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CHAPTER 1

Introduction

1. Scope of this volume

-- This manual describes the English language syntactic analyzer developed by the
PROTEUS Project at New York University, and the version of Restriction Language
which is used to write grammars for this analyzer. This manual describes the version of

the system implemented on DEC VAXen under bsd 4.2 UNIX (tin).

2. Roots .

" This system is a direct descendant of the Linguistic String Parser, developed by the
Linguistic String Project at New York University (since 1973 in collaboration with the
Computer Science Department). In particular, we have tried to maintain as much

commonality as possible in the Restriction Language used for stating grammars. In

developing our new implementation, we have had three objectives:

a use LISP. The current Linguistic String Parser is implemented in FORTRAN. It is
therefore quite efficient but is hard to interface to Al applications, which are usually

best developed in LISP. The PROTEUS system has been entirely implemented in

LISP.

* remain small and modular. The Linguistic String Parser gradually became so large

and complex that further modification was difficult. Through redesign and the
elimination of some features, we have sought to return to a simpler, more easily

modifiable system.

0 accomodate different analysis algorithms. One aspect of our current research is the
study of alternative analysis strategies. We have therefore tried to develop a system

which could accomodate different analysis algorithms. In particular, we have

designed the grammar formalism to work with both top-down and bottom-up

analyzers.

3. Structure of this volume

This volume has three parts: a description of the commands for involving the
English analyzer and the Restriction Language compiler; a description of Restriction
Language; and a brief description of the translation rules used in compiling Restriction

Language.

.idb€- --- V -. ' .



CHAPTER 2

Parser, Compiler, and Preprocessor

The principal program in our system is the English language syntactic analyzer,
which will usually be referred to simply as the Parser. The Parser takes three inputs: a

grammar of English, a word dictionary, and a set of English sentences. The grammar is
written by the user in PROTEUS Restriction Language. Before this grammar can be

used by the Parser, it must be translated into LISP. This translation is performed by the

Restriction Language Compiler (henceforth called simply the Compiler).

The Compiler is controlled by a set of translation rules called the Restriction

Language Syntax, or RLS. The RLS is prepared in a form described in chapter 00 of this
volume. Before it can be used by the Compiler it too must be translated into LISP. This

translation is done by the RLS Preprocessor (the Preprocessor is not driven , y a file of

rules, so we do not have an infinite regress of metacompilers). The RLS Preprocessor

need be executed only when the definition of Restriction Language is modified or

extended. Consequently, the Preprocessor will not be invoked by most users of the

PROTEUS system.

I. Accessing the programs

In order to access these programs, the search path must be modified to include the
appropriate PROTEUS directories. This is normally done by a command in the ".login"

file. For ACF5 at NYU, the command is

source "proteuslusersetup

2. Invoking the Parser

The Parser reads two input files: a grammar and a dictionary. Fhe Parser is invoked

with the command

xparse -g grammar -d dictionary

If the arguments are omitted on the command line, they will be prompted for

interactively. If the dictionary is incorporated in the grammar file -- so that there is no

separate dictionary file -- the value none should be given for dir ionary.

When the Parser begins executing, it produces the prompt sentence>. In response

one can either type a sentence to be parsed or a Parser command; these commands are

described in the section just below, A sentence is a series of words, separated by one or

more spaces, and ending in a period or question-mark. A sentence may extend over

several lines. Case is ignored on sentence input: all upper-ca% letters are converted to

lower-case before the words are looked up in the dictionary.

As soon as a sentence is entered, it will be parsed. If parses are obtained, then

(under the default settings of the Parser's switches), the parses and regularized parses

will be printed.

2
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3

2.1. Parser commands

Operation of the Parser in controlled by Parser commands. These commands consist

of an asterisk (*), a command name, and (for some commands) an argument to the

command. Some commands turn on and off switches which control future parsing

operations; other comnmands cause immediate actions. The commands are as follows:

2.1.1. *exit

*exit terminates a run of the parser.

2.1.2. flisp

*lisp turns control over to the LISP interpreter. To resume parsing, invoke the function

parser-top-level.

2.1.3. *[noltrees

*trees causes each parse that is obtained from the analysis of subsequent sentences to be
printed in a parenthesized, indented form. *notrees suppresses the printing of parses.

Default is *trees.

2.1.4. 0[nolempties

*empties causes subsequent parse trees to be printed with all nodes of the tree included;
*noempties causes subsequent trees to be printed with empty nodes (nodes not subsuming

any sentence words) omitted. Default is *empties.

2.1,5. '(nolattributes

*attributes causes subsequent parse trees to be printed with the attributes assigned to a
node (except for the translation attribute 'Xn") listed after each node name;
*noattributes suppresses the printing of this information. The default is 'noattributes.

2.1.6. *draw

The command *draw n. when entered after a -cntence has been parsed. causes the nth

parse tree of the sentence to be drawn on the screen. I'lie tree-drawing program provides

several commands for manipulating the tree. In particular, if the entire tree does not fit

on the screen, commands are provided to shift the portion visible on the screen. To list
the commands available in the tree-drawing program, type "help". To return to the

parser, type "quit".

2.1.7. 0[nolfailtrace

"he *failtrace command causes a trace message to be printed whenever a restriction fails

during the parsing of subsequent sentences. The message gives the name of the

restriction, the node at which the restriction was housed, and the words subsumed by that

node. *nofailtrace turns off this trace. The default it *nofailtrace.

3. Invoking the Compiler

The grammars used for analyzing natural language are written in PROTEUS
Restriction Language, which is described in Chapter 3. Before it can be used by the
Parser, such a grammar must be translated into Lisp. This translation is performed by

the Compiler, which is invoked with the command

"" " "" " "' "' "" " " "" € " "" "" " ' . """ " ,:J. . . . " " . . . " " " "" . . . . ,*
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xcompile -g Restriction-Language-file -o Lisp-file [-r RLS-filej

The Compiler reads the grammar on the Restriction-Language-file. translates it into Lisp,

and writes it on the Lisp-file. If these arguments are omitted in the command line, they

will be prompted for interactively. The RLS (the translation rules used in compiling) are

normally taken from file "rls.out" in the PROTEUS system directory, but this choice can

be overridden by specifying an explicit RLS-file.

Since the generated file is a Lisp program, it can be sent through the Lisp compiler

(liszt) to produce a machine language file. The increase in parsing speed which can be

obtained in this way varies with the complexity of the restrictions; typically, speed-up

factors of 1.5 to 2 can be expected.

