inhibitors were taken forward in this study, where each inhibitor
was docked against the library along with their respective
controls. We used AutoDock Vina 1.1.2 (Trott and Olson, 2019)
to perform the docking experiment, which was inbuilt in PyRx
software3. After loading the.pdb structure of proteins, they were
first converted to a macromolecule via AutoDock tools. Similarly,
SDF files for the selected drugs were converted to PDBQT format,
which is a readable file format for AutoDock Vina, using the
open babel tool. In our blind docking method, the exhaustiveness
was set to 50 while instead of choosing a particularly active site,
the whole protein was contoured into the grid box. The docking
output files were split into individual poses where the pose having
the lowest binding energy was taken forward for further analysis.
Finally, the docked structures were visualized using PyMOL
(version 2.4) and Discovery Studio Visualizer Software (version
4.0) and checked for the binding pockets for the drugs in the
library. In addition, the protein–ligand interaction profiler (PLIP)
server was used to calculate the number and types of interactions
between the protein and the drugs (Salentin et al., 2015).

RESULTS

Deep Proteomic Analysis of Patient
Plasma
We performed LFQ of a total of 74 depleted plasma samples,
of which 20 were negative, 18 were non-severe, and 36 were
severe (Figure 1A). Figures 1B–F depicts the schematic workflow
of LFQ under discovery proteomics, statistical analysis of data,
the summary of synthetic peptide peaks after MRM under
validation proteomics, and represents the outline of biological
network analysis and docking study, respectively. The correlation

3https://pyrx.sourceforge.io/
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FIGURE 1 | Schematics of plasma proteomics and proteins dysregulated in the COVID-19 positive when compared with negative. (A) Sample cohort size consisting

of 20 COVID-19 negative, 18 COVID-19 non-severe, and 33 COVID-19 severe patients. (B) Schematic workflow of label-free quantification under discovery

proteomics. (C) Overview of statistical data analysis. (D) Workflow of validation using multiple reaction monitoring (MRM) approach showing the representative peaks

of synthetic peptides. (E,F) Outline of biological network analysis using Metascape and docking study performed using AutoDock Vina, respectively. (G) Partial least

squares–discriminant analysis (PLS-DA) of 71 patient samples showing the segregation between COVID-19 positive (including severe and non-severe) and

COVID-19 negative samples. (H) Volcano plot showing significant differentially expressed protein between COVID-19 positive and negative. (I) Violin plot of few of

the dysregulated host proteins such as SERPIND1, VWF, and MIF protein in COVID-19 positive (***1.00e-04 < p ≤ 1.00e-03). (J) Heatmap of top 27 significant

differentially expressed proteins in COVID-19 positive and negative.
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matrix of all the 74 samples is shown in Supplementary

Figure 1. The mass-spectrometry setting for the LFQ is shown
in Supplementary Figure 2. The LFQ analysis of 74 samples
provides a total of 1,206 proteins. A list of 278 missing
value imputed proteins from 71 samples was taken forward
for the partial least squares–discriminant analysis (PLSDA) for
an overall assessment of the difference between the COVID-
19 positive and COVID-19 negative sample cohort. The two
sample cohorts were found segregating in to separate groups
as shown in Figure 1G. Figure 1H depicting a volcano plot
shows significant differentially expressed proteins between the
two cohorts. The statistical analysis between the COVID-19
positive and COVID-19 negative cohort revealed 27 significant
differentially expressed proteins shown in form of a heatmap
in Figure 1J. Proteins, namely, von Willebrand factor (VWF),
haptoglobin-related protein (HPR), glutathione peroxidase 3
(GPX3), alpha-2-macroglobulin (A2M), carbonic anhydrase 2
(CA2), protein S100-A8 (S100A8), carboxypeptidase B2 (CPB2),
heparin cofactor 2 (SERPIND1), fibrinogen gamma chain (FGG),
profilin-1 (PFN1), and serum amyloid A-4 protein (SAA4),
were found to be significantly upregulated in the COVID-
19 positive patients, whereas proteins like lymphatic vessel
endothelial hyaluronic acid receptor 1 (LYVE1), intercellular
adhesion molecule 1 (ICAM1), macrophage migration inhibitory
factor (MIF), histidine-rich glycoprotein (HRG), IgGFc-binding
protein (FCGBP), immunoglobulin heavy variable 3-15 (IGHV3-
15), and insulin-like growth factor-binding protein 3 (IGFBP3)
were shown significantly downregulated in the COVID-
19 positive patients. The violin plot of few dysregulated
proteins SERPIND1, VWF, and MIF protein are shown in
Figure 1I. The list of 27 dysregulated proteins is provided in
Supplementary Table 3.

