
PROTEUS: Network Performance Forecast for Real-Time,
Interactive Mobile Applications

Qiang Xu
University of Michigan

Ann Arbor, MI
qiangxu@umich.edu

Sanjeev Mehrotra
Microsoft Research

Redmond, WA
sanjeevm@microsoft.com

Z. Morley Mao
University of Michigan

Ann Arbor, MI
zmao@umich.edu

Jin Li
Microsoft Research

Redmond, WA
jinl@microsoft.com

ABSTRACT

Real-time communication (RTC) applications such as VoIP,
video conferencing, and online gaming are flourishing. To
adapt and deliver good performance, these applications re-
quire accurate estimations of short-term network performance
metrics, e.g., loss rate, one-way delay, and throughput. How-
ever, the wide variation in mobile cellular network perfor-
mance makes running RTC applications on these networks
problematic. To address this issue, various performance
adaptation techniques have been proposed, but one common
problem of such techniques is that they only adjust appli-
cation behavior reactively after performance degradation is
visible. Thus, proactive adaptation based on accurate short-
term, fine-grained network performance prediction can be a
preferred alternative that benefits RTC applications.

In this study, we show that forecasting the short-term per-
formance in cellular networks is possible in part due to the
channel estimation scheme on the device and the radio re-
source scheduling algorithm at the base station. We develop
a system interface called PROTEUS, which passively collects
current network performance, such as throughput, loss, and
one-way delay, and then uses regression trees to forecast fu-
ture network performance. PROTEUS successfully predicts
the occurrence of packet loss within a 0.5s time window for
98% of the time windows and the occurrence of long one-way
delay for 97% of the time windows. We also demonstrate
how PROTEUS can be integrated with RTC applications to
significantly improve the perceptual quality. In particular,
we increase the peak signal-to-noise ratio of a video confer-
encing application by up to 15dB and reduce the perceptual
delay in a gaming application by up to 4s.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MobiSys’13, June 25–28, 2013, Taipei, Taiwan
Copyright 2013 ACM 978-1-4503-1672-9/13/06 ...$15.00.

Categories and Subject Descriptors

C.2.1 [Network Architecture and Design]: Wireless com-
munication; C.2.4 [Distributed Systems]: Client/server;
C.4 [PERFORMANCE OF SYSTEMS]: Measurement
techniques; C.4 [PERFORMANCE OF SYSTEMS]: Mod-
eling techniques

General Terms

Design, Measurement, Performance

Keywords

Cellular network prediction; Interactive mobile applications;
Real-time communication (RTC) applications

1. INTRODUCTION
One of the biggest trends today is the accelerated adop-

tion of mobile devices, whose power is approaching that
of PCs. The rapid adoption of mobile devices is result-
ing in the migration of real-time communication (RTC) ap-
plications from PCs to mobile devices. RTC applications
include (i) multimedia real-time communication including
VoIP/video conferencing applications such as Skype, Face-
Time, and Google+ Hangout; (ii) interactive multi-player
gaming applications such as Draw Something, Modern Com-
bat 3, and Call of Duty; and (iii) application sharing, desk-
top sharing, and virtual desktop interface (VDI). RTCWeb
(Real-Time Collaboration over Web) is an ongoing effort
to enable RTC applications to run inside browsers without
plug-ins [8].

Running RTC applications in mobile networks presents
a major challenge since they require accurate short-term
estimates of network metrics, e.g., loss rate, one-way de-
lay (OWD), and throughput, whereas cellular network per-
formance varies rapidly and widely [20, 24, 44]. Although
performance adaptation solutions have been proposed [1, 2,
5, 7, 34, 40, 48], they are ineffective for RTC applications,
where the end-to-end delay between content generation and
content consumption is on the order of network latencies.
Thus, techniques such as packet retransmissions or use of
large client-side de-jitter buffers to absorb jitter variations,
effective for web browsing and video playback, will lead to
intolerable delays in RTC applications.



Instead, RTC applications need to rely on an appropri-
ate amount of forward error correction (FEC) to account
for packet loss and a small yet appropriately sized de-jitter
buffer to absorb varying packet delay. Over-protection us-
ing FEC wastes precious bandwidth, while under-protection
negates the effectiveness of FEC, as any unrecoverable packet
loss will lead to severe quality degradation in voice calling
and video conferencing. Similarly, if the de-jitter buffer
size is too large, it adds to the application latency. If it
is too small, late arriving packets will be considered lost,
which also leads to significant quality degradation. Accurate
throughput prediction is also necessary to allow bandwidth
intensive applications to maximize throughput without in-
curring additional queuing delay. Thus, short-term, fine-
grained network performance prediction on mobile networks
is of great importance.

Existing work on mobile network performance measure-
ment and prediction is of limited importance to RTC ap-
plications for several reasons: (i) the measurement or pre-
diction approaches are carried out on coarse-grained time
granularity or offline, which are not suitable for RTC ap-
plications; (ii) the performance adaptation techniques react
to performance only after observing any degradation, when
the user experience has already been negatively impacted;
and (iii) the existing techniques used by RTC applications
for network prediction are usually näıve such as using the
previous performance,the average of previous performance,
or linear regression techniques, which work well only for rel-
atively stable wired networks.

In this study, we propose a system interface named PRO-
TEUS designed to accurately predict fine-grained detailed
network performance in real time over short time scales al-
lowing applications to adjust their behavior to best optimize
their performance. The fine-grained and accurate perfor-
mance prediction in real time is necessary yet challenging
from three aspects: (i) cellular network performance may
be affected by a multitude of unobservable factors, such as
radio resource scheduling, other users sharing the spectrum,
and signal-to-noise ratio; (ii) network performance predic-
tions on fine-grained time granularity is inherently noisier
than coarse-grained predictions; and (iii) active probing is
prohibitive for RTC applications due to significant resource
consumption, while passive monitoring has limited visibility
only based on traffic generated by applications.

To address the above challenges, PROTEUS utilizes a ma-
chine learning framework based on regression trees to learn
the trend of network performance over short, fine-grained
time windows using previous available observations. Even
though past work has provided the evidence that cellular
networks have a potential to have predictability for network
performance, to our best knowledge, PROTEUS is the first
system to forecast short-term network performance in real
time, and the first to demonstrate the benefit of proactively
adjusting the operating parameters in real time for use by
mobile RTC applications. The key contributions of our pa-
per are as follows:
• We characterize short-term network behavior and investi-
gate the performance predictability in three major cellular
networks of AT&T, T-Mobile, and Sprint based on more
than 400 hours of traces across 3 locations. We identify the
existence of strong predictability over short time scales for
these cellular networks.
• We discover that loss rate, one-way delay, and through-

put in cellular networks can be accurately predicted in real
time from past measurements by feeding past network per-
formance metrics into regression trees. For a following 0.5s
time window, we can predict loss occurrence with 98% ac-
curacy, late packet arrival with 97% accuracy, and through-
put with a median error of 10kbps with average throughput
ranging from 100–800kbps.
• We prototype PROTEUS, an efficient framework that fore-
casts achievable network performance in real time and eval-
uate its usage by a video conferencing system and an on-
line game, i.e., Draw Something. By adapting its behavior
through prediction from PROTEUS, the video conferencing
system can improve its peak signal-to-noise ratio by up to
15dB over the state-of-the-art adaptation techniques. Utiliz-
ing PROTEUS, Draw Something can reduce the perceptual
delay in viewing the stroke-by-stroke animation by up to 4s.

The rest of this paper is organized as follows. §2 iden-
tifies the potential factors that allow for short-term, fine-
grained performance predictability in cellular networks. §3
overviews the infrastructure of PROTEUS, followed by §4
where we characterize short-term predictability of cellular
networks. §5 applies PROTEUS into a video conferencing
system and a multi-player gaming system and evaluates the
benefits from PROTEUS. The related studies are discussed
in §6 and we conclude our paper in §7.

2. CELLULAR NETWORK BACKGROUND
In this section, we examine the relevant network behav-

ior in cellular networks to establish the time scale in which
network performance may be predictable.

In UMTS, EV-DO, and LTE networks, a mobile device
estimates the channel quality through the perceived signal-
to-noise ratio of the pilot signal from the base station in
every time slot, e.g., 1.67ms for EV-DO. The device deter-
mines the modulation and coding scheme (i.e., DRC) from
the channel quality and reports back to the base station.
Depending on the channel quality, the base station allocates
time slots via proportional fair scheduling to fairly allocate
radio resource while maximizing the overall radio resource
utilization [18].

To precisely understand how the proportional fair sched-
uler works, let W[n] denote the exponentially averaged through-
put at time slot n which is computed from W[n] = (1−α)W[n−
1] + α · I[n − 1] · C[n − 1], where I[·] is the indicator func-
tion on whether the user is served in a given time slot, C[·]
is the function of channel quality report, and α is the dis-
count factor controlling the aggressiveness for the base sta-
tion switching time slots across users [28]. The proportional
fair scheduler allocates time slot n to a user with the maxi-
mum value of C[n]

W[n]
to balance serving between the device with

the best channel quality and the device consuming the most
resources.

