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Abstract

Background: Protein interactions support cell organization and mediate its response to any specific stimulus. Recent

technological advances have produced large data-sets that aim at describing the cell interactome. These data are usually

presented as graphs where proteins (nodes) are linked by edges to their experimentally determined partners. This

representation reveals that protein-protein interaction (PPI) networks, like other kinds of complex networks, are not

randomly organized and display properties that are typical of "hierarchical" networks, combining modularity and local

clustering to scale free topology. However informative, this representation is static and provides no clue about the

dynamic nature of protein interactions inside the cell.

Results: To fill this methodological gap, we designed and implemented a computer model that captures the discrete and

stochastic nature of protein interactions. In ProtNet, our simplified model, the intracellular space is mapped onto either

a two-dimensional or a three-dimensional lattice with each lattice site having a linear size (5 nm) comparable to the

diameter of an average globular protein. The protein filled lattice has an occupancy (e.g. 20%) compatible with the

estimated crowding of proteins in the cell cytoplasm. Proteins or protein complexes are free to translate and rotate on

the lattice that represents a sort of naïve unstructured cell (devoid of compartments). At each time step, molecular

entities (proteins or complexes) that happen to be in neighboring cells may interact and form larger complexes or

dissociate depending on the interaction rules defined in an experimental protein interaction network. This whole

procedure can be seen as a sort of "discrete molecular dynamics" applied to interacting proteins in a cell.

We have tested our model by performing different simulations using as interaction rules those derived from an

experimental interactome of Saccharomyces cerevisiae (1378 nodes, 2491 edges) and we have compared the dynamics of

complex formation in a two and a three dimensional lattice model.

Conclusion: ProtNet is a cellular automaton model, where each protein molecule or complex is explicitly represented

and where simple interaction rules are applied to populations of discrete particles. This tool can be used to simulate the

dynamics of protein interactions in the cell.
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Background
Cell structure and physiology is governed by the precise
wiring of the protein interaction network in the cell. In
principle, if we had quantitative information about the
kinetic constants describing the association and dissocia-
tion of all pairs of proteins in a proteome, we could
attempt to combine it with information about interac-
tions with small molecules, membranes and nucleic acids
to model an electronic cell. This in turn could be used to
ask very specific questions in order to test our understand-
ing of the mechanisms underlying cell organization and
its dynamic response to external stimuli.

This strategy is computationally very demanding and, in
its general formulation, hindered by the limitations of
current technologies, at least in a foreseeable future. Cur-
rently, the main limitation is the lack of appropriate
experimental technologies to produce accurate data at a
global genomic level. If precise and complete data are
required for carrying out simulations that have biological
relevance, then it is unlikely that we will achieve useful
cell models in the near future. It is possible, however, that
even partial, noisy and/or qualitative data would be suffi-
cient to develop models that can answer low-resolution
questions.

Recent technological advances have offered the opportu-
nity to accumulate extensive information about the pro-
tein interaction networks in several organisms. In
particular the yeast interactome has been looked at from
several perspectives and using complementary
approaches [1-4]. Although these data sets are noisy and
include a sizeable fraction of false positives and false neg-
atives, we have, at this time, the best picture ever of the
possible interactions occurring in a living organism.

These types of data are usually represented as a graph
where nodes (proteins) are connected by edges if the pro-
teins in question have been shown to interact. Similarly to
many social and technological networks, protein-protein
interaction (PPI) networks, are not random in many
aspects, displaying properties that are characteristic of
"hierarchical" networks combining modularity and local
clustering to scale free topology [5].

The graph representation is informative since it allows us
to visualize all the possible connections between the pro-
teins in a cell. However, it is not possible to extract some
biologically relevant information such as the complexes
that are preferentially formed in the cell under different
conditions or their compositional distribution. Finally,
the graph representation does not have spatial and tempo-
ral resolution since it delineates an average over several
conditions and time steps. In other words graphs render
the static dimension of the protein interaction network

and do not capture the dynamic nature and the non-
homogeneous spatial distribution of the interactions
occurring in a cell.

