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Proteomics is playing an increasingly important role in identifying pathogens,

emerging and re-emerging infectious agents, understanding pathogenesis,

and diagnosis of diseases. Recently, more advanced and sophisticated

proteomics technologies have transformed disease diagnostics and vaccines

development. The detection of pathogens is made possible by more accurate

and time-constrained technologies, resulting in an early diagnosis. More

detailed and comprehensive information regarding the proteome of any

noxious agent is made possible by combining mass spectrometry with various

gel-based or short-gun proteomics approaches recently. MALDI-ToF has been

proved quite useful in identifying and distinguishing bacterial pathogens. Other

quantitative approaches are doing their best to investigate bacterial virulent

factors, diagnostic markers and vaccine candidates. Proteomics is also helping

in the identification of secreted proteins and their virulence-related functions.

This review aims to highlight the role of cutting-edge proteomics approaches

in better understanding the functional genomics of pathogens. This also

underlines the limitations of proteomics in bacterial secretome research.

KEYWORDS
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1. Introduction

The total protein content of an organism is referred to as the proteome. The

proteome, particularly of prokaryotic cells, has a wide range of roles and pathogenic

properties, and proteomics is the study of these functions and characteristics (1).

Proteomics has contributed not only to the discovery of pathogen virulence components,
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but also to the research of pathogen structural makeup,

pathogenesis, disease diagnosis, and vaccine development or

design (2–4). Proteins from bacteria and viruses act as virulent

agents in the transmission of diseases in humans and animals.

Membrane proteins (5), cell surface proteins, and secreted

proteins are among the most important, as they play a crucial

role in pathogenicity and have been extensively researched

utilizing proteomics techniques (6–8). These proteins function

as enzymes, transport molecules, toxins, adhesins, invasive,

evasive, and receptors, and hence play a crucial role in the

initiation and course of disease. Proteomics methods have vastly

improved in the recent decade, making it possible to search for

these critical proteins and examine their structures, molecular

functions, and role in disease. Proteomics has been useful

in identifying the microorganisms that cause various diseases

and their architecture. Because genomics can only provide

information on the pathophysiology of a disease, it is unable

to expound on the cell state and pathogenic actions of the

molecules that cause illness onset. Proteins are well-recognized

for depicting the state of a disease by informing the pathogenic

components that are the foundations for illness initiation (9). As

a result, understanding the functions of such proteins is critical

for understanding the pathophysiology, diagnosis, control, and

therapy of infectious illnesses. Many proteomics technologies

have been created over time and have shown to be invaluable

in the study of pathogens and course of illnesses. Traditional

proteomics techniques such as chromatography and western

blotting have been utilized for a long time. Gel-based techniques

such as 1-DE (1-Dimensional Gel Electrophoresis), 2-DE (2-

Dimensional Gel Electrophoresis), and 2-DDGE (2-dimensional

Differential Gel Electrophoresis) assisted in protein separation

and identification (10). Low abundant proteins in the sample

can be fractioned by using isoelectric fractionators followed

by 2-D gels. Depending on the isoelectric focusing (IEF),

low abundant proteins are concentrated making identification

and quantification more reliable. Some commonly used

fractionators are Rotofor (BioRad) and Zoom IEF fractionator

(Invitrogen) (11). The combination of Gel Electrophoresis

with Mass Spectrometry (2-DE-MS) improved the accuracy

of protein identification. Isotope-Coded Affinity Tag (ICAT),

Stable Isotopic Labeling with Amino Acids (SILAC), and

Isobaric tag for relative and absolute quantification (iTRAQ)

are some of the new quantitative approaches that have emerged

as a result of advances in proteomics (1, 12). These modern

quantitative approaches include surface plasmon resonance

(SPR) for protein-protein interaction and Multidimensional

protein identification technology (MudPIT), both of which are

label-free tools commonly utilized for protein identification (13,

14). Absolute quantification of proteins can be accomplished

using a variety of strategies, including absolute quantification

using protein epitope signature tags (PrEST), protein standard

absolute quantification (PSAQ), and intensity-based absolute

quantification (iBAQ) (15–17). Membrane coated nanosponges

paired with quantitative proteomics methods have recently been

discovered to be a powerful source for identifying virulence

factors (18). Types of proteomics techniques and their sub-

divisions are depicted in Figure 1. Our understanding of

infectious diseases, causative agents, and their diagnosis has

increased over time due to advances in proteomics. As a result,

the goal of this study was to shed light on the function of

various proteomics methods in elucidating the pathophysiology,

diagnosis, and causative agents of infectious diseases that affect

humans and animals. In addition, we discussed the limitations of

proteomics in terms of identifying pathogenic secreted proteins,

as well as its future prospects.

2. Role of proteomics in identifying
pathogens

The first stage in diagnosing a disease is to identify the

causal agent, since their precise and detailed identification and

confirmation aids in the prevention of illness transmission

and knowledge of its epidemiology (2). Biochemical features,

Gram staining, and carbohydrate metabolism are some of

the traditional methods for identifying bacteria that have

been used for a long time. Proteomics technologies, such as

Mass Spectrometry (MS), have recently become popular for

precisely identifying and confirming bacterial infections (19, 20).

Proteomics methods are commonly used to identify pathogen

structure and other components that contribute to virulence.

Proteomics methods are being used to describe the structures

of both bacterial and viral pathogens, with the goal of not only

identifying structural and non-structural proteins involved in

virulence, but also investigating metabolic and physiological

factors. Classification of un-sequencedmicroorganisms has been

made easier by using capLC-MS/MS on an Orbitrap (21).