The average duration of staying in a DRC is hundreds
to thousands of time slots for stationary devices and tens
of time slots for moving devices [31]. Moreover, a device
spends a large fraction of time in one dominant DRC, in-
dicating the presence of a dominant channel condition [31].
Thus, the number of continuous time slots that a device can
occupy is decided by 1

W[n]
, which is affected by the discount

factor α. To encourage a device to access a time slot in
time [21] and to occupy enough continuous time slots to ef-
ficiently deliver a non-trivial amount of data, α is usually



set to a small value (e.g., 0.001) [25]. This allows a device
to occupy the order of ≈ 1

α
= 1000 time slots, which means

that a device can occupy the channel with the same DRC
on the order of ≈1.67s. Since the network performance on
a wireless link between the device and base station is largely
a function of the channel condition and the DRC value, we
expect that it should be possible to predict network per-
formance on a similar time scale, i.e., 1.67s. Note that we
expect the presence of network predictability in other vari-
ants of 3G or 4G networks as well due to the consistent uti-
lization of proportional fair scheduling and channel quality
report schemes [27].

3. PROTEUS OVERVIEW
PROTEUS is designed to complement the underlying trans-

port protocol and any performance optimization techniques
(e.g., FEC, de-jitter buffers, congestion control) that are
widely used by RTC applications. For example, video con-
ferencing applications using UDP have their own congestion
control based on delay and loss. Applications using TCP
rely on TCP’s congestion control algorithm. The goal of
PROTEUS is to provide applications with prediction of delay,
loss, and throughput, so that they can perform application-
specific optimizations such as tuning source bit-rate, amount
of FEC inserted, and de-jitter buffer size.

To avoid measurement overhead, PROTEUS does not ac-
tively probe the network. Instead, PROTEUS is designed as
a library that relies on application traffic to collect network
measurements. This is done by appending and recording
the time and sequence numbers for outgoing and incoming
packets. PROTEUS can be either in user space or inside
the kernel. Inside the kernel, PROTEUS has lower over-
head. As shown in Figure 1, applications (e.g., app #1) can
call send’() and recv’(), which are PROTEUS’s wrapped
version of standard socket API’s send() and recv(). The
socket wrapper allows PROTEUS to transparently collect
network statistics (one-way delay, loss, and throughput) by
inserting sequencing and timing information into packet head-
ers. However, there may be many applications that already
append sequencing and timing information in their packet
headers to compute similar network statistics, e.g., RTP
packets used by many VoIP and video conferencing appli-
cations already contain sufficient information to accurately
compute network statistics. These applications (e.g., app
#2) can alternatively use the standard socket APIs and in-
form PROTEUS with network statistics.

PROTEUS provides applications and the socket wrapper
another two sets of APIs: the inform API and the inquiry
API. The inform API enables the socket wrapper (e.g., app
#1) and applications (e.g., app #2) to inform PROTEUS with
packet sequencing and timing information, whereas the ap-
plication issues the inquiry API to obtain from PROTEUS
the predicted future network performance, as depicted in
Figure 1. Based on this fine-grained information of packet
sequencing and timing provided by either the wrapped socket
(e.g., app #1) or the application (e.g., app #2) through the
inform API, PROTEUS can compute current packet loss
rate, one-way delay, and throughput from which it can pre-
dict future network performance. PROTEUS uses a clock
drift compensation technique [35] to adjust the remote times-
tamp to the local clock to compute one-way delay.

The overhead of adding timestamps and sequence num-
bers into packet headers is acceptable, which has been eval-

uated in previous research [3, 41]. The statistics of loss, de-
lay, and throughput are collected over small non-overlapping
time slices (i.e., time windows). This is the granularity over
which statistics collection as well prediction are performed.
Using the observed statistics from a certain number of pre-
vious time windows (i.e., information windows), PROTEUS
trains regression trees to identify the dependencies across
various network metrics and to forecast the network per-
formance in future time windows. There could be more
than one way to learn traffic histories. We resort to re-
gression trees simply as it is one of the state-of-the-art ap-
proaches that have relatively low memory and computation
overhead [17]. Another advantage of regression trees over
other techniques is that it can provide a real-value predic-
tion of a metric as opposed to simply a binary decision.

socket

socket 
wrapper

socket

PROTEUS

app #2remote #2

remote #1

socket 
wrapper

s
e

n
d
()

re
c
v
()

s
e

n
d ()

re
c
v ()

s
e

n
d
()

re
c
v
()

s
e

n
d ()

re
c
v ()

app #1

Figure 1: The overall design of PROTEUS. The de-
tails of its interaction with an application are shown
in Figure 11.

The accuracy of PROTEUS’s prediction is determined by
two factors: (i) the inherent predictability of cellular net-
work performance (described in §4.1), and (ii) the effec-
tiveness of PROTEUS’s forecasting technique (examined in
§4.2).

The information exchanged through the inform API be-
tween applications and PROTEUS is common across appli-
cations. However, the information from the inquiry API and
the resulting action taken by each application may be very
different. In Table 1, we classify applications into four broad
categories depending on how sensitive their performance is
to the three network parameters of packet loss, one-way de-
lay, and throughput and show how PROTEUS can be useful.
• Type 1 consists of applications whose performance is not
sensitive to loss, one-way delay, or throughput. These are
either non-real-time, low-bandwidth applications insensitive
to network performance, or applications that do not ben-
efit much from prediction. For example, the performance
of Dropbox and other file transfer applications depends on
throughput, but there is little adaptation in response to
throughput prediction.
• Type 2 consists of applications whose performance is not
sensitive to packet loss or one-way delay but is sensitive to
throughput. These are non-real-time, high-bandwidth appli-
cations such as video on demand (VOD). Such applications
can take steps to improve performance such as adapting the
rate of the stream served to the client [5] in response to
throughput prediction.
• Type 3 consists of applications whose performance is sen-
sitive to packet loss and/or one-way delay, but not to through-
put. These are real-time, interactive, low-bandwidth appli-
cations such as VoIP. For these applications, throughput pre-
diction is of little benefit. However, loss prediction can be



type description example inquiry API

1 non-real-time, low rate, or insensitive to performance Weather, Calender, Reminder, Dropbox N/A

2 sensitive to throughput YouTube, NetFlix. Hulu throughput

3 sensitive to loss and one-way delay (OWD) Skype Call, Google Voice loss, OWD

4 sensitive to loss, OWD, and throughput Skype Video, Google+ Hangouts,
Draw Something, online games

loss, OWD,
throughput

Table 1: The types of applications based on the sensitivity to network loss, OWD, and throughput.

used to control the amount of FEC used [15]. The one-way
delay prediction can be used to adjust the de-jitter buffer
size for adaptive playout to reduce both late arrival induced
loss [15] and de-jitter buffer induced delay.
• Type 4 consists of applications whose performance is sen-
sitive to packet loss, one-way delay, and throughput pre-
diction. These are real-time, interactive, high-bandwidth
applications such as video conferencing, and real-time soft-
ware applications such as desktop sharing. PROTEUS can
be used for throughput prediction to control the source rate
produced by the source. The number of FEC packets to in-
sert can be inferred from loss prediction, and the de-jitter
buffer size can be determined from one-way delay prediction.

Type 3 and Type 4 are real-time, interactive applications
that can benefit from PROTEUS. Type 2 consists of non-

real-time applications that can still benefit from throughput
prediction.Although a coarse-grained predictor may work for
Type 2 applications, it may not work for RTC applications.
A coarse-grained predictor can be built upon a fine-grained
predictor such as PROTEUS by simply averaging the predic-
tion over multiple time windows.

Types 2, 3, and 4 applications are becoming increasingly
popular and contribute to a majority of the traffic on the
Internet [47]. This trend is readily visible by the increas-
ing popularity of Skype, FaceTime, and Google+ Hangouts.
The increasing push towards the cloud also makes other RTC
applications such as online gaming and VDI (virtual desktop
infrastructure) scenarios even more important. The broad
industry interest in the performance of such applications is
apparent from recent efforts around RTCWeb [8] and DASH
(Dynamic Adaptive Streaming over HTTP) [6].

4. PREDICTION USING PROTEUS
In this section, we investigate the predictability of cellu-

lar network performance and evaluate the accuracy of PRO-
TEUS’s forecasting.

4.1 Characterizing Cellular Networks
Although the understanding of the channel estimation

scheme on mobile devices and the radio resource schedul-
ing algorithm at base stations, along with the performance
predictability observations from previous studies [31] give us
confidence that cellular network performance is predictable,
it is still uncertain (i) how much predictability there is in cel-
lular networks, particularly in the short term as is needed
by RTC applications; (ii) what network features can be the
best predictors; and (iii) how much overhead is required to
achieve accurate prediction. These challenges have not been
fully addressed by any previous research, but need to be
studied to improve the performance of Type 3 and Type 4
applications in Table 1.