We present here the initial characterization of a cellular
automata model that uses as input experimentally derived
protein interaction graphs and, by treating explicitly each
protein or complex, produces a full dynamic picture of
protein complex assembly and disassembly within a styl-
ized cell.

Although some recent reports, appearing in the literature,
attempted to describe the dynamics of protein interac-
tions [6-9], none of these represents a full dynamic model
permitting the simulation of the complete set of interac-
tions occurring in vivo in the four spatio-temporal dimen-
sions.

Results
ProtNet is a dynamic stochastic model developed to sim-
ulate protein interactions with full spatial and temporal
resolution. Proteins diffuse freely in a lattice space and,
whenever they reside in neighboring sites, they may form
a complex depending on the interaction rules contained
in an input interaction graph. The simulations presented
in this report are based on the protein interaction network
of the yeast Saccharomyces cerevisiae. Protein interaction
databases store more than 40,000 interactions between
yeast proteins [10]. Most of them, however, are derived
from high throughput experiments, producing an inher-
ent high level of false interaction information [11]. To
minimize false positives, we utilized a high-quality yeast
interaction network derived by considering only interac-
tions described by more than one method[12] (Addi-
tional File 1). The resulting interactome data set contains
2,491 high-confidence interactions between 1378 pro-
teins. This corresponds to an average of 3.6 interactions
per protein.

In this first implementation of the model we make the fol-
lowing simplifications (see also methods for more
details):

• The simulation space is a domain of the cell that does not
contain compartments and is not limited by a membrane.

• All the proteins are seeded onto the lattice at the same
concentration.

• Protein concentrations are constant. We do not model
protein synthesis and protein degradation.

• Interacting proteins have the same probability of form-
ing a complex, and each bond in a complex can break at
each time step with the same rate constant.
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• Proteins diffuse at the same rate irrespective of size.

All these simplifications are not implicit in the formula-
tion of the model and could be removed upon the availa-
bility of new experimental data, allowing new biological
questions to be asked. Although this may seem major sim-
plifications, the basic version of the model presented here
is appropriate to ask simple questions about cell organiza-
tion and protein association dynamics.

Comparison of association kinetics and complex 

composition at equilibrium in the two and three-

dimensional models

We first compared a 2D and a 3D model. The 2D cell
model is represented by a square (L = 352) containing
123,904 sites of hexagonal geometry. Considering the lin-
ear dimensions of the lattice site as 5 nm, the diameter of
an average globular protein, the size of our bi-dimen-
sional simulation space is approximately 1.8 µm, the
approximate size of a two-dimensional slice of a bacte-
rium. The 3D model is a cube containing 125000 cubic
sites (50 sites for each side). Thus both simulations use a
comparable number of lattice sites. If the size of each
small cubic site is 5 nm, our 3D model has linear dimen-
sions of 0.25 µm.

Both lattices were seeded with 2 × 104 monomers at ran-
dom positions. This corresponds to a lattice occupancy of
about 20% and a protein concentration of 5 mM, which is
comparable with the estimated crowding of a eukaryotic
cell[13]. Since the network contains 1378 unique protein
species, each protein is, on average, represented 18 times
and its final concentration is approximately 3.6 µM. In
preliminary experiments we adjusted the probability of
associations and dissociations to pon = 0.7 and poff = 0.002
respectively in order to have approximately one half of the
proteins involved in the formation of complexes at equi-
librium.

Although the simulations were carried out for 10,000time
steps, the concentration of monomers, dimers and trimers
already plateau after 5000 steps (Figure 1).