Proteomics has been used to identify bacterial infections

that cause various disorders. The use of proteomics methods

to identify bacterial communities in surface and soil samples

has also been done. Samples were gathered from children’s

books in Texas and California libraries, and the Orbitrap

FusionTM TribridTM mass spectrometer identified a variety of

non-pathogenic and harmful bacteria species. S. haemolyticus,

S. pneumoniae, and A. baumannii were the most commonly

discovered pathogenic species, causing skin infections and

Multidrug-Resistant Tuberculosis (MDR) correspondingly

(22). Streptomyces violaceoruber, Streptomyces albus, and

Streptomyces badius were identified using MALDI-ToF-MS

from soil samples collected in Algeria’s Sahara (23). Mass

spectrometry’s most important and revolutionary role is in

clinical microbiology, where it has shown to be a useful tool

for rapidly identifying infectious pathogens at species level.

Traditional methods for identifying a pathogen take longer,

resulting in a serious illness condition before it can be treated

(24). Antibiotic resistance develops as a result of the use of
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FIGURE 1

Major proteomics techniques and their subdivisions.

broad-spectrum antibiotics prior to the identification of the

causative agent, as well as a detrimental influence on the

patient’s health (25). Forensic proteomics is another growing

tool to identify bacterial species in a given sample. This method

is based on identification of unique peptides and facing few

challenges i.e., signature erosion (loss of signature sequences

due to the addition of new sequences of identified species

in database), absence of statistical precision and limited

database (26).

Body fluids such as urine, milk, and blood are the most

acceptable samples for microbe identification, and proteomics

has done an excellent job of identifying microbes from these

samples (27–29), as well as others such as cerebrospinal fluid,

joint cavity fluid, vitreous fluid, and pleural fluid (27, 30).

2.1. Identification of pathogens from
urine samples

By creating a specific reference urine database called

Urinf, 90% of 500 samples were accurately diagnosed using

MALDI-ToF (31). MALDI-ToF-MS was used to successfully

identify Corynebacterium rigelii, a pathogen that causes urinary

tract infections, from a case of urosepsis in a 67-year-

old female patient (32). The urine-short incubation MALDI-

TOF (U-si-MALDI-ToF) method was created mainly for the

detection of E. coli, a bacteria that causes urinary tract

infections. Using this technology, 86% of Gram-negative

bacteria responsible for urinary tract infections, such as E. coli,

Klebsiella pneumoniae, and Enterobacteriaceae, were discovered

(33). Mass spectrometry has recently been combined with other

technologies to improve identification accuracy. The Alfred

60 method was used in conjunction with MALDI-ToF-MS to

detect bacteria that cause urinary tract infections. For most

positive samples, combined technique proved more reliable

and accurate in identifying uropathogens (25). Combining

mass spectrometry with other screening technologies like flow

cytometry saves time while improving identification quality (34).

Urine samples were initially screened using a Sysmex (UF-

1000i) flow 36 cytometer before being sent to the MALDI-

ToF-MS. This method correctly detected 86.1% Gram-negative

bacteria without any microorganism misidentification (35).

Combining flow cytometry, such as the UF-5000i, with mass

spectrometry reduces the time it takes to identify etiological

agents responsible for urinary tract infections from 24 to

1 h (36). When MALDI-ToF-MS was paired with Urine

Analysis (93.4 and 96.3%), sensitivity and specificity for the

detection of urinary pathogens from urine samples were

enhanced and more reliable than when MALDI-ToF-MS was

used alone (86.6 and 91.5%) (37). Leptospires that cause

leptospirosis were discovered using mass spectrometry and

whole cell protein spectra. MALDI-ToF-MS also identified

whole cells of leptospires with spikes in urine samples (38).

Because of its greater sensitivity and specificity, researchers

prefer LC-MS-MS to MALDI-ToF-MS. In light of this, a

method for identifying urinary tract pathogens utilizing specific

LC-MS-MS peptide signatures was devised. This targeted

proteomics technique identified urinary tract infections in

97% of patients without the need for a culture and in

<4 h, proving to be the most rapid and reliable method

for pathogen identification in urinary tract infections (39).

Although it is clear that the proteomics tool of mass

spectrometry has evolved as a viable approach for identifying

urinary tract pathogens, the culture-independent MALDI-ToF

approach can only identify pathogens in single microbial urine

samples (40).
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2.2. Identification of pathogens from
blood samples

In the same way that mass spectrometry has made it easier

and faster to identify pathogens in blood, its combination with

other technologies has made it considerably more effective in

urine analysis. The bacteria in blood culture samples were

identified using a comparative analysis. In comparison to

the SepsiTyper kit approach, which identified 99% (184/186)

isolates, MALDI-TOF-MS was able to identify 90% (168/186)

of them. As a result, it was determined that MALDI-ToF-

MS analysis is recommended for bacterial identification in

blood cultures due to its speed and ease of use (41). MALDI-

ToF-MS identified 93.43% (185/198) Gram-negative germs and

78.43% (275/350) Gram-positive bacteria from blood cultures,

with specificity and sensitivity of 84.7 and 77.5%, respectively,

in another investigation (42). Positive blood cultures were

quickly cultured on solid media before being identified using

MALD-ToF-MS, which proved to be a reliable method for

bacterial identification. At 3, 5, and 24 h, this approach correctly

identified bacteria at the species level with 64.1, 85.0, and

94.1%, respectively. This is thought to be a viable method

for identifying bacteria directly (43). Bacteria were enhanced

in a blood sample using magnetite (Fe3O4) magnetic beads

modified with human IgG (IgG@Fe3O4) and MALDI-ToF-

MS, which showed to be a more sensitive method with

less time than other culture-based methods. Bacteria with

a concentration of 105 CFU/100 µl whole blood sample

were identified quickly (44). MALDI-ToF-MS was used to

analyze spiked blood culture samples, and the efficiency was

found to be comparable to SepsiTyper (94.4%). This approach

identified 82% Gram-positive bacteria in blood samples and

was more sensitive (92.8%) for Gram-negative bacteria (45).

