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Abstract

Age is the single greatest risk factor for a wide range of diseases, and as the mean age of human 

populations grows steadily older, the impact of this risk factor grows as well. Laboratory studies 

on the basic biology of ageing have shed light on numerous genetic pathways that have strong 

effects on lifespan. However, we still do not know the degree to which the pathways that affect 

ageing in the lab also influence variation in rates of ageing and age-related disease in human 

populations. Similarly, despite considerable effort, we have yet to identify reliable and 

reproducible ‘biomarkers’, which are predictors of one’s biological as opposed to chronological 

age. One challenge lies in the enormous mechanistic distance between genotype and downstream 

ageing phenotypes. Here, we consider the power of studying ‘endophenotypes’ in the context of 

ageing. Endophenotypes are the various molecular domains that exist at intermediate levels of 

organization between the genotype and phenotype. We focus our attention specifically on proteins 

and metabolites. Proteomic and metabolomic profiling has the potential to help identify the 

underlying causal mechanisms that link genotype to phenotype. We present a brief review of 

proteomics and metabolomics in ageing research with a focus on the potential of a systems 

biology and network-centric perspective in geroscience. While network analyses to study ageing 

utilizing proteomics and metabolomics are in their infancy, they may be the powerful model 

needed to discover underlying biological processes that influence natural variation in ageing, age-

related disease, and longevity.
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Introduction

Age is the single greatest risk factor for - myriad = diseases. Individuals vary dramatically in 

longevity and risks of age-related disease, yet we still have just a rudimentary understanding 

of the underlying genetic variation and biological processes that influence variation in 

ageing (the breakdown of biological processes as individual grow older), age-related disease 

(those diseases that increase in frequency as individuals age), and longevity (the total time 

an individual lives). We face four main challenges if we are to more fully understand the 

biological factors that affect rates of ageing within natural populations. First, despite major 

advances in our understanding of the molecular basis of ageing [1], we are still far from a 

comprehensive understanding of the causal mechanisms, both molecular and environmental, 

which influence ageing, age-related disease, and longevity. The earliest molecular genetic 

studies of ageing focused on understanding individual genes that had significant effects on 

age-related diseases and longevity. Hundreds of individual genes and proteins [2] have been 

found to increase lifespan when either knocked down [3–6] or overexpressed [7]. However, 

while these genes extend lifespan in model organisms, many of these genes do not show 

significant variation in human populations, which suggests that they may not be contributing 

significantly to natural variation in ageing and longevity. This leads to the second challenge 

in understanding the molecular mechanisms that influence ageing and longevity. Compared 

with laboratory model organisms, humans are extremely genetically diverse. Few genes of 

large effect on longevity or age-related disease have been discovered compared with model 

organisms [8]. In humans, the most reproducible, significant contributor to lifespan appears 

to be the APOE gene, which is closely associated with risk of Alzheimer’s disease [9]. The 

genetic determinants of variation in healthy ageing may well vary among populations, and 

what we learn from a study in one part of the world might not apply to another. Our failure 

to find causative alleles for traits that often have a high heritability is part of the larger 

‘missing heritability’ problem in humans, where the sum of all the genetic effects associated 

with highly heritable traits is typically far less than the heritability measured (reviewed in 

[10]) (though some argue genetic [epistatic] interactions cause us to overestimate the 

heritability of many complex traits [11]). Third, the environment can have an enormous 

effect on age and age-related diseases [12,13], but determining the specific impact of slight 

changes in the environment, as well as gene-by-environment interactions, on ageing and 

longevity has proven difficult [14–16]. Last, despite extensive efforts to identify predictive 

factors, or ‘biomarkers’, of longevity and age-related diseases, until now our efforts have 

met with relatively little success [17–19].

These challenges suggest that examining genes and genetic variation alone may not provide 

a complete picture of the molecular mechanisms that influence ageing and longevity. Genes 

shape phenotypes by working through a complex network of various molecular (‘omic’) 

domains that exist between genotype and phenotype. We hypothesize that investigating these 

functional molecular domains will help elucidate the causal mechanisms of ageing (Figure 

1). While lab-based genetic studies have gone from success to success [3,5,6,20], the same is 

not true for genome-wide association studies (GWAS) designed to identify alleles that 

account for variation in lifespan in human populations [21,22]. The shortcomings of GWAS, 

not just for ageing but for all human traits, have been explored in many publications [23,24]. 
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The overarching challenge has been that despite measures of heritability pointing to a strong 

genetic component for most complex traits in human populations, GWAS typically are able 

to explain only a small fraction of that heritability, leading to the aforementioned ‘missing 

heritability’ problem. One common hypothesis is that this shortfall is due to traits being 

shaped by many common alleles with effect size too small to detect and by large-effect 

alleles that are too rare to detect [25]. This has led some researchers to focus on differences 

among individuals in the transcriptome, searching for significant age-related differences in 

mRNA expression across genes that may explain the variance seen in ageing and longevity 

[26–29], and tissue-specific transcriptomic profiles have been well established in humans 

[30]. However, while transcriptomic profiles can capture some of the variance in the ageing 

phenotype [31], growing evidence suggests mRNA levels do not capture all variance in 

phenotypes, because they do not necessarily correlate with protein expression levels [32,33]. 

And although we now have a much greater appreciation for the functional importance of 

RNA molecules in general, it is proteins that make up the actual enzymes that catalyze 

different biological reactions, and metabolites that are the building blocks of structural 

elements and biochemical pathways. In addition, these ‘endophenotypes’, specifically 

metabolites, capture variation seen not only in genes but also in the environment, allowing 

us to understand the biological impact of the environment on ageing and age-related 

diseases. In this light, our review focuses on the study of proteins and their biological 

products, metabolites, via global proteomic and metabolomic profiling. We suggest here that 

this approach can provide a more robust method to discover causal mechanisms of ageing, 

age-related disease, and longevity.