4. Invoking the Preprocessor

The Preprocessor translates the RLS (Restriction Language Syntax) into the form

needed by the Compiler. It is invoked by the command

xpreproc

The Preprocessor prompts interactively for the name of the source RLS file and the name

of the file to be generated.

V..,, , *~ S % %* ~ %%S *.'%*. 5-.-.. ~- ... . . . .. -'



CHAPTER 3

Preparing a grammar: BNF and Lists

1. The structure of the grammar

An English grammar consists of four components: BNF; lists; routines and

restrictions; and word dictionary. These components must appear in this order. The

BNF and lists are described in this chapter; the routines and restrictions are described in

the next chapter, and the form of the word dictionary is considered in chapter 5.

The grammar defines many different types of symbols, such as nonterminal

symbols, terminal symbols, routine names, attributes, etc. Any symbol name valid in

LISP may be used: in particular, any sequence of upper and lower case letters, digits,

hyphens, and underscores is allowed, provided the name contains at least one non-digit.

There is one exception: names beginning with "X" are reserved as register names.

2. BNF

The first component of the grammar, the BNF, specifies the context - free portion

of the grammar in an extension of Backus Normal Form. Most of the definitions adhere

strictly to BNF form, with double quotes (") used to enclose any constants in the

definition:

<QUACK> ::= <A> <B> I"OINK".

(like all statements, BNF statements must end in a period.) Each alternative is called an

option, and each item in an option is called an element. Constants, such as 'OINK"

above, are also called literals. lerminal symbols (grammatical categories) are indicated

by placing an * to the left of their name:

<NVAR> < <'N> I < VING>.

Any terminal symbol beginning with the letters NULL designates the empty string (this

allows for symbols like NULLN, NULLOBJ, and NULLC to indicate empty strings of

different linguistic import).

The BNF section has two functions: one, to specify the context-free grammar, the
other to declare certain names as nonterminal or terminal symbols, i.e., valid node

names. The subsequent sections of the grammar (lists, restrictions, word dictionary) will

not accept a symbol as a node name unless it has appeared somewhere in the BNF.

2.1. Parentheticals

The element/option structure of BNF may he nested using parentheses:

<RNWH> ::- ("WHO"I "WHICH" ) <VERB> <OBJEC'>.

Such parenthesized structures are expanded as part of the process of compiling a

grammar, so the definition above is precisely equivalent to

,-.
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<RNWH> "WHO" <VERB> <OBJECT> I
"WHICH" <VERB> <OBJECT>.

2.2. Translation rules

Each option is optionally followed by a colon (:) and a lisp expression. This
expression is the translation rule for this option, and is used in generating the regularized

parse tree. Further explanation of these translation rules appears in Chapter 00.

3. Lists

There are two kinds of lists: type lists and attribute lists. They may appear in this
section in any order.

3.1. Type lists

There are certain sets among the BNF symbols, such as the adjunct strings, which
are frequently referred to in the restrictions. Rather than enumerate these sets each
time, they may be given a name, and this name used in the restrictions in place of the set.
These sets are called types, and their declarations rype lists. A type list declaration
consists of the word TYPE, followed by the name of the list, an '=', and then a series of

BNF symbols separated by commas. For example, a declaration for type RADJSET
(Right ADJunct SET) might be

TYPE RADJSET = RN, RW, RQ, RV, RA, RAI, RD.

sets may overlap--a symbol may belong to any number of types.

There are several type lists which have special significance to the syntactic
regularization mechanism and the conjunction mechanism. rhese are described in the
later chapters covering these mechanisms.

3.2. Attribute lists

Every attribute referenced in the restrictioni and word dictionary must he declared
in an attribute list. Fhis list has the form

AITRIBUIE SINGULAR, PLURAL, COMPARA IVE.
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CHAPTER 4

Preparing a Grammar: Restrictions %

This chapter describes the Restriction Language which is used to specify the

procedural portion of the grammar: the restrictions and the grammar routines. This

chapter is not intended as an introduction to the Restriction Language: a separate

publication, An Introduction to Restriction Language, has been prepared for that purpose.

Readers may also wish to consult Sager and Grishman, "The Restriction Language for

Computer Grammars of Natural Language," Comm. Assn. Computing Machinery 18, 390

(1975) for an overview of the earlier version of the language, as used in the NYU

Linguistic String Parser

A more formal definition of the language is also available to the reader: the RLS

(Restriction Language Syntax). As explained in chapter 6, the RLS is used to translate

Restriction Language into LISP. The RLS and the Restriction Language run-time library

(a set of LISP functions on file egruntime.l), taken together, provide a more precise but

more inscrutable exposition of Restriction Language than that given below.

1. Basic Concepts

The procedural portion of a grammar contains a set of restrictions. These

restrictions are invoked by the context-free parser to verify the correctness of a partial

sentence analysis. A restriction may either succeed, which indicates that the partial

analysis is acceptable (with respect to a particular gramatical constraint), or fail, which

indicates that the analysis is unacceptable and a different analysis should be tried.

.L. Dats structures

Restrictions are able to examine three different data structures: the parse tree,

attribute lists, and sentence words. The parse tree consists of non-terminal and terminal

nodes. Associated with each non-NULL terminal node is the word it has matched in the

sentence; this word can be accessed (starting from the terminal node) by the WORD

routine in Restriction Language.

Associated with every node in the tree is an attribute list. Each attribute list

consists of a set of attribute names (as declared in the ATTRIBUTE list of the grammar)

and associated values. [his is analogous to (and is represented internallv as) a LISP

property list. The "associated value" can be trie. another attribute list (thus creating a

tree of attributes), or any other list structure. I he attribute list for a terminal node is

initially obtained from the word definition of the word matched by that node: the

attribute lists of other nodes are initially empty. Attributes can be added to and removed

from a node by the ASSIGN ATTRIBUTE and ERASE ATTRIBUTE commands of

Restriction Language. the attribute list (if a node can be accessed bv the ATTRIBUTE

routine and by the HAS ATTRIBUTE predicate.

For historical reasons the variables of Restriction Language are called reqlters.

Register names are distinguished by the initial leter X: Any symbol name beginning with

an X may be u'.ed as a register name. A register can point to any one of the three types

U 7
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of data structure: a node of the parse tree, a list element, or a sentence word. Registers
may be declared as the formal parameters and local variables of grammar routines. Such
variables are created when a routine is involved and destroyed on routine exit.

Undeclared registers are global in scope and retain their value until reassigned.