Furthermore, this study also investigated the proteomic
alterations between the non-severe and severe cohort, which
provides a list of 38 significantly differentially expressed
proteins (Supplementary Table 4). Figure 2A represents a
heatmap of the top 25 differentially expressed proteins in
context to the severe and non-severe cohort. A list of 287
missing value imputed proteins was taken forward for the
PLS-DA and PCA for an overall assessment of the difference
between the severe and non-severe cohort. The two sample
cohorts were found segregating into separate groups in PLS-
DA with an exception of three samples, P93, P30, and P106,
that were observed to be closer to the opposite cluster
(Figure 2B). However, 29% cumulative variance of PC1 and
PC2 were not able to perturb the severe and non-severe
sample cohort completely using PCA (Supplementary Figure 3).
Figures 2C,D depicts the significant DEPs in the form of
a volcano plot and violin plot respectively. The proteins
such as kallistatin (SERPINA4), serum amyloid P-component
(APCS), protein S100-A8 (S100A8), fibrinogen gamma chain
(FGG), corticosteroid-binding globulin (SERPINA6), and alpha-
1-antichymotrypsin (SERPINA3) were found to be upregulated
in the severe cohort whereas proteins such as complement
factor D (CFD), monocyte differentiation antigen (CD14),
complement component C8 alpha chain (C8A), apolipoprotein
(LPA), and apolipoprotein M (APOM) were found to be

downregulated in severe when compared with non-severe
patients. Supplementary Figure 4 represents the top 25
differentially expressed proteins of severe and negative in the
form of heatmap and depicts the PLS-DA clustering of the severe
versus negative patients.

Selection of Proteomic Markers Using
ML
A performance metrics of SVM, Logistic Regression, Naïve
Bayes, Random Forest, and k-Nearest Neighbor algorithms
were compared on the test dataset (Supplementary Table 5).
The SVM linear showed the maximum classification accuracy
of 0.88 taking 38 DEPs in context to the severe and non-
severe cohort (Figure 3A and Supplementary Figure 5). A list
of 20 features were selected using VIP score based on PLS-
DA. These 20 selected features were further used to build
ML models to check and compare the model performance
score with the one when the input dataset was 38 significantly
differentially expressed proteins. Here also, SVM linear was
giving the highest accuracy score among other models like
Random Forest, Logistic Regression, Naïve Bayes, and k-Nearest
Neighbor. The SVM linearmodel performance was evaluated and
further visually represented by plotting the ROC–AUC curve,
parallel coordinate plot, and confusion matrix (Figures 3B,C).
The confusion matrix from model prediction showed that 43
samples out of 51 samples were correctly classified (Figure 3D).
The performance measurement of the classification from the
model prediction depicted AUC more than 0.9 whereas the
classification accuracy, precision, F1, and recall was found to
be more than 0.84. Proteins like AGT, APOB, SERPINA3, FGG,
and SEPRING1 were further taken forward for MRM. Of these,
APOB, SERPINA3, and FGG showed accuracy score of linear
SVM model more than 0.8 in classification of severe and non-
severe samples (Figure 3E).

MRM Analysis of Proteins
Overexpressed in Severe COVID-19
The MRM study aimed to validate the differentially regulated
proteins found between COVID-19 severe and non-severe
samples from the LFQ data. The response for BSA as QC
standard to monitor day-wise instrument performance is shown
in Supplementary Figure 6. To establish that all the injections
gave the same response, we spiked in an equal amount of a
heavy labeled synthetic peptide (FEDGVLDPDYPR) in equal
amount in all samples. The uniform peak areas for this peptide,
as shown in Supplementary Figure 7, establish the same.
Even duplicates run on separate days showed comparable peak
areas with low cv. Based on the response of the differentially
regulated peptides, the list was further refined to keep only
peptides showing significant dysregulation (adjusted p values
below 0.05) between severe and non-severe. For this, the peaks
were annotated, and transitions were refined according to the
library match to give dot p values for all peptides. A dot p value
is a measure of the match between the experimental peak and
the library fragmentation patterns. Thus, the refined list had 183
transitions belonging to 28 peptides from 9 host proteins and 1
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FIGURE 2 | Proteomic analysis of COVID-19 non-severe and COVID-19 severe patients. (A) Heatmap of top 25 differentially expressed proteins in COVID-19 severe

when compared with the non-severe (B,C) depicts the PLS-DA clustering and significant differentially expressed proteins in the form of volcano plot in the COVID-19

severe when compared with the non-severe, respectively. (D) Violin plot showing a panel of 8 differentially expressed proteins in the severe vs. non-severe samples

(**1.00e-03 < p ≤ 1.00e-02; ***1.00e-04 < p ≤ 1.00e-03; ****p ≤ 1.00e-04).

synthetic peptide. The transition of proteins and peptides that
exhibited differential regulation between COVID-19 non-severe
and severe patient samples are shown in Supplementary Table 6.
Using the MSstats external tools in Skyline, we determined
that proteins AGT, APOB, SERPINA3, FGG, and SEPRING1
have three or more than three peptides with a peak area fold

change of more than 3 and adjusted p value less than 0.05 at a
confidence of 95–99% (Figure 3F, G). This validates that for the
given set of samples, these proteins show statistically significant
overexpression in COVID-19 severe patients than in COVID-19
non-severe patients (refer to the data availability section for the
Skyline files).
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FIGURE 3 | Machine learning–based approach for identification of severity classifiers and validation of protein markers using MRM approach. (A) Demonstrates the

schematic workflow of machine learning and MRM validation. (B) The parallel coordinate plot and prediction response labels. (C) Depicts the top 20 features and

their variable importance in projection (VIP) scores in the X-axis. (D) The confusion matrix plotted from the model prediction. (E) Displays the ROC–AUC curve of

SERPINA3, APOB, and FGG from the severity model prediction. (F) MRM analysis of proteins overexpressed in COVID-19 severe vs. COVID-19 non-severe patient

samples, as identified in the LFQ analysis and machine learning approach. Peak shapes (as seen in Skyline) of representative peptides of proteins AGT, APOB,

SERPINA3, FGG, and SERPING1, respectively. (G) Box plots showing the overexpression of same proteins in severe as compared with non-severe samples in terms

of the MRM peak areas (t-test, **p < 0.05; fold change > 3 at a CI of 95–99% determined by Skyline).