Ageing arises from the failure of coordination of thousands of RNAs, proteins, and 

metabolites that form a biological network to modulate longevity across multiple tissues and 

cellular organelles [34]. In addition to changes in individual metabolites and proteins, the 

interaction between them per se is critical for regulating the functions that maintain survival 

and reproduction. By looking not only at changes in mean levels of proteins and metabolites 

but also in the way that abundances of these molecules correlate with one another in larger 

networks, we can generate new and potentially powerful hypotheses about ageing and age-

related diseases. Networks consist of a set of ‘nodes’ (here, proteins or metabolites) 

connected to one another through ‘edges’. The edges in biological networks can be defined 

either by directional biochemical interactions (metabolite a is a known precursor of 

metabolite b), nondirectional biochemical interactions (protein x interacts physically with 

protein y) or more commonly, by expression correlations (e.g. concentrations of two 

metabolites are correlated across a set of tissue samples). In the latter case, two metabolites 

that are not directly connected in a metabolic pathway may nonetheless be connected in the 

network if their concentrations are correlated with each other. From a network perspective, 

the critical changes that occur with age may not be changes in concentrations (i.e. removing 

or adding a node in the network), but rather changes in edges connecting different nodes. For 

example, Laye et al. [35] provide an example where two specific metabolites show no 

change in mean value under high-yeast versus low-yeast conditions, but do show a change in 

correlation structure, with the two metabolites negatively correlated under high yeast, but 

positively correlated under low yeast. Similarly, one could imagine two metabolites that 
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have the same concentrations in young versus old animals, but whose correlation changes 

between ages, or between two genotypes that differ in lifespan [36].

Here, we present a short review of the potential of proteomic and metabolomic ageing 

studies, from individual biomarkers of age and age-related disease to metabolic pathway and 

finally to network analysis, which we hope will provide a deeper understanding of the 

biological processes that influence ageing and longevity. We then suggest the further need 

for integrating networks of multiple ‘omics’ data types to discover a complete picture of the 

molecular causes and consequences of ageing.

Proteomics and metabolomics as ageing biomarkers

Over the past several decades, research in the biology of ageing has attempted to discover 

‘biomarkers’ of ageing. Ideally, these biomarkers would be predictive not only of an 

individual’s chronological age (years lived so far), but also of their biological age (which we 

assume is indicative of quality and quantity of years yet to be lived). As such, biomarkers 

could predict risk of future age-related morbidity and mortality. However, the search for 

these biomarkers has often failed [18,19,37]. For example, telomere length has been a highly 

studied ‘biomarker’ of ageing, as they shorten as individuals grow older, yet telomeres have 

failed as a predictor of mortality [18,19]. As suggested by Horvath’s recent efforts to use 

methylation markers as a biological clock [38], we hypothesize that high-dimensional 

protein and/or metabolite profiles might emerge as ideal biomarkers of ageing, as they 

represent the ‘endophenotypes’ between phenotype and genotype.

The earliest (and most common) proteomic and metabolomic studies of ageing have sought 

potential biomarkers of age-related diseases (reviewed in [39,40]). Comparing 

quantifications of individual metabolites or proteins between diseased and control 

individuals allows researchers to determine if specific molecules are significantly different 

between the two groups. The search for metabolites and proteins as biomarkers has been 

particularly common in the area of neurodegenerative disease. While markers in 

cerebrospinal fluid for Alzheimer’s [41] and Parkinson’s diseases [42] exist, the tests are 

highly invasive and not always accurate predictors of the disease. Therefore, proteomic and 

metabolomic studies of blood plasma have the potential to discern accurate, less invasive 

biomarkers of neurodegenerative disease. For example, numerous cross-sectional studies 

have attempted to find levels of proteins and metabolites associated with Alzheimer’s [43–

46] and Parkinson’s diseases [47–50]. In addition to potential biomarkers, these studies 

discovered individual molecules that may play a significant role in disease associated 

pathology. However, experimental or epidemiological validation of the role of these 

molecules in disease pathology is rare.

Cross-sectional biomarker studies over the last 5–10 years have attempted to discover 

predictors of other age-related diseases as well, including cardiovascular disease and Type 2 

diabetes (T2D). Protein and metabolite biomarkers of coronary artery disease [51], heart 

failure [52,53], and atherosclerosis [54,55] have been identified that distinguish control and 

diseased individuals. In one recent study, plasma protein biomarkers were associated not 

only with future cardiovascular events, but also with future mortality from cardiovascular 
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disease within an 18-year follow-up time [56]. Taken together, these cardiovascular studies 

suggest that the abundance of differentially regulated inflammatory response proteins may 

be potential biomarkers of cardiovascular events. Similarly, biomarker work in T2D has 

found individual proteins and metabolites whose quantities differ in control subjects versus 

those with the disease [57–60]. Furthermore, individual metabolite levels are associated with 

complications from T2D [61], and the levels of certain proteins predict future diabetic 

neuropathy [62]. Finally, metabolomic and proteomic biomarkers of interactions between 

age-related morbidities exist. For example, metabolomic analysis has revealed significant 

lower levels of glycerophosopholipids in T2D patients compared with controls, with the 

lowest levels seen in those individuals with T2D and a concurrent diagnosis of 

cardiovascular disease [63]. However, while proteomics and metabolomics have the 

potential to lead to the development of new predictive biomarkers of age-related diseases, 

they are not the only biomarkers being developed. For example, in cardiovascular disease, 

small molecule low-density lipoprotein molecules [64,65] and vascular imaging [66] have 

both been proposed as biomarkers of the disease.

As a pre-requisite for identifying biomarkers of ageing and long lifespan, multiple studies 

have attempted to characterize how the metabolome and proteome changes with age in both 

humans and model systems. The abundances of individual metabolites change with age in 

several species, including worms [67,68], flies [35,69], mice [70–72], and humans 

[57,73,74]. In the same vein, differences in abundances of individual metabolites have been 

associated with long life across multiple species, including work on long-lived mutant 

worms [75], longevity selected flies [76], calorie restricted and long-lived mutant mice [77], 

and long-lived human populations [78–80]. Interestingly, fewer studies have attempted to 

find protein biomarkers of ageing or longevity, and those studies that have been carried out 

have found mixed results. Proteins related to circadian rhythm show decreased abundance in 

old compared with young worms [67]. Conversely, in a study of over 4000 proteins in mice, 

Walther et al. [81] found no effect of age on overall protein abundances. Similarly, aged 

mouse brains do not show significant changes in protein abundances compared with young 

mice, yet large differences were seen in metabolomic profiles between the two groups [82]. 