In describing the semantics of Restriction Language, we will often refer to the
notion of a current position: at each step in the execution of a restriction, we say that the
restriction is "looking at" some parse tree node, some list element, or some sentence
word. In the LISP implementation, this "current position" corresponds in some cases to

the value bound to the variable here, and in some cases to the values returned by

grammar routines and other functions.

Every Restriction Language operation also returns an indication of success or

failure. This information is used by the logical operators (AND, OR, etc.) to control the
flow of execution as well as determine the successifailure of the logical operation.

Ultimately this process determines the success or failure of the entire restriction. In the
LISP implementation, failure is indicated by returning a value of nil; it is therefore not

possible to have a routine which succeeds and returns nil.

1.2. Classes of Symbols

The symbols in the grammar are classified into various classes. The BNF
component has non-terminal and terminal symbols. Fhe BNF component also has literals
(represented by strings enclosed in double quotes (.)). Non-terminal and terminal
symbols and literals are all possible node names. The lists component introduces
attributes and tYpe list names. The restriction component introduces several additional

types of symbols, including register names.

In describing below the Restriction Language, we have included BNF descriptions
of some portions of the language. This BNF shall use the following terminal symbols:

<terminai> a terminal symbol from the BNF component

<non-terminal> a non-terminal symbol from the BNF component
<node> a node name: a non-terminal, terminal, or literal

< *attribute.> an attribute

< *tvpe> a type list name
<'register> a register name

1.3. Metagrammatical notation

In describing the Restriction Language, we have supplemented our narrative with
BNF specifications of some of the constricts. A complete BNF specification of the
language is contained within the RLS. The BNF used is the same as that used in the
context-free component of the English grammar. with two additions: the notation

(x)

means 'zero or more instances of x '. and the notation

means 'zero or one instances of x'. Readers comparing the BNF given in this chapter

with the RLS will observe a few changes in definitions and symbol names, intended to

make the BNF easier to read (some RLS definitions are constructed to simplify the

semantics or speed the parsing).

One special note: the articles A, AN. and I HE may be used freely in Restriction

Language to improve readability, I he arc ignored by the compiler and hence do not

-..- -- i*'**~*'*-,.* .*-*.* *-* *.'-.~ -*- *~*-,-,-.. - - - - - - - - - - - -
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appear in the language description given below.

2. Types of Statements

The language has three types of statement: restrictions, grammar routines, and
substatements. These statements differ in the way they are invoked: restrictions are

invoked directly by the parser. The routines and substatements both serve as internal

procedures for the restrictions; the substatements are simple parameterless procedures
which can succeed or fail but do not return values, while routines provide parameters and

local variables and return values. (Routines and substatements were included in the

language to meet different needs: substatements were provided to divide and organize the

tests performed by complex restrictions, while routines were intended primarily for the

procedures which locate parse tree nodes corresponding to basic grammatical relations.)

The bodies of restrictions and substatements have the same structure; they differ

only in their headers, corresponding to their different means of invocation. Routine

bodies, which are described in a se: rate section later in this chapter, are similar to the

subject portion of declarative restricnon statements.

3. Housing

Restrictions have the form

<*name> "=" <housing> ":' <body>

where name, the name assigned to the restriction, is any valid symbol name. This name

is not significant internally within the grammar, but is used to refer to the restriction in

traces and other output.

The housing specifies when a restriction is to be executed. It has the syntax

< housing> ::= <indef> [ <after> I
<indef> ::= "IN" <def-or-type> ("," <def-or-type>)"

<def-or-type> ::= <non-terminal> I <*type>

< after> :: " "AFTER"
("OP[ION" <opt-spec>

"ELEMEN I" <'intcgcr> <of-option> I
"EVERY 'ELEMENT" <of-option>

<node> <of-option> )

<of-option> ::= "OF" "OPTION" <opt-spec> I <null>

<opt-spec> ::= <'integer> I <node>

The housing has two parts: the first (indef) specifies the definitions to which the

restriction applies; the second (after) specifies the point in the elaboration of the

definition when the restriction should be executed.

indef is a list which can contain both definition names and type list names. A

definition name (non-terminal) indicates that the restriction is to be housed in the

specified definition. A type list name (type) indicates that the restriction is to be housed

in each definition belonging to the type list.

The after construct specifies to which options of the definition(s) the restriction

applies, and at what point in the construction of a parse subtree corresponding to the

definition the restriction is to be executed. These subtrees are built incrementally; if a

definition D has several elements, daughter nodes will be added below D one by one as

the elements are matched. We can specify, through the housing, that a restriction is to be

executed after one element, two elements, or all the elements of D have been completed.
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The after construct may take four forms. The first form is

AFTER OPTION <opt-spec>

which specifies that the restriction is to be executed after all elements of the specified

option have been completed (in other words, it is housed on the last element of that

option). The option may be specified either by the name of the first element of the

option, or by the number of the option. For example, if we have the definition

<letter> ::= <greeting> <body> I <insult> <complaint>

the following two housings are equivalent:

IN letter AFTER OPTION insult:

IN letter AFTER OPTION 2:

The second form,

AFTER ELEMENT <*integer> [ OF OPTION <opt-spec>

specifies both the option to which the restriction applies and the point in the completion

of that option that the restriction is to be executed. For example, with the above

definition of letter, the housing

AFTER ELEMENT I OF OPTION insult:

would execute the restriction after element insult had been matched, but before element

complaint had been matched. If the OF OPTION phrase is omitted, the restriction is

applied to all options of the definition.

The third form,

AFTER <node> [ OF OPTION <opt-spec> }

provides the same capabilities as the second, but allows the element to be specified by
name rather than by number. Again, if the OF OPTION phrase is omitted, the restriction

is applied to all the options.

The final form,

AFTER EVERY ELEMEN F [ OF OPTION <opt-spec> I

allows the restriction to be executed repeatedly, once after each element of the definition

has been completed. The after construct is optional. If it is omitted, the restriction will

be housed on the last element of every option of the specified definitions.

4. Logical connectives

The body of a restriction or substatement is a compound statement, which is built up
out of simple sentences using a variety of connectives according to the following syntax:

<compound> ::= "IN" <subject> "," <compound> I

"BOTH" <compound> "AND" <compound> I
"EITHER" <compound> "OR" <compound>

"IF" <compound> "THEN" <compound>

["ELSE" <compound> Ji
"NOT" <compound> I
<simple>.