Autocorrelation for the same network metric. To
quantify the predictability of cellular network performance,

we first study the correlation across network metrics over
time. A high correlation of a particular network character-
istic would indicate that the feature should be predictable
whereas a low correlation would imply difficulty in predic-
tion. We take network measurements across non-overlapping
time intervals, i.e., aforementioned time windows, and then
compute the correlation coefficient between current time
window with a time window t in the past, i.e., the time

lag, using Rt =
E[P0·Pt]−E[P0]·E[Pt]

σ[P0]·σ[Pt]
, where E[.] is the expectation

operation, σ[.] is the standard deviation operation, and P is
the stochastic process of any network performance metric1.
A high autocorrelation coefficient would indicate that the
metric is predictable using a linear predictor.

device carrier network down.1 up.1

iPhone 4 AT&T UMTS 77(4) 42(4)
Captivate AT&T UMTS 159(N/A) 72(N/A)

Atrix AT&T HSPA 42(N/A) 20(N/A)
Nexus T-Mobile HSPA+ 109(N/A) 108(N/A)
dongle Sprint EV-DO 44(N/A) 115(N/A)

1 The number of UDP(TCP) flows, each lasting ≥1 hour.

Table 2: The devices and cellular networks covered
by the experiments. FlowSet Refers to the AT&T
flows.

To study if cellular network performance can be predicted
using fine-grained time windows, e.g., 0.5s, we collect a large
number of traces from various cellular networks in Table 2
and compute the autocorrelation of throughput using each
trace choosing a time window of 0.5s, i.e., tw = 0.5. We plot
the distribution of the autocorrelation coefficient as a func-
tion of the time lag in Figure 2(a) for the flows in FlowSet,
as defined in Table 2. Given a time lag, we show the distri-
bution across flows via the 5th, 25th, 50th, 75th, and 95th
percentiles.

In Figure 2(a), more than half of the time, the autocor-
relation coefficient at a time lag of 0.5s is more than 0.6,
indicating that the network performance using a time win-
dow of size 0.5s is indeed predictable to some degrees using
previous time windows. From Figure 2(a), we also see that
once the time lag is above 20s, the median autocorrelation
coefficient is close to 0, and the 25-75th percentiles are in
the range of [-0.05, 0.05]. Therefore, we expect that using
the time windows that are within the last 20s is sufficient
to predict network performance. The results presented here
show the autocorrelation function for throughput. We see
similar behavior for packet loss and one-way delay.

Time granularity of performance prediction. One
parameter affecting the autocorrelation coefficient is the size
of the time window. If the time window chosen is small,

1The value of the autocorrelation function lies in the range
[−1, 1], with 1 indicating perfect correlation, -1 indicating
perfect anti-correlation, and 0 indicating no correlation.



-0.8

-0.4

 0

 0.4

 0.8

 0  10  20  30  40  50

au
to

x 
co

effi
ci

en
t

time lag (sec)

5-50-95% 25-75%  0

 0.2

 0.4

 0.6

 0.8

 1

<0.1  1  10  100

au
to

x 
co

effi
ci

en
t

time lag (sec)

tw
0.5

1
2
4
8

(a) (b)

Figure 2: The autocorrelation coefficient of throughput under the im-
pact of (a) the time lag and (b) the time window size (“tw”).

 0

 0.05

 0.1

 0.15

 0.2

 0  100  200  300  400  500

on
e-

w
ay

 d
el

ay
 (s

ec
)

time (sec)

loss = 0
loss > 0

Figure 3: The one-way delay for
the time windows with and without
loss.

the measurements may show high variability, which may be
more difficult to predict. However, if the time window cho-
sen is large, the measurements may be affected by long term
drift and cannot accurately reflect the fine-grained perfor-
mance needed by RTC applications. To appropriately se-
lect a time window size, we study the effect of time window
size on the autocorrelation function. Figure 2(b) shows the
median autocorrelation coefficient for UDP throughput as
a function of the time lag for various time window sizes,
i.e., 0.5s, 1s, 2s, 4s, and 8s. We expect that as the time win-
dow size increases, the autocorrelation coefficient for a given
time lag should also increase until it eventually converges.
In Figure 2(b), “tw = 4” being close to “tw = 8” indicates
that using time windows greater than 4s provides no addi-
tional benefit. However, we see that even with a window
size of “tw = 0.5”, the average autocorrelation coefficient at
a time lag of 0.5s is above 0.6 and is similar to that using a
larger time window. Thus, we conclude that we can indeed
predict network performance from previous time windows
using fine-grained windows, e.g., 0.5s, as needed by RTC
applications.

In total, we have three observations from studying the au-
tocorrelation function: (i) the current network performance
is correlated with the network performance in the previous
time windows; (ii) to predict the network performance, the
time window size can be as short as 0.5s as required by RTC
applications; and (iii) using information within the previous
20s should be sufficient for accurate prediction.

Cross correlation between network metrics. These
three observations answer the question of whether network
performance is predictable on cellular networks using previ-
ous values of a particular metric to predict future values of
the same metric. However, the question of whether previous
values of other metrics can also be used to improve predic-
tion remains. To study this, we study the cross-correlation
coefficient across various different network metrics.

Since packet loss and end-to-end network delay are com-
monly used as congestion signals by congestion control pro-
tocols as well indicate overbuffering in cellular networks [26],
we expect that these metrics may be correlated. To confirm
this understanding, we investigate the cross correlation be-
tween the various network performance metrics. The dis-
tribution of the cross-correlation coefficient as a function of
the time lag is shown in Figure 4. From Figures 4(a) and

(b), we find that throughput does not correlate well with ei-
ther loss or one-way delay. The maximum absolute median
cross correlation coefficient between throughput and loss is
less than 0.1, and between throughput and one-way delay is
less than 0.15. We believe that this is because the through-
put is decided more by the DRC on the link between the
device and the base station, while loss and one-way delay
are affected more by the congestion along the path. How-
ever, from Figure 4(c), we see that loss rate and one-way
delay do have a strong correlation with each other. When
the time lag is close to 0, the median cross correlation coef-
ficient is around 0.5. Figure 3 further shows this correlation
by showing the average one-way delay for each time window
as a function of time for time windows with loss and those
without loss. We clearly see that for those windows where
loss occurs, the average one-way delay is also significantly
higher than for those where there is no loss. As a result, the
forecasts of loss and one-way delay use both previous loss
rate and one-way delay, while throughput prediction uses
just the throughput from previous time windows.

4.2 Constructing the Regression Trees
We utilize a framework based on regression trees to au-

tomatically learn the correlation between previous network
performance and current network performance [17]. Note
that there could be more than one way to learn traffic histo-
ries and predict network performance, e.g., Markov chains.
We resort to regression trees simply because it is one of the
state-of-the-art approaches that has relatively low memory
and computation overhead. We have tried to use a Markov
chain to model the short-term network performance behav-
ior, however, tuning the parameters for the model is ad hoc.

We construct a regression tree for each of the network met-
rics, with the target of the tree being the metric predicted
and the attributes being the metrics used to perform the
prediction. The loss regression tree predicts the loss rate
in the next time window using the loss rate and one-way
delay values from previous time windows. The delay regres-
sion tree uses the same attributes to predict the one-way
delay in the next time window. The throughput regression
tree predicts the throughput in the next time window us-
ing the throughput values from previous time windows and
the sending rate from the immediate previous time window.



-0.8

-0.4

 0

 0.4

 0.8

 0  10  20  30  40  50

cr
os

s 
co

rre
la

tio
n 

co
ef

.

time lag (sec)

5-50-95% 25-75% -0.8

-0.4

 0

 0.4

 0.8

 0  10  20  30  40  50

cr
os

s 
co

rre
la

tio
n 

co
ef

.

time lag (sec)

5-50-95% 25-75% -0.8

-0.4

 0

 0.4

 0.8

 0  10  20  30  40  50

cr
os

s 
co

rre
la

tio
n 

co
ef

.

time lag (sec)

5-50-95% 25-75%

(a) throughput and loss rate. (b) throughput and one-way delay. (c) loss rate and one-way delay.

Figure 4: The cross correlation coefficient between performance metrics. The cross correlation is computed
per flow and the distribution across flows of the correlation coefficient under a given time lag is presented as
5-, 25-, 50-, 75-, and 95- percentiles. The correlation coefficient is normalized so that the maximum value is
1 for each flow.

The sending rate is included to address the case in which the
application is sending at a rate much below the throughput.

time

... -7 -6 -5 -4 -3 -2 -1

loss
OWD
thru[ loss]=, , ,

regression 
tree

-8

,
...

loss
OWD
thru

loss
OWD
thru

loss
OWD
thru

Figure 5: The attributes of the loss regression.

The number of attributes in the regression trees can be
controlled by selecting an appropriate information window
size from the correlation analysis (Figures 2 and 4). As il-
lustrated by Figure 5, the attributes are computed using
time windows in an exponential backoff fashion, i.e., the
attributes are the average values of a given metric in the
previous 1, 2, 4, 8, . . . , 2⌈log2(M)⌉ time windows, where M is the
information window size. Creating attributes using this ap-
proach allows us to place greater importance on the more
recent time windows as the more recent time windows are
represented in multiple attributes. It also controls the num-
ber of attributes since we only have ⌈log

2
(M)⌉+ 1 attributes

for a given information window of M time windows instead
of M attributes. With a time window of 0.5s and an infor-
mation window of 20s, we have only 7 attributes referring
to the average of previous 1, 2, 4, 8, 16, 32, 64 time win-
dows. In PROTEUS, the time window size is 0.5s and the
information window size is 20s by default without particular
specification.