Perhaps not surprisingly, the monomers were three times
as fast to find their partners in the 3D than in the 2D
model. Also dimers and trimers were accumulated with a
faster kinetic in the 3D model. However, after 100,000
steps, the complex size distribution at equilibrium is not
substantially different. The minor but significant differ-
ences observed in the number of complexes of size ~5 is
difficult to rationalize. This seems to indicate that multi-
protein complexes of medium size are more likely to be
formed in two-dimension while dimers, trimers and very
large complexes are equally probable in 2 and 3D. The
experiments described in the following sessions were all

carried out using a 3D lattice corresponding to a cube of
linear dimensions of 0.25 µm containing 1.25 x 105 lattice
sites.

Association kinetics and complex size distribution as a 

function of the probability of association and dissociation

The kinetic of complex formation depends on the two
parameters Pon defining the probability that two proteins
form a complex, upon encounter, and Poff describing the
probability that any bond between two proteins forming
a complex break at each time step. As shown in Figure 2
the initial rate of complex formation depends linearly on
Pon while the concentration of free monomers and com-
plexes at equilibrium only depends on the ratio Pon/Poff.
In the following simulations we will use the values of 0.7
and 0.002 for Pon and Poff respectively. In the conditions of
our model these figures correspond to a dissociation con-
stant (KD) of the order of micromolar.

Association kinetics at varying molecular crowding

Protein density is another factor likely to influence the
kinetics of complex formation. Higher density should
increase the likelihood of protein encounter and, as a con-
sequence, should favor complex formation. On the other
hand molecular crowding should slow down diffusion
and, in the long range, when large complexes are formed,
prevent exploration of the cellular space. In order to eval-
uate the effect of molecular crowding, we performed three
simulations differing in the number of monomers ini-
tially seeded in the lattice.

For these studies, we focused on the 3D model. Figure 3
shows the kinetics of monomers, dimers, trimers and
tetramers when 10, 20 and 40% of the total lattice sites are
occupied. As expected, at least in the initial time steps,
high protein concentration increases the probability of
each protein running into one of its partners and, as a con-
sequence, increases the probability of forming a complex.
We have not observed any negative effect of molecular
crowding on complex formation under these conditions,
although we anticipate that the effective molecular diffu-
sion in the cell cytoplasm should decrease at increasing
protein density.

Input and output graph

In the input graph the different proteins are joined by a
varying number of edges. We were interested in investigat-
ing how node (protein) degree and other "static" graph
properties are reflected in the actual number of links
formed among the different members of any protein spe-
cies in the cell model. To this end we examined all the
interactions at quasi equilibrium after a large number of
simulation steps. We then constructed a quantitative
graph where the edges between any two proteins are
weighted by the fraction of times the two partners take
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part in the specific interaction. As an example, if protein A
is linked to protein B and C in the input graph we count
the number of times we find a protein member A associ-
ated to B and C respectively and in the resulting graph we
associate the two edges (A-B and A-C) with a figure pro-
portional to the fraction of A proteins participating in the
two interactions.

The graph in Figure 4A represents the protein interaction
network provided as input to our cell model. After 50,000
steps not all the interactions are found equally frequent in
the cell model. For instance the proteins drawn in red
(panel A) were never found associated to any other pro-
tein. Although the identity of these proteins may vary in

different repeats of a simulation seeded with the same
number of proteins, the "non-interacting" proteins, on
average, share the property of being linked to a single pro-
tein connected to several partners (hubs).

Furthermore, the graph in Figure 4A is quantitative and
can be filtered based on the weight of each edge. In panel
B for instance, we only show the edges with a weight
higher than 0.1: at least 10% of the partner proteins par-
ticipate in the formation of that specific binary complex.
Although, as outlined below, a detailed discussion of the
biological implications of this output graph would
require a more reliable and quantitative input "interac-
tome", already this simple example sketches the forma-

Kinetic of complex formation in the 2D and 3D modelsFigure 1
Kinetic of complex formation in the 2D and 3D models. The parameters of the simulation were as described in the 
main text. Although the simulations were carried out for 100000 steps, only the initial 5,000 steps are reported in this figure. 
Panel A, B and C represent the kinetics of monomer disappearance and dimer or trimer formation respectively. Panel D shows 
the complex size distribution at equilibrium in a double logarithmic scale. The number of complexes of any given size was aver-
aged over last 1000 time steps; as a consequence large complexes may have, on average, an abundance of less than one.
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tion of well characterized biological complexes and
delineate the interactions that are more likely to form
within the complex (Figure 4A and 4B).