The IN phrase resets the present position at which the following sentence or sentences

will be evaluated. For example,
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IN ASSERTION,
BOTH CORE OF SUBJECT IS PLURAL
AND CORE OF VERB IS PLURAL

causes the two sentences, CORE OF SUBJECT IS PLURAL and CORE OF VERB IS
PLURAL to be evaluated while looking at the node ASSERTION. The allowed form for
subject are described in a later section.

The other connectives provide the basic Boolean operations: conjunction,
* disjunction, implication, and negation. In all cases the language evaluates only as many

consitutent sentences as are needed to determine the success or failure of the compc .nd
sentence. Specifically, in the case of BOTH A AND B. if A fails, B is not executed. In
the case of EITHER A OR B. if A succeeds, B is not executed.

The rule for the Boolean operators is that each operand is evaluated with the same
initial position - the current position when the Boolean operator is invoked. This means,
for example, that if

BOTH SA AND SB

is executed while positioned at parse node V, both SA and SB will be executed with
initial position = parse node V.

5. Elementary sentence types

The sentences in Restriction Language are of two types: declarative sentences and
assignment operations. Declarative sentences have a subject-predicate structure
(declarative sentences state conditions; the sentence succeeds if the condition is true).
Assignment operations can assign a value either to a register or to a node attribute.

6. Declarative sentences: subject forms

The primary sentence form in Restriction Language is a declarative sentence with a
subject-predicate structure. Roughly speaking, the subject locates a parse tree node. a
list. or a sentence word and the predicate asserts some property of the located item.
although this division is not strictly observed. I he sentence will fail if either the item
cannot be located (subject failure) or the property does not hold (predicate failure).

Locating an item of interest may require a series of actions. If subj-a and subj-b are

* subject forms, then

subj-a OF subj-b

means to apply the locating action of subj-b followed by that of subj-a. For example,

CORE OF COELEMENT SUBJECT

applies the actions of COELEMENT SUBJECT followed bv those of CORE. The OF
construct is only allowed after some subject forms, as indicated in the detailed syntax
given below.

A register name may appear after some subject forms, to indicate that the item
located by the subject is to be stored in the specified register. Thus

CORE X1

means locate the CORE and store it in register XI. In a "subj-a OF subj-b construction.
a register may follow each subject form:

CORE XI OF COELEMENT SUBJECT X2

means to locate COELEMENT SUBJECT. store that node in X2, locate CORE. and

..
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store that node in Xl.

6.1. Subjects which invoke routines

The primary subject form is a reference to a routine. It has the form

<"routine-name> <args> [<*register>] ['OF" <subject>l

where

<args>::= <node>I

"(" <node> ("," <node>)* ")

<*null>

This form invokes routine routine-name with argument(s) args. (These are in addition to
the implicit argument, namely the "current position" when the routine is invoked.) The
routine may be either one predefined by the system or one defined in the grammar. Four
routines are predefined in the current system. Three of these take no explicit arguments:

NAME
(if looking at a node of the parse tree) returns the name of that node

WORD
(if looking at a terminal node of the parse tree) the word matching that node

LAST-ELEMENT
(if looking at a non-terminal node of the parse tree) the last immediate descendant of

that node

The fourth routine has one explicit argument:

ATTRIBUTE(a)
(if looking at a node of the parse tree or at an attribute list) if the node or list
includes an attribute a, succeed and return "looking at" the value associated with that

attribute.

A node name appearing by itself:

<node> [< *register> f["OF"< subject> I

causes the grammar routine STARTAT to be invoked with that node name as argument.
The normal definition of STARTAT has the following effect: if the current node has the

name specified, the routine remains there; otherwise the level immediately below the

current node is searched, left to right, for a node of that name.

6.2. FIRST-ELEMENT

The FIRST-ELEMENT subject has the form

FIRST-ELEMENT [WHICH <predicate>l [OF <subject>]

Starting at a node of the parse tree, it searches the level below that node from left to
right for a node satisfying predicate (the allowable predicate forms are described below).
If not initially at a node, or if no immediate descendant satisfies predicate, the subject
fails. Examples of this construct are
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FIRST-ELEMENT WHICH IS NOT EMPTY
FIRST-ELEMENT WHICH HAS ATTRIBUTE LOVEABLE

Omitting the predicate is equivalent to having a predicate of true -- the subject goes to the
leftmost immediate descendant of the current node.

FIRST-ELEMENT is intended for use primarily in grammar routines, as the basic
construct for searching downward in the parse tree.

6.3. Other subject forms

Two other simple subject forms are allowed A register name by itself causes the
restriction to "look at" the contents of the register. The subject form "PRESENT-NODE'
causes the restriction to stay wherever it is (at the node housing the restriction, if there

were no preceding "IN <subject>" phrases).

7. Declarative sentences: predicate forms

The predicate is the second part of the subject-predicate declarative sentence form.
The predicate assorts some property of the item located by the subject; if the property is
true, the predicate succeeds. In addition to the predicates to be described below, there is

a dummy predicate "EXISTS";

<subject> EXISTS

will succeed precisely if <subject> succeeds.

An (affirmative) subject-predicate construct will succeed if the subject succeeds and
the predicate succeeds. For each affirmative predicate there is a corresponding negative

predicate, formed by inserting "NOT" according to the usual rules for English:

IS - IS NOT
HAS - DOES NOT HAVE
EQUALS - DOES NOT EQUAL

A sentence with a negative predicate will succeed if the corresponding affirmative

sentcnce would fail (either because the subject fails or the predicate fails)' . There is no

negative form for the EXISTS predicate.

7.1. Node name tests

The predicate

IS NAMED <node>

succeeds if the current position is a parse tree node with the name specified. This

predicate may be stated more tersely as

IS <node>

the name may also be given by a register:

IS NAMED < "register>

succeeds if register contains a symbol equal to the name of the current node (the word

"NAMED" may not be omitted in this case, when the predicate references a register).

The test

This is different from the interpretation of negatise ,ententes in the original LSP Restriction

L.,.nguage.
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IS OF TYPE < *type>

succeeds if the name of the current node is on the type list *type.

7.2. Attribute tests

To each node in the parse tree we can assign a set of attributes. Terminal nodes

receive attributes from the dictionary entries for the words they match. In addition, any

node can be assigned a node attribute by the ASSIGN NODE ATTRIBUTE command,

which is described below. Each node attribute has a value; this value can either be true

or a set of attributes and values.