Frontiers in Physiology | www.frontiersin.org 8 April 2021 | Volume 12 | Article 652799

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles


Suvarna et al. Plasma Proteomics of COVID-19 Patients

Biological Pathway and Network
Analysis of Differentially Expressed
Protein in Severe Versus Non-severe
Comparison
We also identified the enriched biological processes for the
38 dysregulated proteins in COVID-19 severe compared with
COVID-19 non-severe patients. The proteins mapping to the
enriched biological processes were shown in the form of protein–
protein interaction. Few proteins have been shown in the form
of a violin plot (Figure 4A). Figure 4B illustrates a network of
enriched terms colored by clusters, where nodes that share the
same clusters are typically close to each other. We identified
biological processes such as regulation of peptidase activity,
regulated exocytosis, extracellular structure organization, blood
coagulation, fibrin clot formation, complement activation,
classical pathway, leukocyte activation involved in immune
response, and response to glucocorticoid process to be enriched
in COVID-19 severe patients. The list of proteins expressed in
these pathways is shown in Supplementary Table 7.

In silico Screening of Drugs Against
Differentially Expressed Proteins
We performed in silicomolecular docking of significantly altered
proteins with a library of 58 drugs (Supplementary Table 8),
among which 30 are FDA approved, 9 are clinically approved,
and 19 are pre-clinical approved. We identified known inhibitors
of those altered proteins from the literature and used as
positive control drugs for each protein. Positive control drug
was used to derive a possible cut-off for the docking score.
After docking, the selection of potential drug was based on
two major criteria. First, the binding energy of the drug should
be equal to or higher than that of the control inhibitor; and
second, the binding pocket of the drug should be similar to
that of the control drug. Here, we selected five significant
proteins for COVID-19 non-severe versus severe comparison:
heparin cofactor 2 (SERPIND1), thyroxine-binding globulin
(SERPINA7), angiotensinogen (AGT), carbonic anhydrase-
1 (CA1), and carbonic anhydrase-2 (CA2) (Supplementary

Table 9) for docking study. The list of potential drugs binding to
these target proteins is provided in Supplementary Tables 10, 11.

Heparin cofactor 2 (SERPIND1) protein composed of 499
amino acid long peptide was shown to bind with the drug
sulodexide with a binding affinity of -7.1 kcal/mol and hence
taken as a control drug (Supplementary Figure 8A). When
docked with the customized drug library, four FDA-approved
drugs were found that to have a similar binding pocket as that of
the control drug and have better binding affinity than sulodexide,
namely, selinexor (-8.7 kcal/mol), ponatinib (-8.4 kcal/mol),
epigallocatechin gallate or EGCG (-7.7 kcal/mol), and nafamostat
(-8.1 kcal/mol). Similarly, selinexor and ponatinib also exhibited
a higher binding affinity for thyroxin-binding globulin or
SERPINA7, a protein with 415 amino acids. Tamoxifen, the
control inhibitor of SERPINA7, showed a binding affinity of
-7.4 kcal/mol (Supplementary Figure 8B). A conventional
hydrogen bond formation between the selinexor and Y20 and

R381 amino acid of SERPINA7was visualized at two-dimensional
plane using Discovery Studio Visualization software (Figure 5A).
Selinexor and ponatinib had a binding affinity of -9.3 kcal/mol
for the protein (Figure 5B). Angiotensinogen (AGT), a 485
amino acid long protein, had a binding affinity of -8.4 kcal/mol
for irbesartan which was used as a control drug in our study
(Supplementary Figure 8C). It also exhibited a binding affinity
of -8.9 kcal/mol for ML-240 which is a pre-clinical approved
drug. In our study, ML-240 was found to be the most potential
drug to target AGT. We also performed the molecular docking
of carbonic anhydrase-1 (CA1) (261 amino acid length) and
carbonic anhydrase-2 (CA2) (260 amino acid length) with the
drug library. The binding affinity of small molecule topiramate
for CA1 was -9.2 kcal/mol (Supplementary Figure 8D) while
acetazolamide was shown to bind CA2 with a binding affinity
of -6.3 kcal/mol (Supplementary Figure 8E), hence were used
as control drug for respective proteins. Our study identified
EGCG as the only FDA-approved drug that can be used to
target CA1 (with binding affinity -9.5 kcal/mol) and nafamostat
(with binding affinity -8.2 kcal/mol) to target CA2. Similarly,
four significantly dysregulated proteins from COVID-19 positive
versus negative comparison were chosen for molecular docking.
These included protein S100A9 (S100A9), carboxypeptidase
B2 (CPB2), glutathione S-transferase omega-1 (GSTO1), and
6-phosphogluconate dehydrogenase (6-PGDH1). The list of
potential drug binding to these target proteins is provided in
Supplementary Tables 10, 12.