Next we asked about the spread in composition and
topology within the complexes that dynamically form and
break during the simulation. To this end we focused on
the protein CDC27 a subunit of the Anaphase Promoting
Complex [14] and we listed the APC sub-complexes con-
taining the CDC27 protein. Some examples are illustrated
in Figure 5. We conclude, that in our model, the entire
APC complex is never assembled in its entirety and that
many possible sub-complexes form without any apparent
preference for a "core complex". Although a difference in

complex composition could be an inherent characteristic
of the "physiological" protein interaction mesh inside the
cell, these results could indicate certain limitations of
both the available input data and our model.

Discussion
The electronic cell is considered the "grail" of the field of
Systems Biology, The success of this quest could reveal
new perspectives for using computer simulations to accel-
erate biological research. Several attempts have been
reported to develop simulation tools that can account not
only for the stochastic nature of molecular interactions,
but also for the spatial heterogeneity of cellular compart-
ments (for reviews see [15,16]).

Association kinetics for different probability of association and dissociationFigure 2
Association kinetics for different probability of association and dissociation . The 3D model was used for four differ-
ent simulations in which the probabilities of association and dissociation were varied as indicated underneath the graphs. In 
three simulations (violet and cyan triangles and green circles) the ratio between Pon and Poff was kept constant whereas, in the 
run reported with the red curve, this ratio was varied to observe its impact on the concentration of the different complexes at 
equilibrium. The lattice sites were seeded with proteins with an occupancy of 20%.

Pon=0.175, Poff=0.005 Pon=0.35, Poff=0.001 Pon=0.7, Poff=0.002 Pon=0.175, Poff=0.0005
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However, set aside the computational hurdles, these types
of approaches are limited by our relative ignorance of the
parameters affecting the functional interaction between
proteins. A realistic simulation of cell physiology would
require (at least) genome wide information about protein
concentrations combined with integration of a quantita-
tive protein interaction network with the metabolic and
gene regulatory networks. These data are currently not
available and are not likely to be available in a foreseeable
future. Nevertheless, simple computational models may
help to reveal general organizing principles from the
available noisy and qualitative information.

We aim at investigating, by means of a combination of
experimental and informatic approaches, how high order
structures form within a cell and we want to identify the
characteristics of the interaction graph that promote the
formation of a structured cell.

In this first report we presented an initial basic version of
a cell automaton that is capable of modeling the dynamics
of protein interactions in three dimensions. Our model is
presently a naïve one. The cell has no membrane bound-
ary and no compartments. Proteins are fed at a density
that is compatible with the estimated physiological pro-

Association kinetics for different occupancyvaluesFigure 3
Association kinetics for different occupancy values. The 3D model was used for three different simulations in which the 
number of proteins initially seeded were varied to reach a final occupancy of 10%, 20% and 40%. Every 100 time steps the 
number of monomers, dimers, trimers and tetramers were counted and plotted as a function of the time steps. The figures in 
the ordinates represent the number of molecules at occupancy 10%. The curves for occupancies of 0.2 and 0.4 were adjusted 
accordingly for sake of clarity and comparison to take into account the different number of starting monomers in the grid.
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tein density, move freely in the cytoplasm and upon meet-
ing have a certain probability of forming a complex
according to the rules dictated by a high confidence pro-
tein interaction network. It is clear that the more the com-
plexes formed in the ProtNet model reflect the
distribution of protein complexes in the cell the more reli-
able and informative will the biological conclusions that
one can draw from such a model. This, however, is diffi-
cult to assess because we do not have a full picture of a
cell.