However, a study of the Twins U.K. cohort found 13 proteins differentially regulated 

between young and old individuals, 10 of which were replicated in an independent cohort 

[83]. Overall, it appears that significantly more metabolite associations with age are found 

across organisms as compared with differentially expressed proteins. This potentially 

suggests that changes in metabolite quantifications and flux may be more important 

biologically to the ageing phenotype than protein concentrations.

Metabolomic and proteomic studies can also be applied to non-model species. For example, 

age-related changes in protein concentrations are seen in mosquitoes [84], honeybees [85], 

sea urchins [86], and macaque hearts [87], and age-related longitudinal changes in 

metabolites have been measured in the common marmoset [88]. In addition, metabolite 

concentrations are correlated with longevity across 26 mammalian species [89], leading to 

new insights into how metabolite concentrations change across species with highly variable 

lifespans.
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Taken together, these results suggest that both proteomic and metabolomic technologies 

could lead to the discovery of biomarkers of age and age-related morbidity. Moreover, these 

biomarkers could also elucidate the underlying causal mechanisms of ageing and age-related 

disease. However, there are numerous outstanding challenges. First, as has been shown in 

nearly all instances where biomarkers have been asserted, merely noting a reproducible 

change in the marker with age and establishing a correlation with health are not enough. 

True biomarkers must be predictive of the relevant outcome, whether that is current disease 

state, risk of future morbidity, or remaining lifespan, in cohorts that were not used for their 

initial characterization. Indeed, replication of individual biomarkers and predictive factors 

has been difficult, if not impossible. An Alzheimer’s disease panel of metabolites had poor 

predictive ability [90]. Similarly, a protein panel developed in one cohort could not 

accurately group a different cohort’s participants into correct age classes [91]. While these 

are just a few examples of lack of reproducibility and predictability in ‘omics’ biomarkers, 

the majority of proteomic and metabolomic biomarker studies have never been subjected to 

this level of scrutiny. For metabolomic and proteomic studies to have the potential to be 

useful predictors of age-related morbidities and mortality, we need better reproducibility and 

replication, as others have recently stated [92]. In addition, metabolomic and proteomic 

biomarker studies would do well to integrate analyses of both specificity (ruling out healthy 

individuals) and sensitivity (diagnosing unhealthy individuals) on biomarker predictions, 

similar to analyses done on other biomarkers [93]. Second, we need to incorporate long-term 

longitudinal measures of -omic profiles. Our ability to predict morbidity and mortality from 

-omic biomarkers may depend not on static measures at one time point, but rather on 

trajectories of these measures. Finally, metabolomic and proteomic studies are often 

constrained by lack of annotation. Proteins can only be easily identified in species with a 

well-annotated genome. Targeted metabolomic analyses can easily detect 200–300 well-

defined metabolites that are found across species. Conversely, global metabolomic profiles 

have the potential to provide measures of thousands of chemical features. However, the 

majority of these features are defined only by a specific mass-to-charge ratio, or at best, 

chemical formula, but have unknown structure and are not matched to a known biochemical 

pathway.

Metabolic pathways associated with ageing

Much of the literature on biomarkers has focused on the search for individual molecules, or 

statistical combinations of molecules, which are predictive of age-related morbidity or 

mortality. However, many metabolomic studies have moved beyond individual biomarkers of 

ageing, focusing instead on metabolic pathway analysis, in which whole metabolic pathways 

are analyzed for significant changes. Deciphering entire pathways that are differentially 

regulated during ageing leads to new hypotheses about the underlying biological processes 

that may be influencing ageing and longevity. Work in Drosophila found significant down-

regulation of fatty acid and sugar metabolism with age [69], and a study of metabolite 

pathway enrichment in dietary restricted flies showed a global decline in amino acid 

metabolism in response to dietary restriction [35]. Metabolomic profiles in aged mouse 

brains show significant changes in amino acid and nucleotide metabolism [82], and 

nucleotide metabolism is significantly altered with age longitudinally in the common 
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marmoset [88]. In addition, energy metabolism and amino acid metabolism are significantly 

altered in Alzheimer’s patients compared with cognitively normal individuals [94]. Taken 

together, these results point to causal relationships between amino acid metabolism and 

nucleotide metabolism, and ageing and age-related morbidities, and potentially in response 

to lifespan extending interventions. However, the causal link is still unknown. Future studies 

with perturbations of these pathways are needed to understand if these pathways are 

themselves affecting the ageing phenotype, or just a by-product of ageing itself.

Cellular network stability and ageing

Work on individual pathways has led researchers to begin to look at global pathway and 

network structure of different biological phenomena, as increasing evidence suggests that 

the cross-talk between different pathways has a significant impact on ageing [35,95,96]. This 

systems biology approach allows us to explore the possibility that the process of ageing 

might be affected in fundamental ways by age-related changes in network structure. In this 

case, rather than looking at changes in concentrations of individual genes, proteins, and 

metabolites, the suggestion is that changes in cross-talk between biochemical building 

blocks play an equally or more important role [35,95,97–100]. This network-based 

framework allows us to understand a more complete picture of the biological mechanisms 

that influence ageing, age-related diseases, and longevity.

Although we have few studies on metabolomic networks and ageing, previous work on gene 

co-expression networks and protein–protein interaction (PPI) networks suggests a strong 

link between network stability and ageing. This provides us with a framework to seek 

common network behavior associated with the ageing process. In these networks, each node 

indicates an individual gene/protein/metabolite, while each edge indicates either the 

biochemical or physical interaction between the two nodes (e.g. in a PPI network) or a 

statistical correlation, such as between each of all possible pairs of transcripts measured in a 

large number of samples. In young animals, connections between nodes tend to be strong 

and numerous, ensuring the functional cellular signalings and biochemical reactions in this 

network, often reflective as network integrity. The integrity of the network can be measured 

by network connectivity (the degree to which any two nodes in this network are directly or 

indirectly linked). Interestingly, network connectivity often declines as animal’s age. For 

example, gene expression correlations across different tissues decrease in aged mice 

compared with young mice, indicating the loss of genetic connection and network integrity 