According to Figure 2(a), the correlation between the cur-
rent network performance and the performance many sec-
onds ago is too weak to be useful. Thus, PROTEUS does
not perform offline training which can be inefficient and ex-
pensive. PROTEUS keeps feeding the regression trees with
the most recent performance metrics, allowing the regres-
sion trees to perform hyper-correction internally. Based on
the knowledge of performance histories, the regression trees
output the respective performance predictions for the next
time window.

4.3 Evaluating Forecast Accuracy
To evaluate the performance of PROTEUS, we carry out

controlled experiments to measure its forecasting accuracy.
The forecasting accuracy may be variable due to several as-
pects. When a mobile device is in communication over cellu-
lar networks, the network, the device, and even the different
cellular technology generations under the same network can
influence network predictability. Thus, we conduct the ex-
periments using diverse setups as shown in Table 2. Table 2
lists the device, the network, and the cellular technology
used. As TCP has built-in congestion control and retrans-
mission, the objective of evaluating TCP is its direct impact
to RTC applications, described in §5. To minimize bias, we
repeat our experiments at different times in the day and at
different locations. To directly control the sending rate and
to easily observe loss, one-way delay, and throughput, we
conduct most of our experiments over UDP. Even though
most RTC applications operate directly over UDP, the ap-
plicability of PROTEUS is not limited by the transport pro-
tocol used by the application.

In the experiments, the mobile device communicates with
a remote server in our campus in either the downlink or up-
link direction and keeps the packet rate constant over the
entire flow. To choose the sending rates, we saturate the end-
to-end connection using UDP and estimate the bandwidth
from the receiving rate. Based on the estimated bandwidth,
the sending rate steps from 50% of the estimated bandwidth
to 150% by 10% every time and each flow of a sending rate
lasts at least one hour. On both the mobile and the remote
server, we monitor packet traces using tcpdump. From the
collected packet traces, we identify throughput, loss rate,
and one-way delay. Here, we investigate one-way delay in-
stead of round trip time because one-way delay is a more
accurate measurement of network characteristics in a single
direction and directly affects application performance. As
mentioned in §3, PROTEUS performs clock drift compensa-
tion to compute one-way delay.

In the evaluation, we compare PROTEUS with general lin-
ear regression based prediction, representing the majority of
on-demand prediction solutions [1, 2, 5, 7, 11]. Any given
linear regression based prediction solution can be general-
ized as P[t] = λ1P[t − 1] + λ2P[t − 2] + · · · + λkP[t − k], in
which P[t] is the network performance at time window t and
λ1,··· ,k are the linear regression coefficients. However, deter-



 0

 20

 40

 60

 80

 100

 0  0.1  0.2  0.3  0.4

fa
ls

e 
po

si
tiv

e 
(%

)

loss rate

PROTEUS
∀ linear regression

AD1
AD2

 0

 20

 40

 60

 80

 100

 0  0.1  0.2  0.3  0.4

fa
ls

e 
ne

ga
tiv

e 
(%

)

loss rate

PROTEUS
∀ linear regression

AD1
AD2

 0

 20

 40

 60

 80

 100

 0  0.1  0.2  0.3  0.4

fa
ls

e 
po

si
tiv

e 
(%

)

loss rate

PROTEUS
∀ linear regression

AD1
AD2

(a) downlink false positive. (b) downlink false negative. (c) uplink false positive.

Figure 6: The accuracy in loss prediction. The X-axis shows the loss rate of each flow in FlowSet. The
loss rate can be high because UDP’s sending rate is agnostic of highly variable cellular links, which could
commonly occur for UDP based applications.

mining the best λ1,··· ,k for real-time use is challenging due to
the diversity of network condition. To compare with linear
regression based prediction, we perform linear regression of-
fline for each experiment to obtain the λ1,··· ,k that can best
fit performance estimation, and hypothetically assume that
the best λ1,··· ,k is known a priori, which is an upper bound
for any linear regression based solution. Besides, a common
walkaround in engineering (named as AD1 and AD2) is to
use the most recent network performance as follows.
• AD1 assumes the performance in the next time window is
the same as the performance observed in the current time
window.
• AD2 is less aggressive than AD1 to circumvent random
variation in cellular networks. AD2 assumes that the per-
formance in the next time window is the average of the
performance in the information window, i.e., the same as
PROTEUS’s information window.
Although AD1 and AD2 may seem simple and näıve, most
existing RTC applications estimate loss rate and one-way
delay using such methods since they work relatively well on
wired networks where statistics are relatively stable.

PROTEUS’s performance in loss prediction. We
first investigate PROTEUS’s accuracy in predicting the pres-
ence of any packet loss in the next time window by measur-
ing the false positive and false negative rates in FlowSet.
A false positive occurs when PROTEUS predicts a packet
loss in the time window but there is none. False positives
can cause inefficient usage of network resources. For exam-
ple, an application may introduce unnecessary FEC, which
would reduce the rate available for the actual coding of me-
dia. In contrast, a false negative occurs when PROTEUS
predicts no packet loss but a packet is lost in a time win-
dow. For many applications, the false negatives may result
in degraded application performance due to unrecoverable
packet loss. This is especially true for RTC applications
where retransmissions are not possible.

In Figures 6(a)-(c), we show the false positive and false
negative rates as a function of the actual loss rate for down-
link and uplink traffic. From Figure 6(a), we see that PRO-
TEUS’s false positive rate is consistently around <1% when
the loss rate is in the range from 0.05 to 0.4, while AD1’s
false positive rate is around 2-5% when the loss rate is less
than 0.3 and increases to 20% after the loss rate grows to

0.35. AD2 performs even worse with the false positive rates
higher than 80%. The hypothetical upper bound for any
linear regression based prediction (“∀ linear regression”) is
around 3%. Note that the loss rate can be as high as 0.35,
because UDP’s sending rate is agnostic of highly variable cel-
lular network performance [14, 45], which could commonly
occur for UDP based applications. There are two reasons
that PROTEUS outperforms linear regression techniques: (i)
PROTEUS uses cross statistics, e.g., the use of loss in delay
prediction and vice versa; and (ii) regression trees have some
amount of non-linearity. Consequenly, without fully captur-
ing the performance trend in previous time windows, AD1

and AD2 can only achieve the accuracy as poor as random
guessing by merely estimating based on the last time window
or aggregated history information.

In Figure 6(b), we show the false negative rate of the
flows in FlowSet. As mentioned, a false negative is more
critical than a false positive, for RTC applications. From
Figure 6(b), PROTEUS’s false negative rate is consistently
around 1-3%, AD1’s false negative is 5-30%, and AD2’s false
negative is around 20-80%. The upper bound for linear re-
gression based approaches is 5-20%, which is much worse
than PROTEUS. When the loss rate is low, the running flow
may not provide sufficient information of true positives, i.e.,
lost packets. Thus, as the loss rate decreases, PROTEUS,
AD1, and AD2 all have increasing false negative rates. Al-
though AD2’s false negative rate is only slightly worse than
PROTEUS, PROTEUS’s false positive rate is significantly
better. Compared to AD1, AD2 has low false positive rate,
but does not retain a low false negative rate at the same
time.

Besides downlink traffic, we also investigate uplink traffic
as uplink traffic is significant in applications such as Skype,
FaceTime, and Google+ Hangouts. Similar to Figure 6(a),
PROTEUS is slightly better than the hypothetical upper
bound of linear regression solutions and AD1, and much bet-
ter than AD2 in false positive rate according to Figure 6(c).
PROTEUS’s false positive rate is less than 2% over the flows
in FlowSet, “∀ linear regression”’s and AD1’s false positive
rates range from 1% to 3%, and AD2’s false positive is no
less than 60%. Due to space limitation, we only include the
false positive for uplink flows, but we observe similar perfor-



 0

 20

 40

 60

 80

 100

-10  0  10

CD
F 

(%
)

error (%)

FN
FP
TP

 0

 2

 4

 6

 8

 10

 0  0.2  0.4  0.6  0.8

FP
 (%

), 
FN

 (%
)

one-way delay (sec)

FP
FN

-10

 0

 10

 20

 30

 40

 0  200  400  600  800

er
ro

r (
kb

ps
)

throughput (kbps)
(a) (b) (c)

Figure 7: The quantitative accuracy on (a) loss rate, (b) one-way delay, and (c) throughput. In (c), only 15
randomly chosen flows are presented to avoid overlapping.

mance for PROTEUS, AD1, and AD2 in their false negative
for uplink flows.

The false positive and false negative results for the packet
loss presented above show the prediction accuracy. More-
over, the regression tree used in PROTEUS also predicts the
packet loss rate quantitatively rather than giving a simple
binary decision of whether there will be packet loss. In Fig-
ure 7(a), we show the accuracy of this quantitative predic-
tion of packet loss rate. We show the error in packet loss
rate prediction for each of the three categories according to
the error type, i.e., false negative, false positive, and true
positive. Only true negatives do not lead to error because
both the predicted and the ground truth loss rate are zero.
We show the cumulative distribution function (CDF) of the
error for each of these three error types in Figure 7(a).