The combination of MALDI-ToF-MS with immune-affinity has

yielded highly consistent findings for bacterial identification at

low concentrations (500 cells/ml for blood serum and 8,000

cells/ml for whole blood samples). Within roughly 4 h, this

combination technique was able to identify S. aureus and E. coli

in clinical samples (29).

2.3. Identification of pathogens from milk
samples

Another essential body fluid for detecting germs that cause

diseases in humans and animals is milk. The only reliable

source for identifying bacterial infections that cause mastitis is

milk. From a human milk sample, MALDI-ToF-MS successfully

identified 56 (53.3%) streptococcal isolates at the species level

(46). MALDI-ToF-MS was used to identify microbial diversity

in 647 milk samples from women who had clinical symptoms

of mastitis. In milk samples, the most common pathogens

were Staphylococcus epidermidis (87.6%) and Staphylococcus

aureus (22.1%), with Streptococcus (68.6%) being the second

most common species (47). Colony culture of milk samples

from cows with subclinical mastitis followed by MALDI-ToF-

MS identified 106/120 (88.3%) at the genus and species level

(score 2.0) and it was found to be more reliable than direct

MALDI-ToF-MS after pre-incubation (48). Mass spectrometry

alone is insufficientfor accurate and rapid pathogen detection,;

a combined approach has proven to be more trustworthy

while saving time. Consequently, three methods for identifying

bacteria in milk samples from calved cows or with clinical

mastitis were evaluated as agreement approaches: biochemical

method, MALDI-ToF-MS, and 16S rRNA partial genomic

sequence analysis. At the species level, E. coli and S. aureus

were recognized, while others were identified at the genus

level. Positive agreement was determined to be 94% among

three approaches, and 95–98% between each pair of methods

(49). With time, mass spectrometry has become more capable,

and some laboratories are replacing biochemical approaches

with MALDI-ToF-MS for the detection of microorganisms in

milk samples. MALDI-ToF-MS was utilized by the researchers

to match the bacterial isolates from the udder with other

species in the database. Five hundred isolates were processed

as bacterial colony material for this study, and 93.5% of

them were recognized at the species level, while 6.5% were

identified at the genus level. Those that were unable to be

recognized at the species level were submitted to 16S rDNA

sequencing. Streptococci, Staphylococci, Enterobacteriaceae,

and Coryneforme are the most common bacteria (50). Wald

et al. recently detected and distinguished S. aureus and coagulase

negative Staphylococci in 200 milk samples from animals with

clinical and subclinical mastitis, as well as cows with a somatic

cell count of <100,000 cells/ml (51). From subclinical mastitis

milk samples, MLADI-ToF-MS found S. argenteus in seven

isolates and S. aureus in eight (52). When MALDI-ToF-MS was

compared to PCR-RFLP for detecting streptococci from milk

samples, it was discovered that PCR-RFLP was more efficient

and repeatable (53). Alnakip et al., on the other hand, recently

compared MALDI-ToF-MS with 16S rRNA gene sequencing

study to distinguish streptococci responsible for bovine mastitis.

MALDI-ToF-MS was found to have a wide range of variability

for detecting streptococcus at the species and sub-species level.

It is clear that MALDI-ToF-MS is as powerful as 16S rRNA

gene sequencing analysis, but it takes less time and is easier to

do (54). Microbes can also be identified by mass spectrometry

in other body fluids such as saliva, cerebrospinal fluids, and

synovial fluids from humans and animals (55–57). It is past time

to develop a combined MALDI-ToF-MS with instruments that

will make it a standard and universal approach for the accurate

detection of bacterial infections in all types of body fluids in

clinical laboratories.
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3. Role of proteomics to unravel
bacterial pathogenesis

Proteomics tools are also contributing and improving with

time in order to better understand the etiology of practically

all bacterial illnesses. In fact, this technique has transformed

this field by providing a straightforward and diverse way to

learn about pathogenesis. Proteomics methods are commonly

used to investigate virulence-related variables, oxidative stress,

and the role of proteins in the host-pathogen interaction.

Proteomics advancements have made it possible to investigate

the hidden mechanisms of infections and identify the proteins

involved. Pérez-Llarena and Bou (58), Katsafadou et al. (59),

Yang et al. (60) have written some review studies in this area. We

will highlight recent advancements in understanding bacterial

pathogenesis in this portion of the review.