[98]. In PPI networks, ageing-associated proteins are highly connected, indicating the 

critical role of maintaining network integrity [101]. Consistent with this, an investigation 

into the dynamics of metabolomic networks with age in flies found that correlations of 

metabolite concentrations decreased in old flies [35]. Together, these studies imply that 

network stability is compromised in old animals at the level of the transcriptome, proteome, 

and metabolome. We suggest that as the cellular networks in these animals break into small, 

non-communicated pieces, the process of cellular homeostasis is dramatically disrupted, and 

that leads to a series of ageing hallmarks such as mitochondrial dysfunction, genomic 

instability, and loss of proteostasis (homeostasis of the proteome) [1].
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Most cellular networks, such as transcriptional networks and PPIs networks, are scale-free 

networks that are resistant to genetic and environmental perturbations [102]. In scale-free 

networks, a small number of ‘hub’ genes interact with many partners while the majority has 

very few partners. The integrity of hub gene edges is critical for overall network integrity 

[103]. Removal of hub genes significantly disrupts network connectivity and is considered a 

potential mechanism of ageing [99,103]. Evidence from yeast [97], Drosophila [95], and 

human brain studies [95,100] suggests that ageing associated genes are more likely to be 

‘hub’ genes, and computational simulations show that network stability is severely reduced 

by removing nodes consisting of these ageing genes from the network. One caveat is that 

hub genes might be defined as hubs simply because they are well studied so that more 

interactions have been observed. However, a recent study indicates that after correcting the 

number of publications for each gene, ageing and ageing-related disease genes still have 

more connections than control genes [104].

In PPI networks of both Drosophila and human, the expression levels of genes associated 

with proteins in only a few functional modules (i.e. co-expressed gene clusters enriched for 

particular functions), mostly pertaining to cellular proliferation and differentiation, were 

changed during ageing. However, disturbing these ‘core’ modules significantly affects 

network integrity [95]. In the transcriptome of mice, the expression correlation of the targets 

of transcriptional factor NF-κB are significantly decreased in old animals, suggesting NF-

κB is a central modulator of network integrity [98]. This finding calls for further 

investigation of the molecular nature of these hub genes, including the consequence for 

network structure of altering NF-κB signaling, and how this and other genes maintain 

network stability to potentially modulate longevity. Genes that maintain proteostasis, such as 

chaperones, are among the most important hub genes that affect ageing [105]. Impairment of 

proteostasis machinery is observed not only in old animals, but also in age-related diseases 

[105,106].

To establish causative links among network stability and ageing, age-related disease, and 

longevity, one must examine the network changes in animals treated with lifespan extending 

interventions, including genetic, dietary, and pharmacological interventions. The comparison 

of network structure between dietary restricted (DR) animals and ad libitum (AL) fed 

animals indicates network connectivity is maintained in old animals under DR, suggesting 

that DR potentially extends lifespan through the maintenance of network integrity [35]. For 

example, on a DR diet, metabolite correlation networks are still largely intact in older flies, 

but not in flies on an AL diet [35] (see also Figure 2). A similar effect of DR on 

transcriptional network connectivity is also observed in worms [107] and mice [100]. 

Together, these studies indicate that lifespan extending interventions may have a significant 

influence on network stability. While these studies show great potential for using 

metabolomic and proteomic networks to understand ageing and longevity at the network 

level, few studies have investigated the effect of anti-ageing interventions on network 

integrity. We hypothesize that anti-ageing interventions, even though they extend lifespan 

through different molecular pathways [96], may all slow the pace of ageing by maintaining 

network integrity (Figure 2). To better understand mechanisms of ageing, future studies 

should place greater emphasis on how interventions that alter healthspan or lifespan affect 

proteomic or metabolomic network stability. In addition, studies on metabolomic network 
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stability, which are relatively rare at this time, will be particularly valuable to better 

understand how these basic building blocks (Figure 1) affect ageing.

Integrating multiple ‘omics’ into ageing research

Ageing studies using proteomics and metabolomics provide valuable insights into the 

process of ageing. Ultimately, our challenge will be to create a comprehensive multi-omic 

model of disease, one that combines not only the metabolomic and proteomic networks that 

lie between genotype and phenotype, as well as other domains, including the epigenome, 

proteome, microbiome, and the environmental factors that shape not only the downstream 

phenotypes, but also the various ‘omes’ that influence phenotype. And of course, even 

within domains there is enormous complexity. Only in recent years have we begun to 

appreciate the important regulatory roles played by various types of RNA, such as 

microRNAs and long non-coding RNAs. A wide array of different post-transcriptional 

regulatory mechanisms, such as microRNA-mediated degradation, leads to a lack of 

concordance between transcript levels and protein abundances [108]. Each ‘omic’ domain 

encodes unique information about genetic and biochemical processes and pathways that 

affect ageing. The complete understanding of the biology of ageing and ageing-related 

diseases thus requires a framework that integrates multiple omics approaches [109–113].

Computational methods that integrate multiple levels of omics data that can be applied to 

ageing and ageing-related disease. For example, using a general linear model, Padayachee et 

al. designed a statistical model to integrate metabolomic and transcriptomic data to 

understand the biological pathways leading to complex disease [114]. Using a network-

based approach, PIUMet (prize-collecting Steiner forest algorithms for integrative analysis 

of untargeted metabolomics) combines untargeted metabolomic data and proteomic data to 

analyze molecular changes in disease [115]. Multivariate statistical analyses have given us 

the power to put multiple omics data into a statistical framework to understand the ageing 

process at a systems level. Moving forward, major challenges will be (1) to define and 

explain the statistical and functional connections across multiple domains; (2) to describe 

how these connections change with age, and how they response to perturbations that delay or 

attenuate the effects of age on morbidity and mortality, and (3) to test these connections as 

potential targets for therapies to ameliorate the effects of ageing.

Conclusions

Here, we have presented a brief review of proteomic and metabolomic analyses of ageing, 

age-related diseases, and longevity with a focus on integrating network-based approaches 

more broadly into the field. Ageing is a systematic, complex process involving cross-talk 

across large cohorts of molecules, pathways, organelles, cells, tissues, and organs, and 

investigating connectivity and robustness of this system may be the key to understanding the 

biological mechanisms of the ageing process. Studies of proteomic and metabolomic 

networks, although they are in their infancy, may be a key step in efforts to build a unified 

framework to better understand the mechanistic basis of ageing and age-related disease. It is 

obvious that systems biology and network analyses are poised to play a major role in 
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understanding the basic biology of ageing, and we are excited to see what research comes 

from their implementation.