In the simulations described in this report the interaction
rules are extracted from a yeast high confidence network
proposed by Han and colleagues [12]. Albeit "high confi-
dence", this network is incomplete and qualitative. Fur-
thermore, it is biased by interactions that derive from the
matrix representations of complexes and, as a conse-
quence, contain a number of interactions that are not
direct. The recent publication of two new genomic-scale
complex purification experiments [1,3] and a large litera-
ture survey to collect information about low-throughput
experiments [17] gives us confidence that we should soon
be able to compile a much more reliable yeast protein
interaction graph enriched for high confidence direct
binary interactions. Another important limitation of the
experiments reported in this manuscript is the assump-
tion that all the proteins present in the network are
equally represented in the cell and that they are indefi-
nitely stable. Protein half lives in a living cell range from
a few seconds to many days [18], and the protein abun-
dance in yeast can range from fewer than 50 to more than
1 million molecules per cell [19]. However, since genome

wide information about protein concentration in the
yeast cell is available this can be readily used to improve
the biological reliability of the model [19].

It is somewhat reassuring that, despite the simple nature
of the ProtNet model, complexes resembling physiologi-
cally important structures like ribosomes and proteas-
omes are consistently observed (Figure 4). Even in its
basic format, ProtNet can readily be used to explore the
stochastic nature of protein interactions and how it affects
the compositions of the complexes that are formed in the
cell. The possibility to vary protein concentrations also
allows to evaluate the effects of molecular overcrowding
[13] on protein diffusion and complex formation. Finally
the dynamic characteristics of the model are particularly
suited to assess, for instance, the time required for a cell to
reach a new equilibrium stage when either the interaction
rules are changed because of a protein modification (i.e.
phosphorylation) or when some protein concentrations
change because of accelerated degradation or increased
gene expression.

Methods
The model

As paradigm for the simulation of the dynamics of a PPI
network we adopted the stochastic lattice gas [20]. More
specifically, we implemented two cell models based on a
two and a three-dimensional lattice respectively. In the
two-dimensional model the elementary lattice cell has
hexagonal geometry while in the three-dimensional one
the elementary cell is a cube.

Input and output graphsFigure 4
Input and output graphs. The graph in panel A is based on the high confidence interactome that was used as input in our 
simulations. Pink spheres represent proteins that, at the end of 50000 steps, were not found to be involved in the formation of 
any complex in a specific simulation run. Large highly connected protein "clusters" that can be mapped to physiologically rele-
vant complexes are outlined with a brown background and identified. In panel B we have filtered the input graph (panel A) by 
eliminating the edges representing interactions in which the partner proteins are found less than 10% of the times. The graphs 
were displayed with the Visant visualization software [21].
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Protein concentration

Each site of the lattice can be occupied by a single protein.
The number of proteins for each molecular species is fixed
at the beginning of the simulation. Protein monomers are
distributed randomly in the lattice cells. Although, in
principle, the concentration of the different protein spe-
cies can be chosen at will, for instance to mimic the real
concentration in the cell, in all the simulations reported in
this manuscript each kind of the K protein species is rep-
resented by n instances n ~ N/K where N is the total
number of proteins in the grid. If we consider a grid occu-
pancy ratio p (0  < p <1) in a lattice of linear dimensions
L we have N = pLd where d is the lattice dimension, (that
is d = 2 or 3 for the two and three-dimensional lattice
respectively).

At this time we do not model protein synthesis and pro-
tein degradation.

Diffusion and rotation

The simulation iterates for a number of time steps by
applying a set of rules that defines the dynamics of the
monomers, initially distributed in the lattice, and of the
complexes that form when proteins bind.