3.1. Gel based proteomics coupled with
mass spectrometry

Bacterial proteins are widely known for their roles in

virulence and other processes that aid bacteria in their

pathogenicity (5). Proteomics’ role in identifying virulent factors

of key human pathogens such Mycobacterium TB, Streptococcus

pneumoniae, and Staphylococcus aureus has been summarized

(13, 61, 62). Gel-based proteomics, such as SDS-PAGE, 2-

Dimensional gel electrophoresis (2-DE), and 2-Dimensional

Differential Gel Electrophoresis (2-DDGE), are still popular

methods for separating proteins before mass spectrometry

analysis. They appear to be irreplaceable but have been improved

with the addition of modern techniques. SDS-PAGE was

used to segregate the whole cell proteome of B. abortus and

B. mellitensis, which was then reacted with field sera from

buffalo, cow, sheep, and goat. MALDI-ToF-MS was used to

identify various important proteins such as heat shock proteins,

binding proteins, hypothetical proteins, and enzymes. It was

hypothesized that the antigens listed play a vital role in the

pathogen’s survival in the host cell environment (63). SDS-

PAGE was used to isolate the phage protein PA-PP, which

was then characterized using mass spectrometry (64). Li et al.

created agarose native gel electrophoresis, which has been

effectively applied to the characterization of antibodies in

serum (65) as well as western blotting (66). SMA-PAGE, a

technology combining styrene maleic acid lipid particles with

this technique, was developed specifically for the separation of

membrane proteins (67). Khan et al. employed 2-Dimensional

gel electrophoresis to separate whole cell and membrane

proteins extracted from M. bovis (68). The proteomes of high

pathogenic (Staph 38) and less virulent (8325-4) strains of

Staph aureus, which causes keratitis, were compared. Four

binding proteins were discovered in less virulent strains using

2-DE and mass spectrometry, but many adhesions were found

in staph 38, indicating its high virulence on the host cell

surface (69). Streptococcus suis is a zoonotic bacterium that

causes infections in pigs and humans, with symptoms such

as meningitis, arthritis, and pneumonia. Two-Dimensional

Differential Gel Electrophoresis (2-DDGE) was used to segregate

the proteomes of two mutant strains, and differential proteins

were discovered using label-free analysis. SBP2, or putative pilus

protein, was discovered to be a novel pathogenic component

of S. suis (serotype 2) that functions as a fibronectin and

laminin adhesin (70). Nascimento Filho et al. summarized the

role of proteomics methods in determining the virulence of

the Leptospira pathogenic sp. that causes human leptospirosis

(71). Many studies show that SDS-PAGE or 2-DE can be

used to separate bacterial proteins and determine virulence

factors. Proteome of Compylobacter jejuni, exo-proteome of

Clostridium difficle, biofilm and adherence mechanism of Vibrio

parahaemolyticus, identification of C. jejuni adhesion protein

attached to the skin of slaughtered chicken, and fibronectin

binding proteins in enteropathogenic E. coli O55:H7 are among

the more recent studies (72–75). Pathogenesis is investigated

by discovering the adhesion function of pathogenic proteins, as

adhesion is the first step for bacteria to commence infection.

Following predicted and applied proteomics, M. bovis nuclease

demonstrated the ability to attach to macrophages and invade

cells, as well as being cytotoxic to the host cells (76). Chlamydia

trachomatis is a sexually transmitted disease that affects both

men and women. Quantitative proteomics was used to detect

its proteome during its replicative and infective stages in

order to better understand its pathophysiology. Several proteins

with metabolic activities were discovered using reverse phase

two-dimensional UPLC followed by mass spectrometry (77).

The persistence of B. suis in a host cell environment with

reduced oxygen supply was investigated using the proteome

and transcriptome. RegA was discovered to regress genes

and proteins involved in metabolism and energy synthesis,

particularly the Isocitrate Lyase gene (ICL). RegA’s regression

action inhibits pathogen metabolism, ensuring the infection’s

long-term survival in the host cell. ICL was discovered to be

important in B. suis virulence and pathogenicity (78).

3.2. Other approaches of recent era

Quantitative proteomics is gaining popularity as a way to

identify a group of proteins linked to a disease and achieve

good results if the proteins aren’t already separated on a

gel. The proteomes of individuals with atopic dermatitis and

healthy people were studied using the LC-MS-MSmethod. Some

bacterial species, such as Aeromonas hydrophila, Staphylococcus

aureus, and Shewanella sp., have been found to play a role

in disease. Glyceraldehyde-3-phosphate, enolase, and chaperons

like DnaK and HtpG were among the proteins found to be
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important in pathogenesis (79). Four acetyltransferases were

discovered and described by mass spectrometry in E. coli (RimI,

YiaC, YjaB, and PhnO). YiaC was a new protein discovered

to play a role in flagellar motility and bacterial pathogenicity

(80). By constructing the phosphoproteome followed by LC-

MS-MS, the mechanism of protein phosphorylation related

with S. aureus pathogenicity was elucidated. In comparison to

previously reported mechanisms, Ser/Thr kinase signaling was

found to be more efficient in virulence (81).

Another proteomic investigation analyzed the proteomes

of ESBL and non-ESBL Klabsiella pneumoniae strains using

nano LC-MS-MS. Stress proteins G and A, Lon proteases,

and ElaB proteins were found to be shared between the two

strains’ proteomes. Furthermore, virulence-associated proteins

such as lyase, oxidoreductase, catalase, and isochoristamase

were discovered in ESBL K. pneumoniae, indicating that it

is a more virulent strain (82). The quantity of pathogenic

factors such as adenylate cyclase and O antigen was found

to vary dramatically in the Bordetella parapertussis proteome

using nano LC-MS-MS in limited iron circumstances.

The research was expanded to look for proteins that

were missing or thought to be pseudogenes in Bordetella

pertussis in order to distinguish between the two species that

cause whooping cough based on their virulence associated

proteins (83).