Acknowledgments

We would like to thank the two reviewers for their insightful comments on the manuscript.

Funding

This work was supported by the Glenn/AFAR Postdoctoral Fellowship; National Institutes of Health (NIH) [grant 
numbers AG049494 (to D.P.), AG030593, AG051649 (to S.P.), GM102279 (to S.P., D.P. and Y.L.), CA211160 (to 
D.P.)]; and National Science Foundation [grant number DMS1561814 (to D.P.)].

Abbreviations

AL ad libitum

APOE Apolipoprotein E

DR dietary restricted

GWAS genome-wide association studies

NF-kB nuclear factor kappa-light-chain-enhancer of activated B cells

PPI protein–protein interaction

T2D Type 2 diabetes

References

1. Lopez-Otin C, et al. The hallmarks of aging. Cell. 2013; 153:1194–1217. [PubMed: 23746838] 

2. Tacutu R, et al. Human Ageing Genomic Resources: integrated databases and tools for the biology 
and genetics of ageing. Nucleic Acids Res. 2013; 41:D1027–D1033. [PubMed: 23193293] 

3. Clancy DJ, et al. Extension of life-span by loss of CHICO, a Drosophila insulin receptor substrate 
protein. Science. 2001; 292:104–106. [PubMed: 11292874] 

4. Harrison DE, et al. Rapamycin fed late in life extends lifespan in genetically heterogeneous mice. 
Nature. 2009; 460:392–395. [PubMed: 19587680] 

5. Holzenberger M, et al. IGF-1 receptor regulates lifespan and resistance to oxidative stress in mice. 
Nature. 2003; 421:182–187. [PubMed: 12483226] 

6. Kenyon C, et al. A C. elegans mutant that lives twice as long as wild type. Nature. 1993; 366:461–
464. [PubMed: 8247153] 

7. Tissenbaum HA, Guarente L. Increased dosage of a sir-2 gene extends lifespan in Caenorhabditis 
elegans. Nature. 2001; 410:227–230. [PubMed: 11242085] 

8. de Magalhaes JP. Why genes extending lifespan in model organisms have not been consistently 
associated with human longevity and what it means to translation research. Cell Cycle. 2014; 
13:2671–2673. [PubMed: 25486354] 

9. Christensen K, Johnson TE, Vaupel JW. The quest for genetic determinants of human longevity: 
challenges and insights. Nat Rev Genet. 2006; 7:436–448. [PubMed: 16708071] 

10. Eichler EE, et al. Missing heritability and strategies for finding the underlying causes of complex 
disease. Nat Rev Genet. 2010; 11:446–450. [PubMed: 20479774] 

11. Zuk O, et al. The mystery of missing heritability: Genetic interactions create phantom heritability. 
Proc Natl Acad Sci USA. 2012; 109:1193–1198. [PubMed: 22223662] 

Hoffman et al. Page 10

Essays Biochem. Author manuscript; available in PMC 2017 December 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



12. Hoek G, et al. Association between mortality and indicators of traffic-related air pollution in the 
Netherlands: a cohort study. Lancet. 2002; 360:1203–1209. [PubMed: 12401246] 

13. Strandberg AY, et al. The effect of smoking in midlife on health-related quality of life in old age: a 
26-year prospective study. Arch Intern Med. 2008; 168:1968–1974. [PubMed: 18852397] 

14. Dato S, et al. The genetics of human longevity: an intricacy of genes, environment, culture and 
microbiome. Mech Ageing Dev. 2017; doi: 10.1016/j.mad.2017.03.011

15. Joseph PG, Pare G, Anand SS. Exploring gene-environment relationships in cardiovascular disease. 
Can J Cardiol. 2013; 29:37–45. [PubMed: 23261319] 

16. Temby OF, Smith KR. The association between adult mortality risk and family history of 
longevity: the moderating effects of socioeconomic status. J Biosoc Sci. 2014; 46:703–716. 
[PubMed: 24103415] 

17. Baker GT III, Sprott RL. Biomarkers of aging. Exp Gerontol. 1988; 23:223–239.

18. Mather KA, et al. Is telomere length a biomarker of aging? A review. J Gerontol A Biol Sci Med 
Sci. 2011; 66:202–213. [PubMed: 21030466] 

19. Sanders JL, Newman AB. Telomere length in epidemiology: a biomarker of aging, age-related 
disease, both, or neither? Epidemiol Rev. 2013; 35:112–131. [PubMed: 23302541] 

20. Selman C, et al. Ribosomal protein S6 kinase 1 signaling regulates mammalian life span. Science. 
2009; 326:140–144. [PubMed: 19797661] 

21. Broer L, et al. GWAS of longevity in CHARGE consortium confirms APOE and FOXO3 
candidacy. J Gerontol A Biol Sci Med Sci. 2015; 70:110–118. [PubMed: 25199915] 

22. Nebel A, et al. A genome-wide association study confirms APOE as the major gene influencing 
survival in long-lived individuals. Mech Ageing Dev. 2011; 132:324–330. [PubMed: 21740922] 

23. Nebert DW, Zhang G, Vesell ES. From human genetics and genomics to pharmacogenetics and 
pharmacogenomics: past lessons, future directions. Drug Metab Rev. 2008; 40:187–224. [PubMed: 
18464043] 

24. Ward LD, Kellis M. Interpreting noncoding genetic variation in complex traits and human disease. 
Nat Biotechnol. 2012; 30:1095–1106. [PubMed: 23138309] 

25. Park JH, et al. Estimation of effect size distribution from genome-wide association studies and 
implications for future discoveries. Nat Genet. 2010; 42:570–575. [PubMed: 20562874] 

26. Landis GN, et al. Similar gene expression patterns characterize aging and oxidative stress in 
Drosophila melanogaster. Proc Natl Acad Sci USA. 2004; 101:7663–7668. [PubMed: 15136717] 

27. Passtoors WM, et al. Transcriptional profiling of human familial longevity indicates a role for 
ASF1A and IL7R. PLoS ONE. 2012; 7:e27759. [PubMed: 22247756] 

28. Zhou B, et al. Midlife gene expressions identify modulators of aging through dietary interventions. 
Proc Natl Acad Sci USA. 2012; 109:E1201–E1209. [PubMed: 22509016] 

29. Pletcher SD, et al. Genome-wide transcript profiles in aging and calorically restricted Drosophila 
melanogaster. Curr Biol. 2002; 12:712–723. [PubMed: 12007414] 

30. Uhlen M, et al. Transcriptomics resources of human tissues and organs. Mol Syst Biol. 2016; 
12:862. [PubMed: 27044256] 

31. de Magalhaes, JP., Tacutu, R. Integrative Genomics of Aging. In: Kaeberlein, M., Martin, GM., 
editors. Handbook of the Biology of Aging. Academic Press; 2016. p. 263-285.