Rapamycin is a known mTOR inhibitor. In our study,
rapamycin drug was found to be the most potential drug to
target all of these four proteins pertaining to their higher binding
affinity and competitive binding for the targets as compared with
control drugs. The first protein was S100A9, which is a small
protein with 114 amino acids. We used tasquinimod as a control
inhibitor as it interacts with the protein with a binding affinity
of -7.5 kcal/mol (Supplementary Figure 8F). Using the criteria
mentioned previously for selection drugs, we identified S100A9
can be targeted using two FDA-approved drugs: 1) selinexor,
which had a binding affinity of -7.5 kcal/mol, and 2) rapamycin
with a binding affinity of -8.2 kcal/mol.

Carboxypeptidase B2 (CPB2) is a 423 amino acid long
protein. We used anabaenopeptin F as a control drug because
its binding affinity for CPB2 was -8.3 kcal/mol (Supplementary

Figure 8G). Here, we identified three FDA-approved drugs
rapamycin (binding affinity -8.7 kcal/mol), dabrafenib (binding
affinity -8.8 kcal/mol), and daunorubicin (binding affinity -
8.6 kcal/mol), which can target CPB2.

CMFDA is reported to be a known inhibitor of glutathione
S-transferase omega-1 (GSTO1) protein and it binds to the
protein with a binding affinity of -8.3 kcal/mol (Supplementary

Figure 8H). Our study showed that four FDA-approved drugs
from our customized drug library have the potential to target
GSTO1, which are rapamycin (binding affinity -8.8 kcal/mol),
selinexor (binding affinity -8.6 kcal/mol), silmitasertib (binding
affinity -8.3 kcal/mol), and ponatinib with highest binding
affinity of -9.1 kcal/mol. Physcion was another known inhibitor
of 6-phosphogluconate dehydrogenase (6-PGDH1) used as a
control drug as it was found to bind 6-PGDH1 with a binding
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FIGURE 4 | Biological pathways and network analysis of differentially expressed proteins in severe vs. non-severe comparison. (A) Represents the Metascape

enriched biological processes with their co-expressed proteins in the form a bipartite network where few proteins have been shown in the form violin plot (ns:

5.00e-02 < p ≤ 1.00e + 00; *1.00e-02 < p ≤ 5.00e-02; **1.00e-03 < p ≤ 1.00e-02; ***1.00e-04 < p ≤ 1.00e-03; ****p ≤ 1.00e-04). (B) The network of enriched

terms, generated using String (version 11.0) shows colored clusters, where the nodes that share the same clusters are typically close to each other.
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FIGURE 5 | In silico molecular docking of small molecules against upregulated proteins from different stages of COVID-19 infection. Figure showing the docking

results of three different target proteins SERPINA7 (non-severe vs. severe), SERPIND1 (non-severe vs. severe), and S100A9 (COVID-19 positive vs. COVID-19

negative) with two FDA-approved drugs selinexor and ponatinib. (A) The predicted 2D interaction map of selinexor with SERPINA7. (B) The 3D representation of

predicted binding pockets of the two drugs to the targeted proteins. The binding affinity of selinexor SERPINA7 is -9.3 kcal/mol, SERPIND1 is -8.7 kcal/mol of

binding affinity, and S100A9 is -7.5 kcal/mol. Drug ponatinib binds with SERPINA7 with -9.3 kcal/mol of binding affinity and with SERPIND1 with -8.4 kcal/mol

binding affinity.

affinity of -7.0 kcal/mol (Supplementary Figure 8I). Six FDA-
approved drugs from our customized drug library can be used
to target 6-PGDH1. These include rapamycin (binding affinity -
8.8 kcal/mol), selinexor (binding affinity -8.5 kcal/mol), ponatinib
(binding affinity -10.3 kcal/mol), silmitasertib (binding affinity
-7.7 kcal/mol), daunorubicin (binding affinity -8.4 kcal/mol),

and dabrafenib (binding affinity -8.6 kcal/mol). Rapamycin,
an already approved drug for organ transplant rejection, was
observed to bind to all four proteins significantly upregulated
in COVID-19 positive patients. We also found that selinexor, an
exportin antagonist, and ponatinib, a tyrosine kinase inhibitor,
approved for use in treatment of multiple myeloma and chronic

Frontiers in Physiology | www.frontiersin.org 11 April 2021 | Volume 12 | Article 652799

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles


Suvarna et al. Plasma Proteomics of COVID-19 Patients

myeloid leukemia (CML), respectively, can be used to target
proteins altered in severe cases as compared with non-severe.

DISCUSSION

Nasopharyngeal swab samples and serological tests are being
routinely used in clinics for the diagnosis of SARS-CoV-2
infection. However, biomarkers for prognosis of the disease
before it could lead to fatality are yet to be found. Understanding
the host response toward the viral infection might provide
important clues on the disease progression from non-severe
to severe. A mass spectrometry proteomics approach was
applied for a granular understanding of the disease mechanism.
Studies have already reported differences in the level of
blood-based proteins such as lactate dehydrogenase (LDH),
D-dimers, and inflammatory markers such as C-reactive
protein (CRP), ferritin, and fibrinogen in COVID-19 patients
(Lagadinou et al., 2020; Zhu et al., 2020). One specific
forte of our study is the in-depth profiling of plasma
proteome from a cohort of COVID-19 patients (n = 71),
facilitating the robust and statistically significant evaluation of
differential expression between non-severe and severe disease
groups. Our study holds importance in understanding the
biology associated with COVID-19 progression as the Indian
subcontinent seems reasonably unscathed by the pandemic
with the fatality rates being among the lowest in the world
(Dong et al., 2020).