The proteomes of Salmonella typhimurium wild type

and fnr null mutant were characterized using label-free

mass spectrometry. There were 153 significantly diverse

proteins among the 1,798 discovered proteins, each responsible

for a different metabolic activity. The fumarate nitrate

reduction pathway in Salmonella regulates fis (DNA binding

protein), a virulence related protein in Salmonella typhimurium,

according to the findings (84). The extracellular and cell

associated proteome profile of mutant and wild type strains

of Mycobacterium avium hominissuis responsible for human

infections was identified via label free analysis utilizing an

LTQ Orbitrap Velos mass spectrometer. The lysX gene in

mutant strains was discovered to be responsible for pathogen

metabolic and virulence functions, as well as intracellular cell

survival (85). Sputum and saliva from tuberculosis patients

were exposed to quantitative proteomics utilizing the LTQ-

Orbitrap technology in order to learn more about the

processes that occur throughout the course of the disease.

Proteins implicated in immunological regulation, complement

activation, and inflammation were found in both samples.

Uninfected people’s samples contained a collection of proteins

involved in pathogen protection and the innate immune

response (86).

Two proteins (PRRC2C and RAB14) were identified using

iTRAQ to have higher levels among 606 proteins, and three

bacterial taxa (Streptococcus, Veillonella, and Haemophilus)

were reported to have a tight relationship with chronic

rhinosinusitis. Proteins linked with these bacteria were in

short supply and served a variety of roles related to virulence

and pathogenicity (61). In another investigation, iTRAQ was

utilized to discover the Lactobacillus acidophilus differently

expressed proteins at pH 7.4. A total of 207 proteins were found

to be involved in carbohydrate and amino acid metabolism,

as well as peptidoglycan production. At pH 7.5, adhesion-

related proteins fmtB and PrtP were found to be increased,

while anti-adhesion protein pyruate kinase was downregulated

(87). In humans, Acinetobacter baumannii is known to cause

nosocomial infections such as bacteremia, pneumonia, and

meningitis, all of which have significant mortality and morbidity

rates. Differential proteins were discovered using iTRAQ

after infecting pigs’ intestines with enterotoxigenic E. coli F4

(producing diarrhea in piglets) and pre-treating them with

Lactobacillus plantrum. Cell division, differentiation, and cell

cycle regulation were revealed to be connected with differentially

expressed proteins between two bacterial species. The findings

revealed ETEC intestinal epithelial cell processes and the

protective effect of L. plantrum (88). Clearly, iTRAQ is the

preferable technology for quantitative proteome analysis, as

it provides a more trustworthy and comprehensive result.

Another experiment measured the quantity of Salmonella

enteritidis proteins in LB media supplemented with egg white

and entire egg white. Protein abundance was observed to

decrease as the amount of egg white was reduced using

iTRAQ. Some virulence-related proteins were downregulated,

while ABC transporters and co-factors were predominantly

increased (89).

The abundance of ABC transporters and adhesion-related

proteins in high pathogenic strains was discovered using LC-

MS-MS and iTRAQ. It was also established that the sbp protein

was implicated in the pathophysiology of the disease (90).

iTRAQ coupled with 2D LC-MS-MS was used to investigate

the proteome of A. baimannii standard strain and tigecycline-

resistant strain. A total of 3,639 proteins were found, with 961

of them being differentially expressed. Differential proteins were

linked to cellular component organization, stress responses,

protein synthesis, protein degradation, and related functions,

according to functional analysis. There were also some pathways

linked to tigecycline resistance discovered (91).

However, additional quantitative proteome techniques have

lately been applied. The abundance of outer membrane

vesicles in coccoid was discovered utilizing a comparative

proteome study of coccoid and spiral shaped Helicobacter

pylori (gastric cancer) using the SILAC (stable isotopic labeling

by amino acids in cell culture) proteome technique. Some

proteins were discovered to be down regulated, including

CagA, arginase RocF, and TNF-inducers (92). Another method

for identifying isotope-labeled proteins is isotope dilution

mass spectrometry. An isotope-labeled 15N-Cys C protein

in E. coli was effectively discovered using this method (93).

TMT (94, 95) is a method for quantifying proteins/peptides

using tissue, serum, plasma, or other body fluid samples
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from the affected/diseased area. This has proven to be a

reliable method for identifying proteins that are expressed at

different phases of disease, allowing researchers to track disease

pathophysiology and development (96). The aforementioned

technique has recently been substituted by membrane coated

nanosponges paired with quantitative proteomics technologies.

This enhanced method proved to be quite beneficial in

identifying bacterial toxins and/or pathogenic components

(18). There are several mass spectrometry-based and isotopic

labeled/label-free proteomics methods that have aided in the

better understanding of the etiology of important bacterial

diseases in humans and animals. Protein microarray is one of

the advanced proteomics techniques of recent era. This includes

antibody microarray in which proteins are labeled with captured

antibodies, functional microarray uses purified proteins for

various interactions and reverse-phase protein microarray finds

its application in probing the target protein from cell lysates

using antibodies (1).

3.3. Predictive proteomics

This method entails the use of bioinformatics tools to

identify and test proteins based on their unique nature,

structure, and functions. It is commonly used to anticipate

the proteins produced by a certain bacterial pathogen and to

identify the most important proteins linked to virulence. Gene

ontology and enrichment analyses for function and pathway

studies, as well as visualization tools to portray data in the

form of graphs and charts, are the most crucial tools (97).

This method was used to predict Chlamydia pneumonia nuclear

targeting proteins that may play a role in lung cancer genesis

(98). Computational biology and chemoinformatics were used

to predict new therapeutic targets for A. baumannii (99).