Empty sites of the lattice are considered inactive. However,
due to the diffusion and rotation of proteins and com-
plexes, the active sites configuration changes at each time
step. More specifically, in the 2D model, at each time step,
single proteins and multi-protein structures (i.e., com-
plexes) can rotate by 60 degrees around their center of
mass in a randomly chosen direction. In the 3D model
rotations are by 90 degrees around each of the three axes.
Rotations are rigid, that is, in multi-protein structures, the
whole complex undergoes a rotation and there is no tor-
sion. For multi-protein complexes, the chance of rotation
is inversely proportional to their diameter. As a conse-

Different topologies of APC related sub-complexesFigure 5
Different topologies of APC related sub-complexes. The graph at the top left of the figure represents the interactions 
between the proteins forming the Anaphase Promoting Complex (APC). The remaining graphs depict the largest complexes 
containing the protein CDC27 that were observed at a random specific step toward the end of the simulation (100000 steps).

APC complex
1 2 3

4 5 6
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quence, "long" protein complexes rotate less frequently.
This choice aims at reducing the impact of the dramatic
changes in the configuration of active sites caused by the
rotation of long multi-protein complexes.

The diffusion coefficient of a molecule in a dilute solution
is a complex function of its shape: D = (1/f)kT, where f is
the frictional coefficient, k the Boltzman constant and T
the absolute temperature. For a spherical object the fric-
tional coefficient increases linearly with the inverse of the
radius. In the current implementation of our model we do
not input information about protein masses and shapes.
As a consequence all proteins are assumed to have identi-
cal diffusion coefficients. In our simulations, monomers
have the highest probability of moving to one of the
neighboring elementary cells at each time step. Multimers
diffuse more slowly (see below).

Having set the linear dimension of the lattice cell to 5 nm,
the diameter of an average globular protein, we can esti-
mate the time step of the simulation.

In the limit of large t, the mean-square displacement <x2>
of a lattice gas is <x2> = 2dD(p)t

where d is the dimension of the lattice (2 or 3 in our case)
and D is the diffusion coefficient that is a function of the
concentration p. If l is the size of the random walk step (5
nm in our model), M is the number of steps and t0 is the
elementary time step (M = t/t0) we have

2dD(p)t = l2t/t0

that is, for a 2D lattice:

to = l2/4D(p)

Assuming an average diffusion coefficient of 10-7 cm2sec-

1, this results in a time step of 6 × 10-7 s.

Multimeric complexes have larger frictional coefficients
and therefore move more slowly. However, in the calcula-
tion of frictional coefficients, we do not take into account
the shape of the complexes but we assume an inverse lin-
ear relation between the diffusion coefficients and the
complex sizes, that is the number of monomers forming a
complex.

When a monomer diffuses and when a multi-protein
complex diffuses or rotates, another single or multi-pro-

Graphic representation of the 2D and 3D modelsFigure 6
Graphic representation of the 2D and 3D models. The two cartoons are visual representation of the 2D and 3D Prot-
Net models. The different colors of the elements in the two lattices illustrate different protein species. Although all the sites in 
the 2D model have a hexagonal geometry, proteins that are not yet involved in interactions are depicted as squares. Similarly, 
in the 3D model, free monomeric proteins are depicted as smaller spheres.

2D 3D



BMC Bioinformatics 2007, 8(Suppl 1):S4 http://www.biomedcentral.com/1471-2105/8/S1/S4

Page 10 of 11

(page number not for citation purposes)

tein complex can be "hit" if it occupies a "target" site. In
this case, the moving protein (or complex) pushes the still
protein (or complex) with a probability that is a function
of the ratio between the masses of the hitting and hit pro-
tein/complex. In particular, the probability that the hit-
ting complex with mass m1 pushes the still complex with
mass m2 is

p = e[-(m2/m1)*log2]

as a consequence, if m1 >> m2, on average the hitting com-
plex pushes m2 whereas, if m1 << m2 and m1 hits m2, then
m1 stops. In the case m1 ~= m2, the probability the push
succeeds is 1/2. Note that this mechanism is applied recur-
sively in situations where a colliding protein or complex
m1 pushes m2 which in turn pushes m3 and so on.