Deep proteome analysis of COVID-19 plasma samples
revealed a subset of proteins that were significantly dysregulated
in the positive samples when compared with the negative
controls. Proteins namely von Willebrand factor (VWF),
haptoglobin-related protein (HPR), glutathione peroxidase 3
(GPX3), alpha-2-macroglobulin (A2M), carbonic anhydrase 2
(CA2), protein S100-A8 (S100A8), carboxypeptidase B2 (CPB2),
heparin cofactor 2 (SERPIND1), fibrinogen gamma chain (FGG),
profilin-1 (PFN1), and serum amyloid A-4 protein (SAA4)
were found to be significantly upregulated in the COVID-
19 positive patients. Previously, animal studies have shown
that increased VWF might be due to hypoxic conditions in
the lung endothelial cells (Mojiri et al., 2013). However, this
induces a risk of arterial or venous thrombosis because it
directly promotes the thrombotic process during inflammation
(Kawecki et al., 2017). The increase in HPR is also found
in cases of idiopathic pulmonary fibrosis (Saraswat et al.,
2020) and as a factor of non-bacterial pneumonia (Yang
et al., 2018), thus may act as a biomarker of lung trauma.
Carboxypeptidase B2 has anti-inflammatory and anti-fibrinolytic
effects. Its increase in this cohort indicates the natural response
to systemic inflammation brought about by COVID-19 (Tawara
et al., 2016). Another protein, PFN1 overexpression, implicated
in vascular hyperpermeability and vascular hypertrophy, can
perhaps explain the aberrant physiology of COVID-19 patients.
The acute phase response proteins such as SAA-4 and S100A8
were also upregulated in response to COVID-19. Interestingly,
the protein lymphatic vessel endothelial hyaluronic acid receptor
1 (LYVE1) was downregulated and might indicate liver injury

(Arimoto et al., 2010). At the same time, attenuated histidine-
rich glycoprotein (HRG) expression might explain the altered
hemostasis in the patients (Tsuchida-Straeten et al., 2005).
However, there lies a caveat; most of these patients were under
medications; the results might also be due to the ongoing
therapies than the disease itself.

Further, the deep plasma proteome study of non-severe
versus severe COVID-19 patients revealed only 38 differentially
expressed proteins, out of which proteins such as FGG, S100A8,
VWF, SAA4, SERPIND1, and SERPINA6 were identified to
be significantly upregulated in the COVID-19 severe patients.
Interestingly, the mitochondrial 60-kDa heat shock protein
(HSPD1) was found to be highly expressed in severe patients.
It has been already reported that high levels of circulatory
HSPD1 are associated with cardiac failures (Sidorik et al., 2005).
Therefore, increased HSPD1 in severe patients can act as a
potential clinical biomarker of cardiac malfunction in the severe
group of patients. Also, our results indicated an increase in
plasma cholinesterase (BCHE) in the severe group, which is
upregulated in patients suffering from mild ischemic stroke
(Assayag et al., 2010). These findings thus implicate severe
COVID-19 associated risk of cardiac and CNS injury that has
been already reported by clinicians, and these proteins might be
potential biomarkers for prognosis.

The plasma levels of carbonic anhydrase 1 (CA1) were found
to be substantially elevated in the severe group. Increased
carbonic anhydrase has been found to mediate hemorrhagic
retinal and cerebral vascular permeability (Gao et al., 2007). The
ramifications of increased CA1 are also substantiated by earlier
reports on a cohort study of sepsis secondary to pneumonia (Leite
et al., 2019), where it was found to be upregulated during sepsis.
Moreover, the role of increased CA1 in the worsening of ischemic
diabetic cardiomyopathy also paints a rather gloomy picture of
the cardiac sequelae of COVID-19, especially in diabetic patients
(Torella et al., 2014), and might also contribute to the increased
fatality of diabetic patients (Zaki et al., 2020).

The protein fibrinogen (FGG) was also upregulated in severe
patients compared with non-severe. FGG is an oligomeric
glycoprotein produced in the liver and secreted in the blood.
The increased fibrin formation and breakdown correlated
with the high level of D-dimers observed in the COVID-
19 patients with the worst outcomes (Tang et al., 2020). The
increasing level of FGG in severe cases might be due to liver
injury, impairing hepatic fibrinogen secretion with acquired
fibrinogen storage disease (Fraga et al., 2020). The protein
S100A8 (calgranulin A/myeloid-related protein 8) belongs to
the group of alarmins or damage-associated molecular patterns
(DAMPs), released in response to stress against the microbial
infection that leads to exacerbation of the inflammatory response.
Chen and his co-workers reported that the level of S100A8
positively correlated with the Ct value and oxygen demand,
indicating the severity of the acute respiratory distress in COVID-
19 patients (Chen L. et al., 2020). A recent study showed
that severe COVID-19 patients release massive amounts of
S100A8, accompanied by changes in monocytes and neutrophil
subsets (Silvin et al., 2020). The protein AGT was found to be
significantly upregulated in severe patients as compared with
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the non-severe. Angiotensinogen (AGT) is a component of
the renin–angiotensin system (RAS), a substrate of renin that
regulates blood pressure and fluid balance. The dysregulation
of AGT and RAS might lead to acute lung injury and acute
respiratory distress leading to a severe prognosis (Gao Y.L.
et al., 2020). Apolipoprotein B-100 (APOB) is involved in lipid
transport and low-density lipoprotein (LDL) catabolism.