32. Maier T, Guell M, Serrano L. Correlation of mRNA and protein in complex biological samples. 
FEBS Lett. 2009; 583:3966–3973. [PubMed: 19850042] 

33. Pascal LE, et al. Correlation of mRNA and protein levels: cell type-specific gene expression of 
cluster designation antigens in the prostate. BMC Genomics. 2008; 9:246. [PubMed: 18501003] 

34. Dillin A, Gottschling DE, Nystrom T. The good and the bad of being connected: the integrons of 
aging. Curr Opin Cell Biol. 2014; 26:107–112. [PubMed: 24529252] 

35. Laye MJ, et al. The effects of age and dietary restriction on the tissue-specific metabolome of 
Drosophila. Aging Cell. 2015; 14:797–808. [PubMed: 26085309] 

36. Castro C, et al. A study of Caenorhabditis elegans DAF-2 mutants by metabolomics and 
differential correlation networks. Mol Biosyst. 2013; 9:1632–1642. [PubMed: 23475189] 

Hoffman et al. Page 11

Essays Biochem. Author manuscript; available in PMC 2017 December 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



37. Hassin-Baer S, et al. Is C-reactive protein level a marker of advanced motor and neuropsychiatric 
complications in Parkinson’s disease? J Neural Transm (Vienna). 2011; 118:539–543. [PubMed: 
21161711] 

38. Horvath S. DNA methylation age of human tissues and cell types. Genome Biol. 2013; 14:R115. 
[PubMed: 24138928] 

39. Mishur RJ, Rea SL. Applications of mass spectrometry to metabolomics and metabonomics: 
detection of biomarkers of aging and of age-related diseases. Mass Spectrom Rev. 2012; 31:70–95. 
[PubMed: 21538458] 

40. Schoneich C. Mass spectrometry in aging research. Mass Spectrom Rev. 2005; 24:701–718. 
[PubMed: 15495140] 

41. Blennow K, et al. Clinical utility of cerebrospinal fluid biomarkers in the diagnosis of early 
Alzheimer’s disease. Alzheimers Dement. 2015; 11:58–69. [PubMed: 24795085] 

42. Foulds PG, et al. Phosphorylated alpha-synuclein can be detected in blood plasma and is 
potentially a useful biomarker for Parkinson’s disease. FASEB J. 2011; 25:4127–4137. [PubMed: 
21865317] 

43. Kaddurah-Daouk R, et al. Alterations in metabolic pathways and networks in Alzheimer’s disease. 
Transl Psychiatry. 2013; 3:e244. [PubMed: 23571809] 

44. Maarouf CL, et al. Proteomic analysis of Alzheimer’s disease cerebrospinal fluid from 
neuropathologically diagnosed subjects. Curr Alzheimer Res. 2009; 6:399–406. [PubMed: 
19689240] 

45. Roher AE, et al. Proteomics-derived cerebrospinal fluid markers of autopsy-confirmed Alzheimer’s 
disease. Biomarkers. 2009; 14:493–501. [PubMed: 19863188] 

46. Wang G, et al. Plasma metabolite profiles of Alzheimer’s disease and mild cognitive impairment. J 
Proteome Res. 2014; 13:2649–2658. [PubMed: 24694177] 

47. Hatano T, et al. Identification of novel biomarkers for Parkinson’s disease by metabolomic 
technologies. J Neurol Neurosurg Psychiatry. 2016; 87:295–2301. [PubMed: 25795009] 

48. Lewitt PA, et al. 3-hydroxykynurenine and other Parkinson’s disease biomarkers discovered by 
metabolomic analysis. Mov Disord. 2013; 28:1653–1660. [PubMed: 23873789] 

49. Luan H, et al. Comprehensive urinary metabolomic profiling and identification of potential 
noninvasive marker for idiopathic Parkinson’s disease. Sci Rep. 2015; 5:13888. [PubMed: 
26365159] 

50. Zhang X, et al. Quantitative proteomic analysis of serum proteins in patients with Parkinson’s 
disease using an isobaric tag for relative and absolute quantification labeling, two-dimensional 
liquid chromatography, and tandem mass spectrometry. Analyst. 2012; 137:490–495. [PubMed: 
22108571] 

51. Park JY, et al. Alteration in metabolic signature and lipid metabolism in patients with angina 
pectoris and myocardial infarction. PLoS ONE. 2015; 10:e0135228. [PubMed: 26258408] 

52. Mebazaa A, et al. Unbiased plasma proteomics for novel diagnostic biomarkers in cardiovascular 
disease: identification of quiescin Q6 as a candidate biomarker of acutely decompensated heart 
failure. Eur Heart J. 2012; 33:2317–2324. [PubMed: 22733835] 

53. Zordoky BN, et al. Metabolomic fingerprint of heart failure with preserved ejection fraction. PLoS 
ONE. 2015; 10:e0124844. [PubMed: 26010610] 

54. Chen X, et al. Plasma metabolomics reveals biomarkers of the atherosclerosis. J Sep Sci. 2010; 
33:2776–2783. [PubMed: 20730840] 

55. Yin X, et al. Protein biomarkers of new-onset cardiovascular disease: prospective study from the 
systems approach to biomarker research in cardiovascular disease initiative. Arterioscler Thromb 
Vasc Biol. 2014; 34:939–945. [PubMed: 24526693] 

56. Melander O, et al. New circulating biomarkers for predicting cardiovascular death in healthy 
population. J Cell Mol Med. 2015; 19:2489–2499. [PubMed: 26258425] 

57. Menni C, et al. Biomarkers for type 2 diabetes and impaired fasting glucose using a nontargeted 
metabolomics approach. Diabetes. 2013; 62:4270–4276. [PubMed: 23884885] 