The predicate

HAS ATTRIBUTE < *attribute>

is used to test for the presence of a particular attribute on a node or on an attribute list.
This predicate may be stated more tersely as

IS < *attribute>

The attribute name may also be given by a register:

HAS ATTRIBUTE < *register>

succeeds if the current position (node or attribute list) has an attribute equal to the
symbol in register (again, the terser form "IS" cannot be used when the predicate
regerences a register).

Word definitions are organized hierarchically, with the values of some of the
attributes being themselves attribute lists. If we wanted to test whether a node we have

located is a TV with attribute OBJLIST and sub-attribute NSTGO (i.e, N: (OBJLIST:

(NSTGO))) we would have to write several sentences using the predicates just described;
for example,

BOTH PRESENT-NODE IS TV

AND AETRIBU'IE OBJLIST OF PRESENT-NODE

HAS ATTRIBUT E NSTGO

Restriction Language allows us to combine the two attribute tests in a single predicate,

using the operator ":" (meaning "with attribute*):

BOTH PRESENT-NODE IS TV

AND PRESENT-NODE HAS ATTRIBUTE OBJLIST:NSTGO

The general form of this predicate is

HAS ATTRIBUTE <'attribute> (":" (<symbol> I <*register>))'

or

IS <'attribute> (":' (<symbol> !<'register>))'

'aking this one step further, we may combine the tests for node name and attributes:

PRESENT-NODE IS rV:OBJLIST:NSTGO

corresponding to the general predicate form

IS <node> (":" (<symbol> I <'register>))'

7.3. Other node tests

Two other predicates are provided for testing parse tree nodes.

-.- '- * **t* * * .7 . - ~ '. "a. '.-. * . *~. * -- -.- ** .- - - - -
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IS TERMINAL

succeeds if the node is a terminal node of the tree;

IS EMPTY

succeeds if the node subsumes no sentence words (i.e., if all the terminal nodes below

this node are NULL nodes).

7.4. Equality test

Several subject forms (such as the routines NAME and WORD) evaluate to LISP
symbols. To test these symbols, Restriction Language provides the predicate.

EQUALS (<symbol> I< *register>)

which succeeds if the value of the subject is equal to the symbol or the contents of the

register.

8. Assignment statements

In addition to the declarative statement forms described in the last two sections,

Restriction language provides commands for assigning values to registers and assigning

attributes to nodes.

8.1. Register assignment

The statement form

< "register> < subject>

assigns to register the value of subject. This value may be a node, an attribute list, or a

symbol. For example,

X-SUBJ= CORE OF SUBJECT

X-OLIST= ATTRIBUTE OBJLIST OF PRESENT-NODE

8.2. Node attribute assignment

['he statement form

ASSIGN ATTRIBUTE <*attribute> [WITH VALUE (<symbol> I <register>)]

assigns to the node at which the restriction is housed the specified attribute and value. If
the VALUE phrase is omitted, the attribute will be given the value true. The statement

form

ERASE ATTRIBUTE <*attribute>

erases (deletes) the specified attribute from the node at which the restriction is housed.

9. Substatements

Substatements have the form

< substatement-name> <bodv>

The substatement name must begin with a "S", and otherwise conform to the rules for

symbol names. The body of the substatement, just like the body of a restriction, may be

any compound statement.

Substatements act as parameterless procedures, which are evaluated only to

determine whether they succeed or fail. They are referenced by writing the name of the

substatemcnt; this may appear at any point where a compound statement may appear.

. .. ' . 9 ., " . . , 9 . . . .. 1*~ *
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For example,

CHECK-PETS = IN PETS: BOTH SCATS AND SDOGS.

SCATS = ELEMENT CATS IS NOT EMPTY.

$DOGS = ELEMENT DOGS IS NOT EMPTY.

is equivalent to

CHECK-PETS = IN PETS:

BOTH ELEMENT CATS IS NOT EMPTY

AND ELEMENT DOGS IS NOT EMPTY.

A substatement is considered to "belong to" the immediately preceeding restriction
or routine. It can be referenced only by that restriction/routine or by other substatements
which belong to that restriction/routine. The same name can be used to label different

substatements within different restrictions or routines.

10. Routines

Routines have the form

ROUTINE <*name> "=" r"(" <formals> ")"I <compound-subj>

where name is the name of the routine (any valid symbol name), and formals -- the list
of formal parameters -- is a list of one or more register names separated by commas.

The semantics of routine parameters is modeled after LISP. Name scoping for
registers is dynamic (undeclared registers are globally accessible). Parameters are passed
by value. The number of arguments in a call must exactly match the number of formal
parameters.

Routine names are global: a routine may be referenced in any other routine or

restriction. Nested and recursive calls are allowed.

In constrast to substatements, routines are evaluated for their value (in addition to

their success or failure). The body of a routine may be any valid subject form, as
described above. In addition, certain compound mubjects arc allowed in routines. [hey
have the syntax:

< compound-subj>

IF <compound> THEN <compound-subj> ELSE <compound-subj>
EITHER <compound-subj> OR <compound-subj> I
<subject>.

The IF ... THEN ... ELSE ... construct has the following semantics: the ,tatcment

following the IF is evaluated; if it succeeds, the compound subject following the THEN
is evaluated and returned as the value of the entire expression; otherwise the compound

subject following the ELSE is evaluated and returned as the value ot the expression. [he
routine STARTAT contains an example of such a construct:

ROUTINE STARTAT (X) -
IF PRESENT-NODE IS NAMED X

THEN PRESENT-NODE

ELSE FIRST-ELEMENT WHICH IS NAMED X.

The EITHER ... OR ... compound subject has the following semantics: the first
compound-subj is evaluated; if it succeeds, its value is returned as the '.alue of the entire
expression. Otherwise, the second compound-subj is evaluated and returned as the value

of the entire expression.

4 .|--



CHAPTER 5

Preparing a Word Dictionary

The word dictionary must contain the definitions for all words (and punctuation) in
the text to be parsed. Each word definition specifies a set of categories and attributes for

a word. Conventionally, the words are organized in alphabetical order; the Parser,

however, does not require any particular ordering of entries.

The dictionary may be provided in two ways: either as a part of the grammar file,
or as a separate file. The format of the dictionary entries in the two cases is quite

different. For dictionaries prepared as part of the grammar file, the format is a minimal

subset of the format accepted by the Linguistic String Parser. This simple format is
suitable for small teaching grammars. When prepared as a separate file, the dictionary
entries take the form of cals on LISP macros. Those macros automatically generate

definitions of inflected forms of verbs and nouns. In addition, this form of dictionary
entry does not have to be processed by the Compiler. These features make the separate

dictionary file more suitable for larger applications. The dictionary-with-grammar format

is described in the next section; The separate-dictionary format in the section following.