Baarda et al. compiled a list of tools that were useful in

identifying vaccine candidates for N. gonorrhoeae (100). Using

several bioinformatics tools available as web servers, secretory

proteins of M. bovis were recently examined. Two proteins

(MbovP274 and MbovP570) were chosen from the secretome

data and experimentally confirmed to be immunogenic proteins

(101). Many bacterial pathogens (C. botulinum, C. defficile,

Y. pseudotuberclosis, S. saprophyticus, and Legionella sp.) have

been studied in silico in order to find therapeutic targets

and vaccine candidates (102–105). I-TASSER (https://seq2fun.

dcmb.med.umich.edu//I-TASSER/) is an extensively used web

server for the prediction of structure and function of the

given protein (106) and Phyre2 (http://www.sbg.bio.ic.ac.uk/

$\sim$phyre2/html/page.cgi?id=index) for protein modeling

analysis (107). ConSurf web server (https://consurf.tau.ac.il/

consurf_index.php) is usually used to identify the functional

regions in protein (108). STRING (https://string-db.org/) is

another online tool used for protein-protein interaction and

functional predictions (109).

4. Identification of diagnostic
markers

Proteins are a significant source of biomarkers and are

used for illness diagnosis, prognosis, staging, and monitoring.

Hormones, carbohydrate epitopes, enzymes, genetic alterations,

and receptors are examples of biomarkers (110). Pathogen

proteins have been shown to be responsible for virulence and

infections, and hence can be used to find useful biomarkers

for illness detection (111). The fact that they are important

diagnostic indicators has piqued the interest of scientists all

around the world in using proteomics technologies to uncover

specific disease markers. Pasteurellosis and pneumonia in sheep

have been proven to have biomarkers in the form of proteins

and cytokines (112). Proteomics, both traditional andmodern, is

playing an increasingly important role in diagnostics, providing

trustworthy and meaningful results. Since the last decade, mass

spectrometry-based techniques have advanced significantly and

are becoming increasingly useful in the search for promising

diagnostic markers. Recent advances in quantitative proteomics,

as well as increased accuracy, have paved the road for the

discovery of effective diagnostic markers for a variety of

disorders (113). The LC-MS-MS method is commonly used

to diagnose diseases such as TB and periodontitis (114, 115).

Table 1 depicts the many proteomics methodologies used to

identify diagnostic markers for a certain disease.

The improved mass spectrometry approach for the absolute

detection of biomarkers from Salmonella serotypes was

introduced by Fukuyama and colleagues (116). In a cohort

research, quantitative proteomics was used to uncover distinct

biomarkers in the plasma of individuals with active tuberculosis.

Five proteins, CFHR5, LRG1, CRP, LBP, and SAA1, have been

discovered to clearly distinguish tuberculosis patients from those

with other respiratory illnesses (143). The protein microarray

technique was utilized to identify diagnostic indicators for

Salmonella typhi, and it was found to be highly repeatable (144).

In another cohort investigation, the whole proteome microarray

approach was employed to identify protein biomarkers from

Chlamydia trachomatis. A total of 121 antigens were discovered,

18 of which might be used as diagnostic markers. Furthermore,

the antigens CT 858, CT 813, and CT 142 were thought

to represent possible disease markers in the future (145).

Considering the findings of recent studies, it is clear that

proteomics technologies are playing an important role in

illness diagnoses.

5. Proteomics and secretome

The secretome is a collection of proteins that are either

released in soluble form or overlapped by vesicles from bacterial

cells. These secreted proteins play a critical role in bacterial

virulence, and their characterization has become increasingly
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TABLE 1 Diagnostic markers of various important bacterial diseases using proteomics tools.

Pathogen Disease Methods Diagnostic marker References

Salmonella enterica Foodborne diseases MALDI-ToF-MS S8, L15, L17, L21, L25, S7, superoxide

dismutase (SodA), peptidylprolyl

cistrans isomerase C, Gns, YibT, YaiA,

YciF

(116)

Bacillus anthracis Anthrax LC-MS, LTQ Orbitrap SASP-gamma, 30S ribosomal protein

S10, putative lipoprotein, and 60 kDa

chaperonin proteins

(117)

Chlamydia trachomatis Sexually transmitted

infections

SDS-PAGE, Western blot TroA, HtrA (118)

Brucella canis Canine brucellosis Recombinant proteins,

iELISA

PdhB, Tuf proteins (119)

Leptospira species Leptospirosis Predictive proteomics LipL32 protein (120)

Brucella melitensis Brucellosis Recombinant protein, western

blot

virB10 protein of T4SS (121)

Staphylococcus aureus Bone and joint infections MALDI-TOF Delta-toxin (122)

Nocardia farcinica IFM 10152 Nocardiosis Predictive proteomics,

MALDI-TOF-MS western

blot

NFA_45140, NFA_55680, NFA_48660,

NFA_49580, NFA_15900

(123)

Salmonella enteritidis Salmonellosis LC-MS-MS AHSG, VNN1 (124)

Campylobacter Jejuni Gastroenteritis Protein microarray,

immunoblotting

Cj0144, Cj0262c, Cj1621, GreA, and

PrfA, CjaA

(125)

Escherichia coli Urinary tract infections iTRAQ RbsB, YoeA, BamA, GroEL (126)

Mycoplasma bovis Calf pneumonia 2-DE, Western blot,

MALDI-TOF-MS

P579 (68)

Mycoplasma agalactiae Keratoconjunctivitis, mastitis,

still birth, vulvovaginitis

Predictive proteomics,

western blotting

MAG_1560, MAG_6130, P40 (127)