58. Padberg I, et al. A new metabolomic signature in type-2 diabetes mellitus and its pathophysiology. 
PLoS ONE. 2014; 9:e85082. [PubMed: 24465478] 

Hoffman et al. Page 12

Essays Biochem. Author manuscript; available in PMC 2017 December 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



59. Riaz S, et al. Proteomic identification of human urinary biomarkers in diabetes mellitus type 2. 
Diabetes Technol Ther. 2010; 12:979–988. [PubMed: 20735160] 

60. Zhang AH, et al. Metabolomics study of type 2 diabetes using ultra-performance LC-ESI/
quadrupole-TOF high-definition MS coupled with pattern recognition methods. J Physiol 
Biochem. 2014; 70:117–128. [PubMed: 23975652] 

61. Wu T, et al. Serum metabolite signatures of type 2 diabetes mellitus complications. J Proteome 
Res. 2015; 14:447–456. [PubMed: 25245142] 

62. Zurbig P, et al. Urinary proteomics for early diagnosis in diabetic nephropathy. Diabetes. 2012; 
61:3304–3313. [PubMed: 22872235] 

63. Garcia-Fontana B, et al. Metabolomic profile related to cardiovascular disease in patients with type 
2 diabetes mellitus: A pilot study. Talanta. 2016; 148:135–143. [PubMed: 26653434] 

64. Hoogeveen RC, et al. Small dense low-density lipoprotein-cholesterol concentrations predict risk 
for coronary heart disease: the Atherosclerosis Risk In Communities (ARIC) study. Arterioscler 
Thromb Vasc Biol. 2014; 34:1069–1077. [PubMed: 24558110] 

65. Toft-Petersen AP, et al. Small dense LDL particles–a predictor of coronary artery disease evaluated 
by invasive and CT-based techniques: a case-control study. Lipids Health Dis. 2011; 10:21. 
[PubMed: 21262005] 

66. Roman MJ, et al. Vascular biomarkers in the prediction of clinical cardiovascular disease: the 
Strong Heart Study. Hypertension. 2012; 59:29–35. [PubMed: 22068872] 

67. Copes N, et al. Metabolome and proteome changes with aging in Caenorhabditis elegans. Exp 
Gerontol. 2015; 72:67–84. [PubMed: 26390854] 

68. Davies SK, Bundy JG, Leroi AM. Metabolic youth in middle age: predicting aging in 
caenorhabditis elegans using metabolomics. J Proteome Res. 2015; 14:4603–4609. [PubMed: 
26381038] 

69. Hoffman JM, et al. Effects of age, sex, and genotype on high-sensitivity metabolomic profiles in 
the fruit fly, Drosophila melanogaster. Aging Cell. 2014; 13:596–604. [PubMed: 24636523] 

70. Houtkooper RH, et al. The metabolic footprint of aging in mice. Sci Rep. 2011; 1:134. [PubMed: 
22355651] 

71. Son N, et al. Liquid chromatography-mass spectrometry-based metabolomic analysis of livers from 
aged rats. J Proteome Res. 2012; 11:2551–2558. [PubMed: 22380686] 

72. Calvani R, et al. Fecal and urinary NMR-based metabolomics unveil an aging signature in mice. 
Exp Gerontol. 2014; 49:5–11. [PubMed: 24184118] 

73. Chaleckis R, et al. Individual variability in human blood metabolites identifies age-related 
differences. Proc Natl Acad Sci USA. 2016; 113:4252–4259. [PubMed: 27036001] 

74. Lawton KA, et al. Analysis of the adult human plasma metabolome. Pharmacogenomics. 2008; 
9:383–397. [PubMed: 18384253] 

75. Fuchs S, et al. A metabolic signature of long life in Caenorhabditis elegans. BMC Biol. 2010; 8:14. 
[PubMed: 20146810] 

76. Sarup P, et al. The metabolic profile of long-lived Drosophila melanogaster. PLoS ONE. 2012; 
7:e47461. [PubMed: 23110072] 

77. Wijeyesekera A, et al. Metabotyping of long-lived mice using 1H NMR spectroscopy. J Proteome 
Res. 2012; 11:2224–2235. [PubMed: 22225495] 

78. Collino S, et al. Metabolic signatures of extreme longevity in northern Italian centenarians reveal a 
complex remodeling of lipids, amino acids, and gut microbiota metabolism. PLoS ONE. 2013; 
8:e56564. [PubMed: 23483888] 

79. Cheng S, et al. Distinct metabolomic signatures are associated with longevity in humans. Nat 
Commun. 2015; 6:6791. [PubMed: 25864806] 

80. Montoliu I, et al. Serum profiling of healthy aging identifies phospho- and sphingolipid species as 
markers of human longevity. Aging (Albany NY). 2014; 6:9–25. [PubMed: 24457528] 

81. Walther DM, Mann M. Accurate quantification of more than 4000 mouse tissue proteins reveals 
minimal proteome changes during aging. Mol Cell Proteomics. 2011; 10:1–7. M110 004523.

82. Ivanisevic J, et al. Metabolic drift in the aging brain. Aging (Albany NY). 2016; 8:1000–1020. 
[PubMed: 27182841] 

Hoffman et al. Page 13

Essays Biochem. Author manuscript; available in PMC 2017 December 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



83. Menni C, et al. Circulating proteomic signatures of chronological age. J Gerontol A Biol Sci Med 
Sci. 2015; 70:809–816. [PubMed: 25123647] 

84. Sikulu MT, et al. Proteomic changes occurring in the malaria mosquitoes Anopheles gambiae and 
Anopheles stephensi during aging. J Proteomics. 2015; 126:234–244. [PubMed: 26100052] 

85. Wolschin F, Munch D, Amdam GV. Structural and proteomic analyses reveal regional brain 
differences during honeybee aging. J Exp Biol. 2009; 212:4027–4032. [PubMed: 19946081] 

86. Bodnar A. Proteomic profiles reveal age-related changes in coelomic fluid of sea urchin species 
with different life spans. Exp Gerontol. 2013; 48:525–530. [PubMed: 23453931] 

87. Yan L, et al. Gender-specific proteomic alterations in glycolytic and mitochondrial pathways in 
aging monkey hearts. J Mol Cell Cardiol. 2004; 37:921–929. [PubMed: 15522269] 