The high levels of APOB in the plasma might indicate
significant cardiovascular manifestation seen in COVID-19
infected severe patients (Moriarty et al., 2020). These results are
consistent with previous findings (Shen et al., 2020) on COVID-
19 patient sera, which had identified dysregulation of multiple
apolipoproteins. Several serine protease inhibitors (SERPINs)
such as SERPING1 and SERPINA3 were also identified to
be upregulated in severe patients. The increasing level of
SERPINs which are acute-phase proteins positively correlates
and associates with a high level of IL-6 seen in severe patients
(D’alessandro et al., 2020). The validation study using MRM
could specifically detect AGT, FGG, APOB, SERPING1, and
SERPINA3 host peptides in COVID-19 severe patients. Thus,
mass spectrometry–based detection of host peptides has the
potential to be used in clinics for the prognosis of disease severity.

A subset of proteins was also downregulated in the severe
group. The protein peptidase inhibitor 16 (PI16) was severely
downregulated (FC = −2.45, p < 0.005). It concurs well with
the previous studies. It has been shown that while PI16 plays
a protective role against atherosclerosis (Hazell et al., 2016),
these results demonstrate the pathogenesis of cardiac maladies
in severe COVID-19 patients (Nishiga et al., 2020). Patients
with severe COVID-19 often report a lower platelet count
(Terpos et al., 2020). Our studies have demonstrated that a
crucial factor in platelet biogenesis TPM4 (Pleines et al., 2017)
is inhibited (FC-1.94, p < 0.001) in severe cases, thereby
providing novel biological insight into COVID-19 severity.
Another ubiquitously present protein βII spectrin was found to
be downregulated in severe COVID-19. Given that inadequate
βII spectrin might precipitate into arrhythmia, heart failure, or
even neurodegeneration (Yang et al., 2021), the findings hold
much importance. Two proteins, namely, APOM, known to
protect the lungs and kidneys from injuries (Ding et al., 2020),
and APOA2, were also downregulated; similar observations were
previously reported (Shen et al., 2020).

Functional enrichment analysis of the 38 differentially
expressed proteins in severe versus non-severe cohort revealed
that these proteins are enriched in pathways related to blood
coagulation, fibrin clot formation, complement system, leukocyte
activation, regulation of peptidase activity, regulated exocytosis,
and extracellular structure organization, among others. Proteins
like A2M, SERPINA4, SERPINA3, SERPING1, and FGG involved
in regulated exocytosis of platelets were upregulated in the severe
cohort suggesting an increased consumption of platelets. This
could be a possible reason for the lower platelet count (clinically
called thrombocytopenia) commonly reported in many severe
cases of COVID-19 (Lippi et al., 2020), which is also associated
with coagulation abnormalities, disease severity, and mortality
(Bao et al., 2020; Liu et al., 2020; Yang et al., 2020). There is
enough evidence to suggest that platelets have potent immune

and inflammatory effector functions, in addition to their role
in hemostasis. Interaction between viruses and platelets has
been known to stimulate platelet degranulation leading to the
release of a variety of cytokines and chemokines (Assinger, 2014;
Seyoum et al., 2018). They also directly interact with leukocytes
and endothelial cells to trigger and modulate inflammatory
reactions and immune responses (Assinger, 2014). Thus, platelet
hyperactivity due to the upregulation of these proteins correlates
with the over-exuberant host inflammatory response as COVID-
19 progresses from non-severe to severe.

Many peptidase activity regulator proteins, including
SERPINA4, SERPING1, SERPINA3, SERPIND1, and A2M,
are involved in blood coagulation and inflammation pathways.
SERPINA4 is an inhibitor of the kallikrein–kinin system involved
in coagulation and inflammation (Bryant and Shariat-Madar,
2009; Julie et al., 2016). SERPING1 is an inhibitor of the classical
pathway of the complement system as well as of several proteins
involved in blood coagulation (Kajdácsi et al., 2020). SERPIN
A3 is a significant inhibitor of cathepsin G, a key proteolytic
enzyme and inflammatory effector released by neutrophils
(Kalsheker et al., 2006). A2M is an inhibitor of various proteases
involved in blood coagulation and inflammation, including
thrombin, kallikrein, plasmin, and cathepsin G (de Boer et al.,
1993); SERPIND1 regulates blood clot formation by inhibiting
thrombin (Salem and Thompson, 1987).

Moreover, the fibrinogen gamma chain or FGG is a
component of the clotting factor fibrinogen, promoting
tissue repair. High fibrinogen levels are associated with
bleeding and thrombosis and correlate with the increased
erythrocyte sedimentation rate (ESR) observed in severe cases
(Eastham, 1954; Ghahramani et al., 2020). COVID-19 associated
coagulopathy is common in severe patients (Connors and Levy,
2020), whereas overt disseminated intravascular coagulopathy,
a critical condition characterized by abnormal blood clotting
and bleeding, is observed in most critically ill patients who do
not survive (Al-Samkari et al., 2020; Tang et al., 2020). These
thrombotic complications can be characterized by dysregulation
of proteins involved in blood coagulation, fibrin clot formation,
and platelet exocytosis. Conversely, these proteins can be
associated with disease severity and mortality risk and can serve
as biomarkers for a better prognosis.