The word dictionary entries shown here are examples of form only, and are

frequently incomplete or linguistically incorrect.

1. Dictionary with Grammar

If the dictionary is incorporated in the grammar file, it must follow the BNF and

ATTRIBUTE list; conventionally, the dictionary goes at the end of the grammar file.

A word definition has the structure of a tree. At the root of the tree is the word
itself. Each immediate descendent of the root is a category (a terminal symbol of the

grammar). The subtree below each category gives the attributes of a category, the

attributes of the attributes, etc.

The simplest form of a word definition consists of a word followed by a list of

categories, separated by commas:

FISH N, V, TV.

The attributes of a category are written after that category, separated by commas,
*i enclosed in parentheses, and preceded by a colon:

BOOK N:(SINGULAR,NONHUMAN).

An attribute may be assigned attributes of its own in a si-nilar fashion:

ENJOYS TV:(SINGULAR.OBJLIST:(NSTGO,VINGO)).

An attribute must be a terminal or nonterminal symbol of the BNF grammar, a symbol

on the attribute list, or a quoted character string.

Blanks may be used freely, except within symbol names, to enhance readability. A
definition may extend over more than one line and must be terminated by a period.

Certain words, which are referenced in the grammar only as literals, are not

assigned any categories. They must nontheless appear in the word dictionary:

17
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THAT.

Some words must be enclosed in double quotes, namely, those words containing a
special character not allowed in LISP symbols, and the articles A, AN, and THE, which
are otherwise considered noise words and ignored by the Restriction Language compiler.
For example,

"THE" T:(DEFINITE).

2. Separate Dictionary File

If the dictionary is prepared as a separate file, it takes the form of a set of calls on
LISP macros. This file is used directly by the Parser, it is not preprocessed by the
Compiler.

The basic macro for defining words is word. It takes two arguments:

(word word category-attribute-list)

word is the word itself, category-attribute-list is a list of the categories assigned to the

word enclosed in parentheses, with each category optionally followed by an attribute list:

(category [attribute-list] category [attribute-list]...)

Each attribute-list is in turn a parenthesized list of attributes, with each attribute
optionally followed by its value (another attribute list):

(attribute [value] attribute (value]...)

If value is omitted, the value associated with the attribute is true.

For example, the entry shown in the previous section for "enjoys",

enjoys TV: (SINGULAR, OBJLIST: (NSTGO, VINGO )).

would have the following form if it appeared on a separate dictionary file:

(word enjoys (TV (SINGULAR OBJLIST (NSTGO VINGO))))

2.1. noun and verb macros

In addition to the basic word macro, two macros are provided for automatically
generating the inflected forms of nouns and verbs. These two macros take keyword
arguments; in other words, the macro call is of the form

(macro-name keyword argument keyword argument...)

rhe keywords are distinguished by ending in a colon (":"). Most of the arguments are
optional; if the keyword and associated argument are omitted, a default value will be
used (as described below for each argument).

Ihe noun macro takes four arguments:

root: (required) the singular form of the noun

plural: (optional) the plural form of the noun. If omitted. usecs singular form of
noun - "s".

Xn: (optional) the value of the Xn (translation) attribute of the word, which
is used in composing the regularized parse tree. If omitted, uses singular
form of noun.

.. .*~.* 9 X. %~' *.'' ,,t.',.. ,.$.%.% ~ '.4I
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attributes: (optional) a list of the attributes and associated values (in a form similar
to atribute-list above) to be assigned to both the singular and plural
forms of the word (in addition to the Xn attribute, and the SINGULAR

and PLURAL attributes). If omitted, no additional attributes are

assigned.

To illustrate the noun macro, consider the example

(noun root: cat attributes: (ncount))

This would have the same effect as

(word cat (SINGULAR NCOUNT Xn (cat singular))

(word cats (PLURAL NCOUNT Xn (cat plural))

The verb macro takes eight arguments:

root: (required) the infinitive and third-person plural form of the verb

3psing: (optional) the third-person singular (present tense) form of the verb. If

omitted, uses root - "s".

past: (optional) the past tense form of the verb. If omitted, uses root - "ed"
(or root - "d" if root ends in "e").

pastpart: (optional) the past participle of the verb. If omitted, uses past tense
form.

prespart: (optional) The present participle of the verb. If omitted, uses root - final
"e", if present - "ing".

.v objlist: (required) the list of acceptable objects for the verb

V? Xn: (optional) the value of the Xn (translation) attribute of the verb
V?

(combined with "present" or "past" for tensed verb forms). This

attribute is used in composing the regularized parse tree. If omitted, uses

root form of verb.

:tributes: (optional) a list of the attributes and ,alues (in a form similar to

aurbute-list above) to be asigned to all torm, of the verb (in addition to

the OBJLISI and Xn attributes). If omitted, no additional attributes are

5".,' assigned.

To illustrate the effect of the verb macro, consider the example

(verb root: bake objlist: (NULLOBJ NSIGO))

This has the same effect as

N .'-a(word bake (V (Xn bake OBJLIST (NULLOBJ NSJGO))

TV (PLURAL Xn (present bake)

OBJLIST (NULLOBJ NSTGO))))

(word bakes ('V (SINGULAR Xn (present bake)

V (OBJLIST (NULLOBJ NS[tGO))))
(word baked (TV (Xn (past bake) OBJLISI (NLiLL(O3J NSTGO))

VEN (Xn bake OBJLIST (NULt(OBJ NS[GO)

Ely POBILIST (NULLOBJ))

(word baking (VING (Xn (prog bake) OBJLISF (NULLOBJ NSTGO))))

%t
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2.2. Multiple definitions

A dictionary can contain two (or more) definitions for the same word. In such a
case, the category lists of the several definitions are concatenated to form the category
list used by the parser. For example, if the dictionary contained the entries

(noun root: answer)
(verb root: answer objlist: (NULLOBJ NSTGO))

the word "answer" would be assigned the categories N, V, and TV, and the word
answers" would be assigned the categories N and TV.