88. Hoffman JM, et al. A longitudinal analysis of the effects of age on the blood plasma metabolome in 
the common marmoset, Callithrix jacchus. Exp Gerontol. 2016; 76:17–24. [PubMed: 26805607] 

89. Ma S, et al. Organization of the mammalian metabolome according to organ function, lineage 
specialization, and longevity. Cell Metab. 2015; 22:332–343. [PubMed: 26244935] 

90. Fiandaca MS, et al. Plasma 24-metabolite panel predicts preclinical transition to clinical stages of 
Alzheimer’s disease. Front Neurol. 2015; 6:237. [PubMed: 26617567] 

91. Byerley LO, et al. Development of a serum profile for healthy aging. Age (Dordr). 2010; 32:497–
507. [PubMed: 20490702] 

92. Makinen VP, Ala-Korpela M. Metabolomics of aging requires large-scale longitudinal studies with 
replication. Proc Natl Acad Sci USA. 2016; 113:E3470. [PubMed: 27303027] 

93. Sanchis-Gomar F, et al. A preliminary candidate approach identifies the combination of chemerin, 
fetuin-A, and fibroblast growth factors 19 and 21 as a potential biomarker panel of successful 
aging. Age (Dordr). 2015; 37:9776. [PubMed: 25911468] 

94. Trushina E, et al. Identification of altered metabolic pathways in plasma and CSF in mild cognitive 
impairment and Alzheimer’s disease using metabolomics. PLoS ONE. 2013; 8:e63644. [PubMed: 
23700429] 

95. Xue H, et al. A modular network model of aging. Mol Syst Biol. 2007; 3:147. [PubMed: 
18059442] 

96. Houtkooper RH, Williams RW, Auwerx J. Metabolic networks of longevity. Cell. 2010; 142:9–14. 
[PubMed: 20603007] 

97. Promislow DE. Protein networks, pleiotropy and the evolution of senescence. Proc Biol Sci. 2004; 
271:1225–1234. [PubMed: 15306346] 

98. Southworth LK, Owen AB, Kim SK. Aging mice show a decreasing correlation of gene expression 
within genetic modules. PLoS Genet. 2009; 5:e1000776. [PubMed: 20019809] 

99. Soltow QA, Jones DP, Promislow DE. A network perspective on metabolism and aging. Integr 
Comp Biol. 2010; 50:844–854. [PubMed: 21031036] 

100. Derous D, et al. The effects of graded levels of calorie restriction: VII. Topological rearrangement 
of hypothalamic aging networks. Aging (Albany NY). 2016; 8:917–932. [PubMed: 27115072] 

101. Bell R, et al. A human protein interaction network shows conservation of aging processes 
between human and invertebrate species. PLoS Genet. 2009; 5:e1000414. [PubMed: 19293945] 

102. Jeong H, et al. Lethality and centrality in protein networks. Nature. 2001; 411:41–42. [PubMed: 
11333967] 

103. Albert R, Jeong H, Barabasi AL. Error and attack tolerance of complex networks. Nature. 2000; 
406:378–382. [PubMed: 10935628] 

104. Fernandes M, et al. Systematic analysis of the gerontome reveals links between aging and age-
related diseases. Hum Mol Genet. 2016; 25:4804–4818. [PubMed: 28175300] 

105. Morimoto RI, Cuervo AM. Proteostasis and the aging proteome in health and disease. J Gerontol 
A Biol Sci Med Sci. 2014; 69:S33–S38. [PubMed: 24833584] 

106. Peysselon F, Ricard-Blum S. Understanding the biology of aging with interaction networks. 
Maturitas. 2011; 69:126–130. [PubMed: 21497032] 

107. Priebe S, et al. Extension of life span by impaired glucose metabolism in Caenorhabditis elegans 
is accompanied by structural rearrangements of the transcriptomic network. PLoS ONE. 2013; 
8:e77776. [PubMed: 24204961] 

Hoffman et al. Page 14

Essays Biochem. Author manuscript; available in PMC 2017 December 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



108. Baek D, et al. The impact of microRNAs on protein output. Nature. 2008; 455:64–71. [PubMed: 
18668037] 

109. Hou L, et al. Systems biology in aging: linking the old and the young. Curr Genomics. 2012; 
13:558–565. [PubMed: 23633915] 

110. Mitra K, et al. Integrative approaches for finding modular structure in biological networks. Nat 
Rev Genet. 2013; 14:719–732. [PubMed: 24045689] 

111. Smita S, et al. Deciphering hallmark processes of aging from interaction networks. Biochim 
Biophys Acta. 2016; 1860:2706–2715. [PubMed: 27456767] 

112. Han JD. Understanding biological functions through molecular networks. Cell Res. 2008; 
18:224–237. [PubMed: 18227860] 

113. Zierer J, et al. Integration of ‘omics’ data in aging research: from biomarkers to systems biology. 
Aging Cell. 2015; 14:933–944. [PubMed: 26331998] 

114. Padayachee T, et al. The detection of metabolite-mediated gene module co-expression using 
multivariate linear models. PLoS ONE. 2016; 11:e0150257. [PubMed: 26918614] 

115. Pirhaji L, et al. Revealing disease-associated pathways by network integration of untargeted 
metabolics. Nat Methods. 2016; 13:770–776. [PubMed: 27479327] 

Hoffman et al. Page 15

Essays Biochem. Author manuscript; available in PMC 2017 December 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Summary

• Metabolomics and proteomics have the potential to be useful predictors for 

ageing and ageing-related diseases.

• Metabolomic pathway analyses suggest amino acid, nucleotide, and sugar 

metabolism might be critical in modulating longevity across species.

• Network stability is an important ageing factor.

• An integrative model of multiple omics is required for a comprehensive 

understanding of ageing biology.
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Figure 1. Genotype-phenotype pathway
Measurement of intermediate ‘endophenotypes’ allows us to develop a more complete 

understanding of the molecular mechanisms involved in ageing and longevity. The 

‘exposome’ (environment) plays a large role across all levels of the pathway. Figure 

modified after Hoffman et al. [69], under Creative Commons CC BY 3.0.

Hoffman et al. Page 17

Essays Biochem. Author manuscript; available in PMC 2017 December 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. Lifespan extending interventions promote maintenance of biological networks into old 
age
Solid lines indicate intact connections, and dashed lines represent lost connections.
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