Among true positive predictions, PROTEUS could either
overestimate or underestimate the loss rate. If the loss rate
is overestimated, similar to false positives, applications may
introduce unnecessary FEC. If loss rate is underestimated,
similar to false negatives, applications may experience in-
formation loss, which may be more critical. In Figure 7(a),
70% of true positive predictions have no error or the neg-
ligible error of less than 0.1% and 99% of them have the
error within 5%. PROTEUS’s median false negative error is
around 10%. With false positives, PROTEUS’s median error
is 2% and 95% of predictions are less than 10%, which in-
dicates that our design will very unlikely make applications
introduce unnecessary protection traffic.

PROTEUS’s performance in delay prediction. Be-
sides loss rate prediction, RTC applications can also benefit
from one-way delay prediction. One-way delay prediction
allows applications such as video conferencing and VoIP to
appropriately set their de-jitter buffer sizes, which deter-
mines how long the application waits for a packet before
declaring it to be lost. Most VoIP and video conferencing
systems do not use a fixed de-jitter buffer. The de-jitter
buffer starts at something small and grows to some maxi-
mum value if packets do not arrive in time. This maximum
is set to something which is tolerable for the given appli-
cation. For example, a 150-200ms end-to-end delay is the
maximum that video conferencing systems can tolerate [16].
Once packets start to arrive in time, the de-jitter buffer size
shrinks according to some schedule (e.g., 10% every 5s) to
lower the end-to-end delay seen by the application. Usually,

de-jitter buffer size adaptation is accomplished by using an
adaptive rate playout (either speeding up or slowing down
media playback) [15]. Accurately predicting one-way delay
can allow an application to more intelligently control this
adaptation to improve performance.

Inappropriate de-jitter buffer size selection can result in
suboptimal performance. If it is set larger than needed to
absorb the inherent network delay variation, the application
suffers from larger delay than needed. Otherwise, if it is set
too small, a large number of packets that arrive late will be
declared lost which results in poor application performance.
In Figure 7(b), we show the accuracy of PROTEUS in pre-
dicting if the delay in the following time window will exceed
the tolerable end-to-end delay (i.e., 150ms [16]) as a func-
tion of the true one-way delay. This can answer the question
whether we should grow the de-jitter buffer size. Note that
the one-way delay is calibrated so that the one-way delay is
0ms if there is no congestion on the network [35]. Similar to
before, a false positive occurs when we predict the delay to
be larger than 150ms but in reality it is not. A false negative
is when we predict the delay to be smaller than 150ms, but
in reality it is larger. According to Figure 7(b), the false
positive is around <3% and the false negative is around
<2%.
PROTEUS’s performance in throughput predic-

tion. Predicting the throughput in the next time window
is also important for certain bandwidth intensive applica-
tions such as video conferencing and VOD. For RTC appli-
cations such as video conferencing, throughput prediction
can be combined with loss rate prediction to appropriately
set the encoder bitrate and the FEC rate. For non-RTC
applications such as VOD using chunked video streaming,
throughput prediction can be used to appropriately assign
bit allocation across video chunks to improve video qual-
ity. Overestimating the achievable throughput may lead to
application-level information loss or increased delay, while
underestimating the achievable throughput prevents appli-
cations from maximally utilizing the network.

Since PROTEUS passively monitors network traffic, it can-
not predict the achievable throughput of the following time
window at an arbitrary sending rate. PROTEUS makes the
prediction assuming the sending rate of the next time win-
dow is the same as the previous one. We evaluate PRO-
TEUS’s accuracy in throughput prediction as a function of



 0

 1

 2

 0  0.1

FP
 (%

)

loss rate

T-Mobile
Sprint

Figure 8: The impact of the cellular
network.

 0.1

 1

 10

 100

 0.5  1  2  5  10  20

FN
 (%

), 
FP

 (%
)

size (sec)

FP
FN

Figure 9: The impact of the time
window size.

 0

 1

 2

 3

 4

 5

 10  100

FN
 (%

), 
FP

 (%
)

size (sec)

FP
FN

Figure 10: The impact of the infor-
mation window size.

the actual throughput and show the results in Figure 7(c).
To ensure Figure 7(c)’s readability, 15 flows in FlowSet are
randomly chosen. Each flow corresponds to an error bar
showing the median and standard deviation of the predicted
throughput over all the time windows. We see that through-
put prediction is fairly accurate across the entire range of
throughput, i.e., the median error is around 10kbps with a
standard deviation of around 10kbps.

PROTEUS’s performance in other networks. So
far, we have investigated the accuracy of using PROTEUS
to predict the loss rate, one-way delay, and throughput for
one particular cellular carrier. To be broadly applicable,
we need to verify if PROTEUS’s accuracy applies to other
cellular carriers as well. Figure 8 shows the false positive rate
of loss predictions for T-Mobile and Sprint, whose setup is
described in Table 2. According to Figure 8, both T-Mobile
and Sprint have even a lower false positive than AT&T. Due
to space limitation, we only include the evaluation on false
positive rate of T-Mobile and Sprint, but have verified that
PROTEUS also has high prediction accuracy in terms of the
false negative and false positive rates in one-way delay and
throughput prediction.

PROTEUS’s performance affected by the time and
information window size. We also study the impact of
the time window size and the information window size. We
have investigated the impact of the time window size on au-
tocorrelation coefficient in Figure 2(a). Here we investigate
the impact of time window size on PROTEUS’s prediction
accuracy. Figure 9 shows the distribution of the false posi-
tive and false negative rates as functions of the time window
size. Unlike Figure 2(a), PROTEUS’s false positive rate is
the minimum when the time window size is 0.5s, while PRO-
TEUS’s false negative is the minimum when the time window
size is 1s. If the time window size further increases, the vari-
ation of the false positive can be extremely high ( >50%).
Using a large time window with a fixed information window
size suffers from high performance variability due to the fact
that only a few time windows are available. Using a small
time window with the same amount of history allows pre-
dicting performance on a finer granularity and is preferred.
We choose a time window of 0.5s as the lower bound since
it is reasonable to keep the time window larger than typical
network round trip time.

Another parameter is PROTEUS’s information window
size which in conjunction with the time window size deter-

mines the number of time windows used in the prediction.
Similar to the autocorrelation results in Figure 2(b), we see
from Figure 10 that prediction gains from larger information
windows in PROTEUS are marginal. Thus we can achieve
accurate prediction using time windows within the last 8s.

5. APPLICATION OF PROTEUS
Applications can take advantage of network metric pre-

diction to improve their performance. The exact benefit
will depend on how each application uses the information
obtained from PROTEUS. Here we show the improvement
PROTEUS can provide to two RTC applications: a video
conferencing application and an interactive software appli-
cation, i.e., Draw Something.

5.1 Video Conferencing System
Equivalent video conferencing emulation. We de-

scribe how we realistically evaluate the video conferencing
application to make use of PROTEUS in a working system,
considering all the overhead of the associated changes with
the small difference of running the client software on a legacy
laptop instead of a mobile device due to software constraints.

There are standard methods to evaluate video conferenc-
ing using the H.264/AVC reference software [4] on PCs.
However, there is no such equivalent open-source encod-
ing/decoding suite on mobile platforms. Thus, to best effec-
tively evaluate video conferencing on mobile platforms, we
take the following steps: (i) we modify the H.264/AVC refer-
ence software so that the H.264 encoder can adjust the video
codec bitrate and FEC rate for each video frame rather than
sticking to fixed codec bitrate and FEC rate for an entire
video stream; (ii) we use a 2GHz dual core Thinkpad T60
with 2G RAM to run the H.264 decoder, with the compu-
tation performance as close to off-the-shelf mobile devices
as possible; and (iii) we replay the packet traces collected
in cellular networks (i.e., FlowSet) to emulate mobile net-
work performance for H.264, which ensures identical, repro-
ducible, and representative mobile network conditions.

The packet sequencing and timing information seen by
PROTEUS is exactly the same as it is in FlowSet, enabling
PROTEUS to make the same predictions as it does in cellular
networks. The emulation setup results in only two overesti-
mations in evaluating the perceptual video quality. One is
due to the Thinkpad T60 being more powerful than a mo-
bile device, and the other is due to the elimination of the



s
e
n
d

 ()

re
c
v ()

sequencing
&timing

socket

PROTEUS

loss, OWD,
throughput

loss, OWD,
throughput

FEC
controller

input

video

socket

wrapper

socket

output

video

H.264 
decoder

socket

wrapper

H.264 

encoder

Figure 11: The platform setup to emulate mobile
video conferencing. The dashed blocks and arrows
are replayed using FlowSet to guarantee realistic
mobile network condition.

cost for traffic transmitting over its network interface. The
overestimations should be acceptable given that video con-
ferencing applications such as Skype can work perfectly well
on mobile devices with excellent network connections.

As depicted in Figure 11, we focus on evaluating the per-
formance in downlink video conferencing, i.e., the video stream
is adaptively encoded and sent from the server (either a
content server or the other mobile device in P2P scenarios)
to the client, where we can evaluate the perceptual quality
of the received video stream. The H.264 decoder in Fig-
ure 11 represents the video conferencing application on the
client, i.e., the mobile device emulated by the 2GHz dual
core Thinkpad T60, while the H.264 encoder and FEC con-
troller represent the counterpart on the server.