%
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CHAPTER 6

Translation Rules

The context-free (BNF) component of the grammar can be extended to a translation
grammar by associating a translation rule with each production (each BNF option). We

associate a translation (a LISP list structure) with each node in the parse tree of a
sentence we have analyzed. The translations of the terminal nodes are obtained from the

corresponding dictionary entries. The translations of the non-terminal nodes are then

computed bottom-up in a compositional fashion. Associated with the production which

expanded a non-terminal node is a translation rule which computes the translation of this

node as a function of the translations of the nodes immediately below in the tree. The

translation of the root node of the tree is the translation of the entire sentence.

These translation rules are used in the PROTEUS system to produce a regularized
syntactic structure -- prinicipally, to map all types of clauses into an operator-operand

form. The rules could also be used to produce something closer to a logical form, in the

manner of Montague and Gazdar. What follows is a rather terse summary of the form of
the translation rules. A more discursive description of the form of these rules, and how

they are used, may be found in Syntactic Regularization in PROTEUS by Jean Mark

Gawron (PROTEUS Project Memo #5).

". 1. Where they go

Each option in the BNF component may be followed by a translation rule: the

', general form of a BNF rule is

<symbol> :: option : {transation-rule option : {trans!ation-ruIc .

It the translation rule is omitted (along with the colon and hracc). a dctault rule of

NLLLSEM" is used, which yields a translation value oi nit

2. Translations of terminal nodes

The translation of a terminal node is taken from the Xn attribute of that node. As
noted above in the description of the word dictionary, both the noun and verb macros
include an Xn: argument to specify the translation of the word.

3. Elements and structures of translation rules

Translation rules are assembled using a small set of elements and combining rules.

3.1. Elements

The basic elements of the translation rules are of two t\pes: constants and
references to translations of nodes on the level immediately below. A node on the level

immediately below can be referred to by its name or by its position (counting the leftmost

immediate descendant as 1). Thus the following two rules both specify that the

translation of node A is equal to the translation of node C immediately below:
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<A> <B> <C> <D> :{C}.

<A> ::= <B> <C> <D> :{2J.

A reference by position is particularly useful when parenthesized expressions are used in

the BNF. The rule

<A> ::= <B> (<HE> I <HO>) <D> :{2}.

will be expanded into a rule with two options:

<A> ::= <B> <HE> <D> :{2} 1<B> <HO> <D> :{2}.

Reference by position is also needed when a BNF rule contains two elements with the

same name. In such cases a reference by name gets the translation of the first (leftmost)

element. Thus the following two rules are equivalent:

<A> ::= <B> <C> <D> <C> :{C}.

<A> ::= <B> <C> <D> <C> :{2}.

Any LISP atom which is not a symbol of the grammar is interpreted as a constant.

For example,

<A> ::= <B> <C> <D> :{quack}.

specifies that the translation of A is the symbol quack, regardless of the translation of the

immediate constituents of A. (A caution: the compiler does not check that a grammar

symbol specified in a translation rule is an element of BNF rule with which it is

associated; thus the following

<A> ::= <B> <C> <D> :{E}.

would compile, assuming E was a grammar symbol, but would fail (return nil as the

translation) during parsing.)

3.2. List structures

These translation rule elements can be combined into list structures using standard

parenthetical notation. For example. '(quack moo)' creates a list with two elements,
I quack' and 'moo". Each component of a parenthc,,17Cd list can he either another list or

* one of the elements described abo~c (a constant or a reference to an immediate

constituent). If a component is preceded by an exclamation mark (') then it will be

spliced into the list. For example, if the translation of node D is -(ho hum)", then the

rule

<A> ::- <B> <C> <D> : ((quack D)L.

with yield a translation for A of "(quack (ho hum))", while

<A> :: <B> <C> <D> :{(quack ! DO.

with yield a translation for A of "(quack ho hum)".

If the name of an element in the translation rule is followed h an asterisk (*), the

value computed will be the concatenation of the translations of all the elements of the rule

with that name. For example, the rule

<A> ::= <B> <C> <D> <C:- (( ".

will assign as the translation of A the concatenation of the translation of the two nodes

namerL C.

In addition to the implicit manipulation of list structure using the parenthetical

notation, some LISP functions may he invoked directly to create and decompose list

structures. These functions are
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car cdr cadr cddr caddr append cons appendl gensym

(the list of these functions is stored as the value of the global variable allowed-lisp.

functions which is defined in file compiler/sem-compile). These functions are invoked

using standard LISP notation. Such a function call may stand by itself as a translation

rule, or may be used as a component of a list created using the parenthetical notation.

Each argument to the function can be any element or structure acceptable as a translation

rule. For example, if the translation of B is "(ho ho)" and the translation of C is "(quack

quack)", the rule

<A> :.= <B> <C> :{((car B) (car C))}.

will compute for A a translation of "(ho quack)".

4. Simplification

The procedure for evaluating translation rules includes a simplifier which can

perform lambda conversions. The simplifier looks for list structures of the form

((lambda (var) expr) arg)

and performs the lambda conversion, binding variable var to arg, evaluating expression
expr, and then replacing the entire structure by the value of the expression. The

simplifier also eliminates "extra" parentheses: if the first element of a list is itself a list
and is not a lambda expression, the parentheses of the inner list are removed. For

example, "((a b) c d)" would be simplified to "(a b c d)".

There are a number of restrictions on the operation of the simplifier. It is not

applied at every level of the tree; rather, it is only applied a nodes whose names appear
on the list SIMPLIST which should be defined as a TYPE list in the grammar. The

lambda converter uses a one-pass algorithm, so there are restrictions on the positions of

lambda expressions which will be converted, The details of the simplifier are described

in the PROTEUS Project Memo Syntactic Regulari:ation in PROTEUS.
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CHAPTER 7

Conjunctions

The analysis of coordinate conjunction is a difficult problem, and it has a significant
impact on any language processing system which aims to treat conjunction with some

degree of generality. We describe in this chapter the mechanisms provided in the

PROTEUS Parser for coordinate conjunction. These mechanisms are quite simple and
quite general, but we do not pretend that they cover the phenomena with the breadth of,

say, the Linguistic String Parser.

For the purpose of the presentation here, we divide the task of handling coordinate

conjunction into five parts:

(1) creating basic constituent structures for conjunction

(2) constraining these structures to avoid redundant and ungrammatical analyses

(3) expanding (regularizing) conjoined structures

(4) adapting the restrictions to process conjoined structures

(5) adapting the syntactic regularization rules to process conjoined structures

LISP procedures in the PROTEUS parser are provided to create the constituent structure
(task 1) and expand "reduced" structures (task 3). The constraints on conjunction (task

2) must be stated as restrictions in the grammar. Adapting the regularization rules (task
5) is achieved largely through the use of the conjunction expansion procedure. This

procedure is also of benefit in adapting the restrictions (task 4), although it provides only

a very limited solution in this area.