Consistent with previous studies, multiple acute phase
proteins (APPs) like APCS, C4B, A2M, SERPING1, SERPINA3,
and FGG were upregulated in severe patients (Li and Chen,
2020; Shen et al., 2020). APPs are manifested as the host innate
response to any stress. Tissue damage caused by injury or
infection instigates a local inflammatory response that leads to
the release of pro-inflammatory cytokines. APPs are synthesized
and released mainly by liver hepatocytes in response to these
cytokines (Gruys et al., 2006). Severe COVID-19 patients tend
to have higher pro-inflammatory cytokines (Blanco-Melo et al.,
2020; Chen G. et al., 2020; Xiong et al., 2020), which explains
the elevated APP levels and the acute inflammatory state
correlating with disease severity. The complement system is
a significant contributor to the acute phase response against
infection. C4B is a proteolytic product of complement factor
C4 and is involved in propagating all the three complement
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pathways (Mortensen et al., 2015) APCS or serum amyloid P
component (SAP) is an activator of the classical pathway of the
complement system (Yuste et al., 2007). Other proteins such
as CFI, C8A, CFD, and CFP involved with the complement
system were found to be downregulated in the severe cohort.
Complement factor I (CFI) downregulates the complement
system by inhibiting complement C3b and C4b (Roversi et al.,
2011), while complement factor D (CFD) and properdin (CFP)
play an essential role in the initiation and propagation of the
alternate pathway in complement activation (Xu et al., 2001;
Kouser et al., 2013). Complement activation is the first line of
defense against invading pathogens. However, unrestrained and
prolonged complement activation can lead to fatal consequences
associated with severe COVID-19 cases (Gao T. et al., 2020;
Holter et al., 2020; Noris et al., 2020). This disrupted fine-
tune between the regulatory complement proteins is consistent
with the prolonged systemic complement activation observed in
severe patients.

Prediction of the outcome of the severity of COVID-19
has received massive attention worldwide in the healthcare
environment. COVID-19 prognosis being a precipitous
challenge, there is a need for protein biomarkers of severity that
can estimate the level of severity to facilitate supplementary
action at an earlier state. Here, we used the differentially
expressed proteome between severe and non-severe COVID-19
for training a model to predict patients’ outcomes based solely
on their proteome. SVM-based supervised learning approach has
been used to process high dimensional data from the smaller data
set. The SVM model could classify the predictors of severity by
assigning the most probable marker in a descending order APCS,
LCP1, SERPINA4, SEMG2, LPA, C4B, PI16, SERPINA7, S100A8,
SERPINA3, SERPINA6, FGG, TPM4, IGFBP3, CA1, SERPIND1,
CFD, AZGA, GPX3, and APOB a Variable Importance in
Projection Score. The protein biomarkers of severity can be
translated by creating panels that can help clinicians segregate
patients based on the biomarker features with potential to
determine the severity of the disease.

Multiple antiviral drug therapies and clinical drug trials are
ongoing to develop a definitive solution for this life-threatening
viral infection. Current approaches of treating various stages of
COVID-19 patients with commercially available drugs include
twomajor categories: treatment with antiviral drugs and immune
modulators. HIV protease inhibitors are quite famous as they
belong to the former category, but no definitive studies have
proven those drugs to be potent inhibitors, driving the quest
for an effective treatment (Shah et al., 2020). Our study
performed in silico drug repurposing analysis with 9 proteins
from our proteomic analysis against a library of 58 small
molecules. The chosen drugs are previously found to target
the protein–protein interactions that occur between SARS-CoV-
2 and human proteins in a cell line model (Gordon et al.,
2020). Two FDA-approved drugs, selinexor and ponatinib, were
found to inhibit most of the proteins belonging to two different
cohorts: COVID-19 positive vs. COVID-19 negative and non-
severe vs. severe. The FDA has approved selinexor to treat
multiple myeloma combined with dexamethasone (Chari et al.,
2019). The drug is a first-class exportin-1 (XPO1) inhibitor that

brings apoptosis in cancer cells by blocking nucleocytoplasmic
transport of tumor suppressor proteins (Richter et al., 2020).
Although developed originally as anticancer drugs, exportin
inhibitors can act as antiviral drugs as they have the potential to
block the intracellular replication of viral particles by inhibiting
the transport of viral replication proteins into the cytoplasm
(Uddin et al., 2020). Hence, the drug is currently under
phase II clinical trial for COVID-19 infection (ClinicalTrials.gov
Identifier: NCT04349098). Five plasma proteins from our study,
including thyroxine-binding globulin (SERPINA7) and heparin
cofactor 2 (SERPIND1) belonging to the family of serine
protease inhibitors (SERPINs), were shown to interact with
selinexor, suggesting these SERPINs could be a target for the
drug. Both proteins are also seen to interact with another
FDA-approved drug called ponatinib. Originally, the tyrosine
kinase inhibitor ponatinib was used to treat chronic myeloid
leukemia (Tan et al., 2019). It is currently not under any
clinical trial for treatment of COVID-19 patients, but recent
studies in mice models showed it could suppress the cytokine
storms from viral infections like influenza (Chen et al., 2019).
Hence, ponatinib, as an immune modulator, appears to be a
suitable drug for making therapeutic cocktails against COVID-
19 infection in the future. The potential drug candidates
identified by in silico docking should be validated using in vitro
cell line model.