1. compute <source rate, FEC>
2. encode <frame> adaptively
3. refill <random> with <frame>

 ROTEUS
 AD1

 AD2

Figure 12: The packet trace replaying to guarantee
reproducible mobile network conditions.

As shown in Figure 12, along a packet trace in FlowSet,
each UDP packet from the sender includes a sequence num-
ber, a timestamp, and some random content. The receiver
sends a placeholder packet at the end of every time window.
When the packet trace is being collected, those placeholder
packets are filled with random values. However, we refill
these packets with the predicted performance metrics later
in evaluating PROTEUS, AD1, or AD2. Once the sender sees
a placeholder packet refilled with performance predictions,
it computes the best source coding rate and FEC, and en-
codes the next frames accordingly. After the encoding, it
refills the random content in UDP packets with newly en-
coded frames. Eventually, we decode the replayed packet
trace on the receiver side and evaluate the perceptual qual-
ity.

By replaying network traces collected from the cellular
network in FlowSet, we can reproduce representative mobile

network conditions. We measure the video quality perfor-
mance using standard video sequences shown in Table 3 (re-
ferred as VideoSet) [9]. As illustrated in Figure 11, given a
video sequence in VideoSet, the H.264 encoder on the server
translates the video sequence to a RTP network stream. To
test the video quality under various and reproducible net-
work conditions, for each flow in FlowSet, we replace its
content with the encoded network stream respectively. On
the client, the H.264 decoder decodes the received network
stream and constructs the video for users. According to
FlowSet, if a packet is lost or does not arrive in time at the
de-jitter buffer, the corresponding frame may be corrupted
so that the perceptual quality of the decoded video will be
affected.

PROTEUS utilization in video conferencing. Based
on past work, there are well established adaptations that ap-
plications take in response to changing network conditions.
The quality of video conferencing is very sensitive to three
network metrics, i.e., the packet loss, the one-way delay, and
the throughput. To ensure good quality, the video confer-
encing application can tune several parameters.
• The video codec can adjust the compression ratio, trad-
ing source video quality with codec bitrate, by adjusting the
quantization parameter (QP) of macroblocks [29, 30]. A
smaller QP value results in better visual quality at the ex-
pense of a higher bitrate and higher bandwidth requirement.
• The application can insert an appropriate number of for-
ward error correction (FEC) packets. This process allocates
the total transmission rate amongst source bitrate and chan-
nel (error correction) bitrate.
• The application can adjust the de-jitter buffer size, which
specifies how long the receiving end waits for data to arrive
before it is played back. The de-jitter buffer size trades
application latency with late loss. A larger de-jitter buffer
size increases the chance that a packet will arrive in time for
playback, but increases the end-to-end application latency.
For video conferencing applications, the user cannot perceive
an end-to-end delay (including propagation delay, network
queuing delay, and time spent in the de-jitter buffer) lower
than 200ms [10]. However, when the end-to-end delay is
above this threshold, there is perceived degradation.

video # of
frames

sequence resolution size
(MB)

akiyo 300 10/IPPP QCIF,CIF 44
bowing 300 10/IPPP QCIF,CIF 44

bridge(close) 2001 10/IPPP QCIF,CIF 291
bridge(far) 2101 10/IPPP CIF 305

foreman 300 10/IPPP QCIF,CIF 44
highway 2000 10/IPPP CIF 291

Table 3: The video sequences to reproduce video
conferencing streams (VideoSet). The frame rate
for all these video sequences is 30fps.

We denote the predicted packet loss rate, one-way delay,
and throughput by the triplet with (ǫ, δ, T). This is the pre-
dicted network performance obtained from the regression
tree on the mobile device and delivered to the server. Given
this network prediction, we set the application parameters
as follows: (i) the video codec bitrate for a given frame is
set to R = (1− αǫ)T (α ≥ 1); (ii) the FEC rate to αǫT; and
(iii) the receiver de-jitter buffer size to βδ seconds. α is a
constant that determines the actual amount of FEC protec-



 10

 20

 30

 40

 50

 0  0.1  0.2  0.3  0.4

PS
NR

 (d
B)

loss rate

PROTEUS
AD1 AD2

TCP
OPT

 10

 20

 30

 40

 50

 0  0.1  0.2  0.3  0.4

PS
NR

 (d
B)

loss rate

PROTEUS
AD1 AD2

TCP
OPT

(a) 5th-percentile PSNR. (b) 25th-percentile PSNR.

Figure 13: The PSNR for PROTEUS, AD1, AD2, TCP, and OPT, which
assumes that we a priori know the exact loss rate.

 0

 10

 20

 30

 40

FE
C 

(k
bp

s)

PROTEUS
AD1 AD2

OPT

 0

 10

 0  0.1  0.2  0.3  0.4
loss rate

Figure 14: The FEC overhead.
“OPT” shows the total FEC over-
head in the optimal scenarios.

tion used. In the evaluation, α = 1. The total estimated
throughput T is divided amongst source rate and FEC rate.
As an example, suppose T is estimated as 500kbps, the es-
timated loss rate is ǫ = 0.06, and α = 2 is used. With this,
440kbps should be used for source coding and 60kbps for
FEC protection. With a video frame rate of 15fps and a
packet size of 500 bytes, this approximately translates to 7
packets per frame of source coding and 1 packet per frame
of FEC.

Once the video frames are coded into packets, the eval-
uation platform assumes that these packets go through a
network that has characteristics obtained from the collected
network trace. If the actual loss on the network is less than
or equal to αǫT, the receiver has sufficient information to de-
code the frame, otherwise the frame is assumed to be lost.
In addition to packet loss on the network, we also consider
delay in the evaluation, assuming a de-jitter buffer size of βδ
(β ≥ 1), which is slightly larger than the estimated δ. In the
above example, if two or more packets are lost or delayed
later than βδ, the respective frame is lost. In the evaluation,
β = 1.

Perceptual video quality assessment. The H.264 de-
coder provides the ability to conceal lost frames. Upon
decoding the sequence, which may potentially have some
frames lost, we compare the decoded video sequence to the
original and measure the peak signal-to-noise ratio (PSNR),
which is a commonly used metric to measure video quality.
This setup is used to repeatedly measure the video qual-
ity using the prediction obtained from PROTEUS, AD1, and
AD2 over the various video sequences in VideoSet and over
the various network traces in FlowSet.

If we underestimate ǫ (i.e., loss rate), then the applica-
tion may add insufficient redundancy, which results in un-
recoverable packet loss for the application. Otherwise, if we
overestimate ǫ, then the application may add too much re-
dundancy causing the video codec bitrate to be lower than
needed, resulting in poorer video quality. Thus, both un-
derestimation and overestimation of the future network per-
formance can lower the perceptual video quality. We ana-
lyze the effect of network parameter mis-prediction on video
quality for the three prediction techniques, PROTEUS, AD1,
and AD2. We also analyze the performance hypothesizing
that we exactly know the loss rate and insert just the right
amount of FEC to counteract any packet loss. It is possi-

ble as we have the network traces. This optimal scheme is
denoted as OPT.

For each video sequence in VideoSet, we run all the net-
work traces from FlowSet using each of the four methods
(PROTEUS, AD1, AD2, and OPT). For each of the four meth-
ods, we compute a distribution of PSNR. In Figure 13, we
show the 5th and 25th percentiles of the PSNR as a function
of loss rate for each of the four methods. We purposefully
show the low PSNR values in the distribution since this is
what most affects overall user satisfaction and is a measure
of how each of the three schemes performs in tough network
conditions. In addition to the four adaptive methods using
UDP, we evaluate the adaptive bitrate streaming over TCP
as well assuming that the encoded bitrate is always adapted
to the throughput in the current time window. To guaran-
tee the network conditions for TCP and UDP experiments
are comparable, for each TCP flow, we create UDP packets
back-to-back lasting for the same duration. In Figure 13,
the distribution of PSNR for TCP flows is represented as
the function of the loss rate of the back-to-back UDP flow’s
loss rate.

In general, if a frame is lost, the PSNR of the other
frames that reference the lost frame becomes very low, e.g.,
PSNR <25dB. Since PROTEUS can accurately predict loss
rate with almost 99% accuracy, there are very few cases (i.e.,
<1%) where we see unrecoverable packet loss. Thus, as we
see from Figure 13(a), even the 5th percentile PSNR shows
no packet loss using PROTEUS. The only reason the 5th per-
centile PSNR is below OPT is due to over-protection, which
reduces the video codec bitrate. This reduction in PSNR in
PROTEUS when compared to OPT (due to over-protection)
is on the order of 1dB, whereas the reduction in PSNR in
AD1 and AD2 (due to unrecoverable lost packets) is on the
order of 15dB. As loss rate increases, the PSNR using PRO-
TEUS decreases but stays close to OPT. It is obvious that
increasing loss rate results in decreased capacity. Since a
larger portion of the total throughput has to be allocated
to FEC, we see a reduction in PSNR. To show the visual
effect of unrecoverable packet loss, we show representative
frames in the 5th percentile of PSNR values in Figure 15
using the schemes AD1,2, TCP, and PROTEUS. It is clear
that unrecoverable packet loss results in substantial video
quality degradation. As PROTEUS may overestimate the
actual loss rate, there will inevitably be some cases where



(a) 36dB – PROTEUS. (b) 23dB – AD1. (c) 23dB – AD2. (d) 20dB – TCP.