Mycobacterium tuberculosis Tuberculosis 2-DE, LC-MS-MS mmsA, pntAa (128)

Mycobacterium bovis Bovine tuberculosis Predictive proteomics Mb0854c, Mb2898 (129)

Pasteurella multocida Fowl cholera Recombinant protein

purification, iELISA

rOmpH protein (130)

Helicobacter pylori Gastritis, peptic ulcer Recombinant protein

purification, western blot,

sandwich ELISA

FliD Protein (131)

Mycoplasma pneumonia Pneumonia Immunoblot, ELISA heptapeptide 1 & heptapeptide 2 (132)

Yersinia pestis Plague Western Blot,

immunochromatography

F1 antigen (133)

Mycobacterium leprae Leprosy Recombinant protein, western

blot, ELISA

rMLP15 antigen (127)

Borrelia burgdorferi Lyme disease Mass spectrometry,

microarray

DbpA, Fla, VIsE, p83/100, BB_G31,

BB_J48

(134)

Mycoplasma hyopneumoniae Swine pneumonia Recombinant protein, western

blot, ELISA

Mhp366 protein (135)

Mycoplasma bovis Calf pneumonia Predictive proteomics,

western blot, adhesion assay

NADH oxidase as adhesion and NADH

oxidizing and O2 reducing enzyme

(136)

Mycoplasma bovis Calf pneumonia Predictive proteomics,

binding assay

P27 as fibronectin binding adhesion (137)

Mycoplasma bovis Calf pneumonia 2DE, MALDI-ToF MS,

LC-MS/MS

MbovP730 as DIVA antigen (138)

(Continued)
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TABLE 1 (Continued)

Pathogen Disease Methods Diagnostic marker References

Mycoplamsa hyorhinis Swine synositis, meningitis,

lameness

Colony blot, binding assay GAPDHmoonlights as adhesin and

ECM degradation protein

(139)

Mycobacterium tuberculosis Tuberculosis 2DE, MALDI-ToF-MS miR-625-3p, mannose-binding lectin 2,

inter-α-trypsin inhibitor H4 as

combined diagnostic biomarker

(140)

Coxiella burnetti Q fever Predictive proteomics CBU1910 (Com1), CBU1718 (GroEL),

CBU0236 (Tuf-2), CBU0092 (YbgF),

and CBU0612 (OmpH)

(141)

Bartonella bacilliformis Carrion’s disease Predictive proteomics Flagellar biosynthetic protein, heme

exporter protein C, Cytochrome c-type

biogenesis protein, Hemin ABC

transporter, phosphatidate

cytidylyltransferase

(142)

relevant in the quest better understanding bacterial virulence.

Proteomics technologies have proven to be extremely useful in

this procedure, from secretome extraction to characterization

(146). Bioinformatics and other proteomics methods, including

as mass spectrometry and immunoproteomics, have contributed

in the discovery of antigenic secreted proteins and vaccine

candidates (147). Table 2 illustrates the secretomes of pathogenic

bacteria and the proteins that have been identified as virulent

factors, protective antigens, or vaccine candidates.

It is clear that proteomics methods are extremely useful for

studying and characterizing the bacterial secretome in depth.

The limits for identifying really secreted proteins are a crucial

point to make here. Bioinformatics alone is insufficient to

achieve this goal (176). A highly advanced proteomics technique

is required to identify proteins that were originally produced

by specific bacteria. Many in silico studies have been carried

out, however there is still some confusion concerning protein

secretion and the mechanisms involved, such as classical and

non-classical secretion (167, 173, 177–179). Another area of

debate that gets mixed up with the bacterial secretome is

cell lysis and secretion of non-classical proteins (180, 181).

Visual proteomics is a viable approach for identifying bacterial

extracellular vesicles in a sample, but due to their small size,

released soluble proteins are not visible by SEM or TEM.

Because proteins are only projected to be secreted via multiple

secretion pathways, there is a pressing need to develop a better

proteomics tool. This allows one to identify truely secreted

proteins as well as their secretion pathways, removing the

ambiguities associated with prediction tools. A review gives

light on the challenges of extracting and characterizing the

bacterial secretome, particularly in the case of Mycoplasma

sp. (176). Because serum in growth media interferes with

secreted proteins, many people utilize media with lower serum

concentrations (8, 162, 182). It is now recommended that

serum-free media be used forMycoplasma sp. culture in order to

discover proteins of interest without disrupting serum proteins.

If this can be accomplished without affecting growth or cell lysis,

it will be a significant contribution to the field of proteomics

for Mycoplasma sp. In terms of proteomics, Mycoplasma bovis

has been a widely investigated bacterium in recent years. Using

entire cell proteins, membrane proteins, and secreted proteins,

effective research has recently been published in order to

uncover diagnostic markers and vaccine candidates (8, 68, 101,

173). Profiling core secretome proteins among different strains

of pathogenic bacteria might be significant to future studies as

supported by the recent core genome studies (183). Figure 2

depicts the advancement of the proteome of Mycoplasma bovis

in a schematic manner, which could be extremely useful in filling

gaps in proteomics study of other significant Mycoplasma sp.

such as M. hyorhinis, M. hyopneumoniae, M. agalactiae, and M.

mycoides sub spmycoides.