I. The structures

The basic structure provided for conjunction is a symmetric one, with a node of type
X dominating a two nodes of type X, separated by a conjunction and optionally preceded

by a scope marker ("both", "either", etc.). In terms of BNF,

<X>::= <scope-marker> <X> <conjunction> <X>

in tree structure

x

\ ,

cope-mtrker X conjunction X

This structure could be used to analyze, for example, "Mary likes milk and Sam likes

cookies":

24
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ASSERTION

scope-markerASSERTION conjunction ASSERTION

NULL Mary likes milk and Sam likes cookies

To avoid redundant analyses (for example, that the conjoining in "Sam likes cookies and

cake" could be analyzed as N and N, LNR and' LNR, NSTG and NSTG, NSTGO and

NSTGO, or OBJECT and OBJECT), we restrict conjoinings (the X's above) to members

of the STRING and LXR lists.

By itself, this structure is not sufficient to account for sentences such as "John baked
and Mary ate a cake." We can describe this sentence as being of the form ASSERTION
and ASSERTION, with the OBJECT omitted from the first ASSERTION. Similarly, we
could describe the sentence "John baked a cake and drank some milk." as being two
conjoined ASSERTIONs, with the SUBJECT omitted from the second ASSERTION.
More generally, in a structure of the form X and X,, we must allow some of the trailing

elements of Xn and some of the initial elements of X, to be omitted.

We will represent omission in our parse trees not by actually omitting the element,
but rather by giving a node the value NULLC-L (for omission to the left of a

conjunction) or NULLC-R (for omission to the right of a conjunction)., Thus "John

baked and Mary ate a cake." would be analyzed as

ASSERTION

,cope-rnarker ASSERTION conlunc:on ,-SSERT[ON

NULL SUBJECT VERB OBJECT and SUBJECT VERB OBJECT

John baked NULLC-L Mary ate a cake

and "John baked a cake and drank some milk." would be analyzed as

ta
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ASSERTION

scope-marker ASSERTION conjunction ASSERTION

NULL SUBJECT VERB OBJECT and SUBJECT VERB OBJECT

John baked a cake NULLC-R drank some milk

For several purposes -- applying restrictions, computing semantics -- we may want
to create a more regular structure, without omitted elements. We can create such a

structure through a process of conjunction expansion, which replaces NULLCs by the
value of the corresponding element in the other conjunct. This process would, for

example, change the tree just above to

ASSERTION

scope-marker ASSERTION conjunction A SERTION

NULL SUBJECT VERB OBJECT and SUBJECT %ERB OBJECT

Jo:hn i.kc C ,k ,hn rn:! m., I, : .d

2. Creating conjoined structures

We have chosen to incorporate all the possible conjoined structures into the

context-free component, rather than creating them dynamically during parsing (as is done
in some ATNs and the Linguistic String Parser). This may be somewhat slower,
particularly for sentences without conjunctions, but it keeps the parsing procedure simple.

The parser provides a mechanism for automatically introducing the productions for
conjoined structures. -The Restriction Language statement

METARULE - metaconj.

adds to the definition of every symbol X on the SIRING and LXR txpe lists the option

<SCOPE-WORD> <X> <CONJ-WORD> <X>

These options are added when the grammar is loaded, at the point where the

METARULE statement is encountered., The ME-ARULE statement should appear
after all the non-conjunction-specific restrictions; in this way the housing for these

restrictions does not have to be adjusted for conjunction.
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The user must provide explicit definitions in the grammar for SCOPE-WORD and

CONJ-WORD. In addition, to allow for omissions, NULLC-L and NULLC-R options
must be explicitly included (for example, one would add

<SUBJECT> ::= .. I<*NULLC-R>
<OBJECT> ::= . <°NULLC'L>

to handle the two examples given above).

3. Constraining conjoined structures

The context-free rules by themselves will produce a blizzard of parses, and so must
be constrained. In particular, NULLCs must be constrained to occur only in conjoined

structures, and only in the correct patterns (e.g., to exclude a single NULL-C in the

middle of a string). These constraints must be enforced by restrictions in the grammer.

4. Expanding the conjoined structures

We noted above that, in order to simplify the restrictions and syntactic

regularization rules which must apply to conjoined structures, we want first to "expand"

these structures, filling in omitted elements with the corresponding element from the

other conjunct. The parser provides a built-in routine COPY-CONJ which performs this

regularization. This routine is to be executed at the root node of a conjoined structure (a

node <X> dominating <SCOPE-WORD> <X> <CONJ-WORD> <X>). It takes

no arguments, and so may be invoked

CONJ-COPY EXISTS.

This routine is unusual in that it is the only operation in Restriction Language which

directly modifies the parse tree.

CONJ-COPY relies on two lists: NULLC-LNODES, a list of all symbols in the r.
grammar whose value can be NULLC-L, and NULLC-RNODES, a list of all symbols in

the grammar whose value can be NULLC-R. These lists must be given explicitly in the
grammar (by statements TYPE NULLC-LNODES ... and TYPE NULLC-
RNODES -.. ).

5. Applying restrictions

Restrictions which are executed after CONJ-COPY has been applied will "see" the

expanded parse tree, with omitted nodes filled in. However, no mechanism is currently
provided for automatically postponing restrictions until CONJ-COPY has applied, or for

automatically applying restrictions to each conjunct of a conjoined structure. Thus,
accommodating restrictions for conjunction is at present largely the responsibility of the

grammar writer.

6. Applying syntactic regularization rules

Associated with each production added by the "metaconj'" metarule is a syntactic

regularization rule:

<X> :: . 1<SCOPE-WORD><X><CONJ-WORD><X> :(32 4)

Suppose the CONJ-WORD is "and", and that its regularized form is also "and". This

rule would then translate a structure of the form Xl and X2 into '(and Xl' X2'), where

Xl' and X2' are the translations of XI and X2.

If the conjoined structure contains an omission, we don't want to compute the

regularized form until the omitted elements have been filled in by (ON-COPY. lo do
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this, the grammar must assign the attribute CONJOMIT to nodes which dominate a
conjunction omission that has not yet been filled in. If the regularized syntactic structure
would normally be computed at a node N, but this node has the CONJOMIT attribute,
computation of the regularized structure will be postponed (it will get computed as part
of some larger structure higher up in the parse tree).

_7.

.p.
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