CONCLUSION

The comprehensive proteomics study of COVID-19 infected
patient plasma emphasizes that the mass spectrometry–detected
host proteins hold the potential for monitoring the disease
severity progression and the drug targets identified might aid
in therapeutic interventions. Several proteins such as AGT,
FGG, APOB, SERPING1, and SERPINA3 identified using
quantitative proteomics techniques were further validated using a
targeted mass-spectrometry approach. Using supervised machine
learning–based approach, the proteins such as APCS, LCP1,
SERPINA4, SEMG2, LPA, C4B, PI16, SERPINA7, S100A8,
SERPINA3, SERPINA6, FGG, TPM4, IGFBP3, CA1, SERPIND1,
CFD, AZGA, GPX3, and APOB were identified to be the most
probable classifiers of disease severity. However, considering
the limited sample size, the predicted panel of proteins
should be further validated in a large cohort of the patient
samples for successful clinical translation. The in silico docking
studies identified two potential FDA-approved drugs, namely,
selinexor and ponatinib, binding to the proteins SERPIND1,
SERPINA7, and S100A9 involved in the pathway related to
regulation of peptidase activity. Thus, the present study reveals
a set of potential prognosis markers and drug candidates for
circumventing the COVID-19 infection.
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Supplementary Figure 1 | Figure representing the correlation matrix of total 74

plasma sample of COVID-19 patients including 20 negative patients, 18

non-severe patients, and 36 severe patients.

Supplementary Figure 2 | The figure shows two chromatograms TIC and base

peak chromatogram. The TIC chromatogram shows all ions from each mass

spectrometer scan (a given time period) summed and plotted as a function of

time. The base peak chromatogram shows all ions from the base peak (the most

intense mass peak in the mass spectrum) summed and plotted as a function of

time. Mass spectrometry instrument settings used for analysis of COVID-19

positive and negative plasma samples are given below the figure.

Supplementary Figure 3 | Principal component analysis of COVID-19 severe and

COVID-19 non-severe patients. (A) The variance over PC index plot. (B) Depicts

the PCA clustering of the severe versus non-severe patients in 2D and 3D.

Supplementary Figure 4 | Proteomic analysis of COVID-19 severe and

COVID-19 negative patients. (A) Top 25 differentially expressed proteins of severe

and negative in the form of heatmap. (B) Depicts the PLSDA clustering of the

severe vs. negative patients.

Supplementary Figure 5 | ROC–AUC curve of SVM model. (A) The ROC–AUC

curves of targets in the non-severe class. (B) Depicts the ROC–AUC curves of

targets in the severe class.

Supplementary Figure 6 | BSA as a QC standard to monitor day-wise

instrument response. (A) Gives an overview of all the peptides of BSA that were

monitored and their approximate retention times. The peptides of BSA monitored

were DLGEEHFK, LVNELTEFAK, DDSPDLPK, AEFVEVTK, HLVDEPQNLIK,

LGEYGFQNALIVR, and QTALVELLK. (B) MRM peaks for LVNELTEFAK,

DDSPDLPK, and HLVDEPQNLIK, respectively. (C) The MRM peak shapes of

QTALVELLK for five consecutive days. (D,E) Peak area and retention time of

QTALVELLK for the same 5 days. Note the consistency in peak shapes, peak

areas, and retention times representing the consistency in the

instrument’s response.

Supplementary Figure 7 | Spiked-in synthetic peptide as QC standard to check

for variability in between sample runs, if any. The peptide used was

FEDGVLDPDYPR with a heavy labeled arginine. (A–C) The MRM peak shapes,

peak areas, and retention time, respectively, for six randomly picked samples

from our MRM runs.

Supplementary Figure 8 | (A–I) The in silico molecular docking of target proteins

with potential drug candidates and their respective control inhibitor. These drugs
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have equal or higher binding affinity than the control drug (i); also, they share the

same binding pocket with the respective control inhibitors. The potential

FDA-approved drugs identified to target are also shown in the figure (ii). The

structures of the drugs are obtained from the ZINC15 database.

Supplementary Table 1 | Demographic characteristics of COVID-19 patients.

Supplementary Table 2 | Clinical information of COVID-19 patients.

Supplementary Table 3 | List of DEPs altered in COVID-19 positive vs. negative.

Supplementary Table 4 | List of DEPs altered in COVID-19 severe vs.

non-severe.

Supplementary Table 5 | Consolidated sheet of machine learning output file.

Supplementary Table 6 | List of peptides and transitions used for MRM analysis.

Supplementary Table 7 | List of proteins involved in the enriched pathways.

Supplementary Table 8 | List of FDA approved, Clinical and Pre-clinical drugs

used in docking study.

Supplementary Table 9 | The potential drug binding to proteins up-regulated in
COVID-19 severe.

Supplementary Table 10 | The list of potential drug binding to the target proteins.

Supplementary Table 11 | The list of proteins selected for docking.

Supplementary Table 12 | The potential drugs binding to proteins upregulated in
COVID-19 positive.
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