Figure 15: The perceptual video quality corresponding to the 5th-%ile PSNR (using “akiyo” in Table 3).

we over-protect. In Figure 14, we show the bitrate taken by
FEC packets which are not used to correct any loss. The
bottom plot shows the amount of needed FEC to correct
for packet loss. As we see, as the loss rate increases, the
amount of needed protection also increases. The top plot in
Figure 14 shows the amount of additional FEC beyond the
needed amount which is applied when using each of the three
schemes to predict the loss rate. We see that indeed PRO-
TEUS does add a certain amount of FEC overhead. How-
ever, it is fairly small, and as we have seen from Figure 13, it
only results in about a 1dB reduction in PSNR. Even at high
loss rates, this overhead is less than 10kbps. The overhead
for AD1 and AD2 is actually much higher as it only reacts
once loss has already started occurring. Just because there
was loss in the previous time window does not guarantee
that there will be loss in the future time windows. So not
only do AD1 and AD2 suffer from unrecoverable packet loss,
they also actually insert more FEC than PROTEUS.

5.2 Interactive Software Application
Many interactive software applications have bursty traffic

patterns, e.g., the burst can consist of a screen update. A
good measure of the performance of such interactive soft-
ware applications can be the time taken to deliver the burst
of data. However, as opposed to throughput sensitive appli-
cations such as file downloading, a burst is relatively small in
duration and thus the latency caused by packet loss recovery
becomes significant in determining performance. Therefore,
an adaptive UDP based scheme that appropriately controls
the throughput allocated to source and FEC becomes impor-
tant in determining application performance [33], especially
for the channels with packet loss such as wireless networks.

Here we consider a particular application, Draw Some-
thing, to show how PROTEUS can benefit interactive soft-
ware applications such as desktop sharing and multi-player
gaming. In Draw Something, two players alternate turns
between drawing a picture to convey a guessword for the
partner to guess. In each turn, the stroke-by-stroke draw-
ing animation playing back to the partner results in a traffic
burst. We rely on trace analysis to evaluate how PROTEUS
can benefit such an application. We capture the application
traffic via tcpdump on Android and identify the traffic bursts
corresponding to drawing animations. The trace consists of
a duration lasting five hours and consisting of hundreds of
bursts.

To measure the improvement of an adaptive UDP scheme
using PROTEUS over TCP, we replay the traffic using UDP
plus PROTEUS (UDP/PROTEUS) and measure the time be-
tween the first packet of a burst being sent to the last packet

in the burst being received. UDP/PROTEUS adds an ap-
propriate amount of FEC if packet loss is anticipated. A
poor prediction of loss rate can result in higher burst deliv-
ery time due to either retransmission or over-protection. To
verify that the traffic replaying under UDP/PROTEUS ex-
periences roughly the same network conditions as the Draw
Something’s original trace over TCP, we compare their me-
dian perceptual delay. Figure 16 shows the distribution of
the perceptual delay over different burst size. As the median
perceptual delay for UDP/PROTEUS is very close to TCP’s,
we expect that UDP/PROTEUS experiences similar network
conditions. According to Figure 16, when the burst size is
very small, TCP and UDP/PROTEUS perform equally at
any percentile in the distribution. However, when the burst
size grows to 10KB and larger (e.g., 20KB), UDP/PROTEUS
performs much better, particularly in the 75-90th percentile
perceptual delay, which may easily produce user dissatisfac-
tion. UDP/PROTEUS reduces the 90th percentile percep-
tual delay by roughly 1s when the burst size is around 10KB.
When the burst size is around 20KB, UDP/PROTEUS’s 90th
percentile perceptual delay is 2s while TCP’s is up to 6s.

 0

 1

 2

 3

 4

 5

 6

5KB 10KB 20KB

pe
rc

ep
tu

al
 d

el
ay

 (s
)

burst size

TCP: 10-50-90%
25-75%

PROTEUS: 10-50-90%
25-75%

Figure 16: The perceptual delay in Draw Something.

6. RELATED WORK
There has been a significant amount of previous work

proposing solutions for adapting to varying network perfor-
mance [1, 2, 5, 7, 19, 22, 23, 34, 42, 48]. However, these pro-
posed solutions adjust the application behavior based on the
“current” network condition. By then, performance degra-
dation may be observed already. PROTEUS is fundamen-
tally different from these previous adaptation approaches in
that PROTEUS proactively forecasts the achievable network
performance rather than passively reacting to performance



degradation. This allows applications to modify their be-
havior in anticipation of degrading network condition which
can significantly improve performance.

The key to the effectiveness of PROTEUS is network per-
formance predictability. There have been previous measure-
ment studies to investigate the network behavior of cellular
networks [13, 19, 20, 24, 31, 32, 44]. Among these mea-
surement studies, the existence of network predictability has
been indicated from certain aspects. For example, Liu et al.
observed that the time for a mobile device to stay in any
particular data rate state is on the order of hundreds of
time slots (with each time slot being 1.67ms) in a EV-DO
network [31]. Manweiler et al. found that in AT&T and
T-Mobile networks, the network latency measured in a 15-
minute time window has certain dependency on the latency
of a previous time window [32]. Standing upon the shoulder
of previous studies, PROTEUS answers the following three
questions. First, how predictable are cellular networks? Sec-
ond, what network features can be used for performance
prediction? Third, how accurate is the prediction?

There has also been a significant amount of previous work
that studies predictability in mobile (cellular) networks with
the goal of improving application performance [32, 37, 39,
40, 46]. Access pattern predictability is investigated with
the attempt to reduce connectivity overhead due to frequent
user mobility in [36, 37] and with the attempt to switch to
better access networks in [12, 38, 43]. PROTEUS distin-
guishes itself from these studies in two aspects. First, PRO-
TEUS forecasts network performance at run time, rather
than offline. As cellular networks are well-known to be
highly variable, a one-time, offline prediction will not work
well because it will be quickly out-dated. Second, PRO-
TEUS’s performance prediction is much more fine-grained.
Unlike previous studies that usually attempt to improve
performance for non-real-time bandwidth intensive applica-
tions, which are not sensitive to packet loss and one-way
delay, PROTEUS targets a broad spectrum of applications
including RTC applications that are sensitive to packet loss
and one-way delay.

To the best of our knowledge, our study is the first one
proposing a fine-grained, real-time solution for predicting
future network performance over cellular networks, which
allows applications to react before network degradation oc-
curs.

7. CONCLUDING REMARKS
In this study, we systematically quantified the predictabil-

ity of network performance metrics in three major cellular
networks: AT&T, T-Mobile, and Sprint. For all three carri-
ers, we identified the existence of strong predictability of net-
work performance, even over a short term window e.g., 0.5s.
To take advantage of this predictability, we proposed a sys-
tem PROTEUS, which collects network performance infor-
mation being observed by applications, employs regression
trees to learn network performance patterns, and forecasts
future network performance to benefit application perfor-
mance. PROTEUS can predict the occurrence of packet loss
within a time window for 98% of the time windows, occur-
rence of long one-way delay for 97% of the time windows, and
the throughput within a median error of 10kbps with average
throughput ranging from 100–800kbps. By using PROTEUS
in a video conferencing scenarios, we can improve the PSNR
of the perceived video by 15dB when compared against tradi-

tional performance adaptation techniques. Compared with
the hypothesized optimal scenario in which the application
knows exactly which packets will be lost, PROTEUS is only
1–2dB worse.

We believe that PROTEUS is a comprehensive and effec-
tive network performance forecasting framework for use by
mobile applications especially for use over cellular networks.
PROTEUS can also inspire the development of challenging
applications on mobile devices.

8. ACKNOWLEDGMENTS
We would like to thank the reviewers and Koen Langen-

doen for shepherding the paper. This research was spon-
sored in part by NSF grants CNS-1059372, CNS-1050157,
CNS-1039657, and CNS-0939707 and by Navy award N00014-
09-1-0705. .

9. REFERENCES
[1] Adobe HTTP Dynamic Streaming. http://www.

adobe.com/products/hds-dynamic-streaming.html.

[2] Apple HTTP Live Streaming. https:
//developer.apple.com/resources/http-streaming.

[3] Cisco TelePresence Secure Communications and
Signaling. http://www.cisco.com/en/US/docs/
solutions/Enterprise/Video/telepresence.html.

[4] H.264/AVC JM Reference Software.
http://iphome.hhi.de/suehring/tml.

[5] IIS Smooth Streaming.
http://www.iis.net/download/SmoothStreaming.

[6] ISO/IEC DIS 23009-1.2 Dynamic Adaptive Streaming
over HTTP (DASH). http:
//www.iso.org/iso/iso_catalogue/catalogue_tc/

catalogue_detail.htm?csnumber=57623.

[7] Octoshape Broadcasting Flash Media Multi-Bit Rate.
https://support.octoshape.com/entries/

20655458-broadcasting-flash-media-multi-bit-rate.