6. Concluding remarks

Proteomics has played a vital role in identifying and

distinguishing bacterial infections, as well as understanding

and diagnosing their pathophysiology. Using a combination

of methods, researchers were able to more effectively detect

infections as well as identify and characterize the proteins

involved in pathogenicity. Proteomics enabled to detect the

secretome of bacterial pathogens, in addition to entire cell

and membrane proteins, and gave a new platform for

the field of preventive medicine. In order to confirm and

describe the secretory nature of proteins implicated in bacterial

pathogenicity, more progress must be made.
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TABLE 2 Secreted proteins from important bacterial pathogens using proteomics tools.

Pathogen Disease Methods Outcome References

Mycoplasma capricolum

subsp. Capricolum

Caprine arthritis, mastitis,

respiratory diseases

2-DE, MALDI-TOF Acid phosphatase, hemolysin, gelatinase

as virulent factors

(148)

Salmonella enterica serovar

Typhimurium

Typhoid fever LC-MS-MS, western blot SopF effector (149)

Bordetella pertussis Whooping cough Predictive proteomics,

LC-MS-MS

PtxA and CyaA, TcfA, FhaL and FhaS,

BP1251

(150)

Streptococcus pyogenes Pharyngitis, necrotizing

fasciitis

label-free LC–MS-MS HtpA as virulence associated effector

protein

(151)

E. coli (AIEC), (ETEC) Intestinal and extra-intestinal

diseases in humans

1D SDS-PAGE,

LC-ESI-MS-MS

LF82_130, adhE, ykgD,rclR, ycdB, fhuA,

fabF, traV, ETEC_4010, ETEC_2119,

ETEC_2033. ETEC_0806, gapC, yfdQ,

glyA, adhE, fabF identified as vaccine

candidates

(152)

Streptococcus pneumonia Pneumonia, bacteremia,

meningitis

1-DE, LC-MS-MS Gsp-781, Sphtra, NagA, PhtD, ZmpB,

Eno as immunogenic proteins

(153)

Propionibacterium acnes Acne vulgaris Mass spectrometry PPA1939 as vaccine candidate (154)

Helicobacter pylori Peptic ulcer Predictive proteomics vacA, babA, sabA, fecA and omp16 as

vaccine candidates

(155)

Mycoplasma bovis Calf pneumonia Predictive proteomics,

western blot, binding assay

MbovP280 a novel secreted protein

inducing apoptosis via C-C domain and

ligand CRYAB

(156)

Mycoplasma bovis Calf pneumonia Predictive proteomics, label

free quantitative proteomics

MbovP0145 as potential diagnostic

marker

(157)

Mycoplasma bovis Calf pneumonia Predictive proteomics,

western blot

MbovP0145 induces IL-8 expression

through MAPK pathway

(158)

Campylobacter jejuni Gastroenteritis SILAC, label free LC-MS-MS,

immunoblot

CJM1_0791 and CJM1_0395 virulent

proteins

(159)

Mycobacterium bovis 04-303 Tuberculosis LC-MS-MS EsxA and EsxB (160)

Mannheimia haemolytica Bovine respiratory disease LC–MS-MS, predictive

proteomics

Several Immunogenic secreted proteins (161)

Mycoplasma hyopneumoniae

andMycoplasma flocculare

Porcine enzootic pneumonia LC-MS-MS 15 Proteins inM. hyponeumoniae and

four inM. flocculare as potential

virulent factors

(162)

Streptococcus pneumonia Pneumonia, septicemia MALDI-TOF-TOF,

immunoblot

tatD- endodeoxyribonuclease as virulent

factor

(163)

Mycoplasma bovis Calf pneumonia MALDI-TOF-MS rMbovP581 as immunogenic protein (8)

Brucella rough mutants Macrophage death SDS-PAGE, LC-MS-MS BAB1_1579, BAB1_1185 as cytotoxic

proteins

(164)

Francisella tularensis Tularemia Mass spectrometry, western

blot

OpiA, OpiB, PdpC, and PdpD as

virulence effector proteins

(165)

Mycobacterium tuberculosis Tuberculosis Recombinant proteins,

SDS-PAGE

CFP-10, ESAT-6 as diagnostic markers (166)

Rickettsia Rickettsioses Literature review, predictive

proteomics

Sca4, RickA, RalF, TlyC, PLD, Pat1, Pat2

for better understanding of secretion

system and virulence

(167)

Shigella flexneri Bacterial dysenteries,

shigellosis

Mass spectrometry,

Immunoblot

Orf13 and Orf131a as virulence effector

proteins

(168)

(Continued)
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TABLE 2 (Continued)

Pathogen Disease Methods Outcome References

Bacteroides fragilis Bowel disease, colon cancer HPLC-MS-MS,

proteogenomics

Metabolic activity of pathogenic strain

EVs indicate more pathogenic potential

as compared to non-pathogenic

(169)

Vibrio cholerae Cholera Mass spectrometry, western

blot

TseH, TsiH (170)

Staphylococcus aureus Skin infections LC-MS-MS, immunoblot cytolysins (171)

Streptococcus suis Swine Septicemia, meningitis,

arthritis, endocarditis

LC-MS-MS, immunoblot SSU0020, SSU0934, and SSU0215 as

vaccine candidates

(172)

Mycoplasma bovis Calf pneumonia Predictive proteomics 14 putative secreted proteins associated

with virulence

(173)

Bacillus anthracis Anthrax, bioterrorism agent Predictive proteomics Anthrolysin, BsIA, PA domain 4, LF

domain 1, EF as candidates for chimeric

vaccine

(174)

Leptospira interrogans Leptospirosis Mass spectrometry-

LTQ-Orbitrap

Secreted protease unable to degrade

human plasmin & ECM

(175)

FIGURE 2

Recent progress in the proteome and secretome of M. bovis and its outcome.
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