[8] RTCWeb Status Pages.
http://tools.ietf.org/wg/rtcweb/.

[9] YUV Video Sequences.
http://trace.eas.asu.edu/yuv.

[10] ITU-T recommendation G. 114, 2000.

[11] S. Akhshabi, A. Begen, and C. Dovrolis. An
Experimental Evaluation of Rate-Adaptation
Algorithms in Adaptive Streaming over HTTP. In
Proc. ACM MMSys, 2011.

[12] A. Aljadhai and T. Znati. Predictive Mobility Support
for QoS Provisioning in Mobile Wireless
Environments. IEEE J. Selected Areas in

Communications, 2001.

[13] N. Antunes, C. Fricker, P. Robert, and D. Tibi.
Metastability of CDMA Cellular Systems. In Proc.

ACM MOBICOM, 2006.

[14] A. Balasubramanian, R. Mahajan, and
A. Venkataramani. Augmenting Mobile 3G Using
WiFi. In Proc. ACM MobiSys, 2010.

[15] J.-C. Bolot and A. Vega-Garćıa. Control Mechanisms
for Packet Audio in the Internet. In Proc. IEEE

INFOCOM, 1996.

[16] A. Bouch, M. Sasse, and H. DeMeer. Of Packets and
People: A User-Centered Approach to Quality of
Service. In Proc. IEEE IWQoS, 2000.

http://www.adobe.com/products/hds-dynamic-streaming.html
http://www.adobe.com/products/hds-dynamic-streaming.html
https://developer.apple.com/resources/http-streaming
https://developer.apple.com/resources/http-streaming
http://www.cisco.com/en/US/docs/solutions/Enterprise/Video/telepresence.html
http://www.cisco.com/en/US/docs/solutions/Enterprise/Video/telepresence.html
http://iphome.hhi.de/suehring/tml
http://www.iis.net/download/SmoothStreaming
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=57623
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=57623
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=57623
https://support.octoshape.com/entries/20655458-broadcasting-flash-media-multi-bit-rate
https://support.octoshape.com/entries/20655458-broadcasting-flash-media-multi-bit-rate
http://tools.ietf.org/wg/rtcweb/
http://trace.eas.asu.edu/yuv


[17] L. Breiman. Classification and Regression Trees.
Chapman & Hall/CRC, 1984.

[18] T. Bu, L. Li, and R. Ramjee. Generalized Proportional
Fair Scheduling in Third Generation Wireless Data
Networks. In Proc. IEEE INFOCOM, 2006.

[19] R. Chakravorty, S. Banerjee, P. Rodriguez,
J. Chesterfield, and I. Pratt. Performance
Optimizations for Wireless Wide-Area Networks:
Comparative Study and Experimental Evaluation. In
Proc. ACM MOBICOM, 2004.

[20] M. Chan and R. Ramjee. TCP/IP Performance over
3G Wireless Links with Rate and Delay Variation. In
Proc. ACM MOBICOM, 2002.

[21] M. Chuah, W. Luo, and X. Zhang. Impacts of
Inactivity Timer Values on UMTS System Capacity.
In IEEE Conference on Wireless Communications and

Networking Conference, 2002.

[22] I. Haratcherev, J. Taal, K. Langendoen, R. Lagendijk,
and H. Sips. Optimized Video-Streaming over 802.11
by Cross-Layer Signalling. IEEE Computer Magazine,
44(1):115–121, 2006.

[23] B. Higgins, J. Flinn, T. Giuli, B. Noble, C. Peplin,
and D. Watson. Informed Mobile Prefetching. In Proc.

ACM MobiSys, 2012.

[24] J. Huang, Q. Xu, B. Tiwana, Z. Mao, M. Zhang, and
P. Bahl. Anatomizing Application Performance
Differences on Smartphones. In Proc. ACM MobiSys,
2010.

[25] A. Jalali, R. Padovani, and R. Pankaj. Data
Throughput of CDMA-HDR a High Efficiency-High
Data Rate Personal Communication Wireless System.
In Proc. IEEE VTC, 2000.

[26] H. Jiang, Z. Liu, Y. Wang, K. Lee, and I. Rhee.
Understanding Bufferbloat in Cellular Networks. In
Proc. ACM SIGCOMM IMC, 2012.

[27] N. Kolehmainen, J. Puttonen, P. Kela, T. Ristaniemi,
T. Henttonen, and M. Moisio. Channel Quality
Indication Reporting Schemes for UTRAN Long Term
Evolution Downlink. In Proc. IEEE VTC, 2008.

[28] H. Kushner and P. Whiting. Convergence of
Proportional-Fair Sharing Algorithms under General
Conditions. IEEE Trans. Wireless Communications,
2004.

[29] H. Lee, T. Chiang, and Y. Zhang. Scalable Rate
Control for MPEG-4 Video. IEEE Trans. Circuits and

Systems for Video Technology, 2000.

[30] Z. Li, F. Pan, K. Lim, X. Lin, and S. Rahardja.
Adaptive Rate Control for H. 264. In Proc. IEEE

ICIP, 2004.

[31] X. Liu, A. Sridharan, S. Machiraju, M. Seshadri, and
H. Zang. Experiences in a 3G Network: Interplay
between the Wireless Channel and Applications. In
Proc. ACM MOBICOM, 2008.

[32] J. Manweiler, S. Agarwal, M. Zhang,
R. Roy Choudhury, and P. Bahl. Switchboard: A
Matchmaking System for Multiplayer Mobile Games.
In Proc. ACM MobiSys, 2011.

[33] S. Mehrotra, J. Li, and Y.-Z. Huang. Optimizing FEC
Transmission Strategy for Minimizing Delay in
Lossless Sequential Streaming. IEEE Trans.

Multimedia, 2011.

[34] I. Mohomed, J. Cai, S. Chavoshi, and E. De Lara.
Context-Aware Interactive Content Adaptation. In
Proc. ACM MobiSys, 2006.

[35] S. Moon, P. Skelly, and D. Towsley. Estimation and
Removal of Clock Skew from Network Delay
Measurements. In Proc. IEEE INFOCOM, 1999.

[36] A. Nicholson, Y. Chawathe, M. Chen, B. Noble, and
D. Wetherall. Improved Access Point Selection. In
Proc. ACM MobiSys, 2006.

[37] A. Nicholson and B. Noble. Breadcrumbs: Forecasting
Mobile Connectivity. In Proc. ACM MOBICOM, 2008.

[38] J. Pang, B. Greenstein, M. Kaminsky, D. McCoy, and
S. Seshan. WiFi-Reports: Improving Wireless Network
Selection with Collaboration. In Proc. ACM MobiSys,
2009.

[39] S. Schubert, F. Uyeda, N. Vasic, N. Cherukuri, and
D. Kostic. Bandwidth Adaptation in Streaming
Overlays. In Proc. IEEE COMSNETS, 2010.

[40] A. Schulman, V. Navda, R. Ramjee, N. Spring,
P. Deshpande, C. Grunewald, K. Jain, and
V. Padmanabhan. Bartendr: A Practical Approach to
Energy-Aware Cellular Data Scheduling. In Proc.

ACM MOBICOM, 2010.

[41] H. Schulzrinne. RTP: A Transport Protocol for
Real-Time Applications. IETF, Request For
Comments 3550, 2003.

[42] S. Sen, N. Madabhushi, and S. Banerjee. Scalable
WiFi Media Delivery through Adaptive Broadcasts. In
Proc. USENIX NSDI, 2010.

[43] L. Song, U. Deshpande, U. Kozat, D. Kotz, and
R. Jain. Predictability of WLAN Mobility and Its
Effects on Bandwidth Provisioning. In Proc. IEEE

INFOCOM, 2006.

[44] W. Tan, F. Lam, and W. Lau. An Empirical Study on
3G Network Capacity and Performance. In Proc.

IEEE INFOCOM, 2007.

[45] F. Tso, J. Teng, W. Jia, and D. Xuan. Mobility: A
Double-Edged Sword for HSPA Networks: A
Large-Scale Test on Hong Kong Mobile HSPA
Networks. In Proc. ACM MobiHoc, 2010.

[46] R. Wolski, N. Spring, and C. Peterson. Implementing
A Performance Forecasting System for
Metacomputing The Network Weather Service. In
Proc. IEEE Supercomputing, 1997.

[47] Q. Xu, J. Erman, A. Gerber, Z. Mao, J. Pang, and
S. Venkataraman. Identifying Diverse Usage Behaviors
of Smartphone Apps. In Proc. ACM SIGCOMM IMC,
2011.

[48] Z. Zhuang, T. Chang, R. Sivakumar, and
A. Velayutham. A3: Application-Aware Acceleration
for Wireless Data Networks. In Proc. ACM

MOBICOM, 2006.


	Introduction
	Cellular Network Background
	PROTEUS Overview
	Prediction Using PROTEUS
	Characterizing Cellular Networks
	Constructing the Regression Trees
	Evaluating Forecast Accuracy

	Application of PROTEUS
	Video Conferencing System
	Interactive Software Application

	Related Work
	Concluding Remarks
	Acknowledgments
	References