Association and dissociation

At each time step new complexes can form and existing
complexes can break down into smaller complexes
according to experimental interaction rules provided as
input to the model. Two proteins residing in neighboring
lattice sites may interact and form a new complex depend-
ing on whether they are linked by an edge in the input
interaction graph.

Monomers have six binding sites corresponding to the six
sides of the hexagon in the 2D model or to the six cube
faces in the 3D version of the model. Therefore, during a
simulation, a single protein can bind to, at most, six other
partners. Proteins do not compete for binding to the same
partner and association is only limited by the number of
edges, 6 in both 2D and 3D models. However, to prevent
the formation of very large complexes containing multiple
copies of the same protein, we implemented the ad hoc
rule that a complex may contain only one copy of any pro-
tein species. Binding is stochastic and the probability of
forming a complex is a function of an association proba-
bility that is related to the association rate constant (kon)
of the interacting protein pair. After association, a com-
plex moves as a single entity. Since for most protein pairs
the value of the association/dissociation constants is
unknown, we set it equal to an average value that is the
same for all proteins.

The model has been implemented by using the C lan-
guage for performance reasons and for maintaining full
control of memory management that can be an issue for
simulations of large lattices. The resulting code is portable
and runs under any major operating system (Linux, Win-
dows, MacOS X, etc.). A simulation step, with a lattice con-
taining approximately 106 sites at a protein concentration
of 20%, takes approximately 0.25 seconds on an Intel(R)
Pentium(R) 4 Mobile CPU 1.60 Ghz. (Along with the sim-
ulator, a visualizer has been implemented for both the 2D

and the 3D version of the model (Figure 6). The visualizer
is based on the OpenGL Application Programming Inter-
face. By means of the visualizer, it is possible to look at the
dynamic processes leading to the formation of protein
complexes in real time during the simulation. The simula-
tor comes with a portable Graphics User Interface (GUI)
that simplifies the definition of input data and simula-
tions management.)

Authors' contributions
MB has coordinated the development of the software and
has developed the graphic interface.  FC has contributed
to the ProtNet software and performed several simula-
tions.  AF has written the ProtNet software.  CG has per-
formed the analysis of several simulations.  MT has
contributed the yeast network.  GC has conceived the
project, coordinated it and written the manuscript.

Additional material

Acknowledgements
This work was supported by AIRC, by the European integrated project 

"Interaction proteome" and by the Network of Excellence "ENFIN". We 

would like to thank Arnaldo Florio for helpful discussion during the devel-

opment of this project and Lars Kiemer for critically reading the manu-

script.

This article has been published as part of BMC Bioinformatics Volume 8, Sup-

plement 1, 2007: Italian Society of Bioinformatics (BITS): Annual Meeting 

2006. The full contents of the supplement are available online at http://

www.biomedcentral.com/1471-2105/8?issue=S1.

References
1. Gavin AC, Aloy P, Grandi P, Krause R, Boesche M, Marzioch M, Rau

C, Jensen LJ, Bastuck S, Dumpelfeld B, et al.: Proteome survey
reveals modularity of the yeast cell machinery.  Nature 2006,
440(7084):631-636.

2. Ito T, Tashiro K, Muta S, Ozawa R, Chiba T, Nishizawa M, Yamamoto
K, Kuhara S, Sakaki Y: Toward a protein-protein interaction
map of the budding yeast: A comprehensive system to
examine two-hybrid interactions in all possible combinations
between the yeast proteins.  Proc Natl Acad Sci USA 2000,
97(3):1143-1147.

3. Krogan NJ, Cagney G, Yu H, Zhong G, Guo X, Ignatchenko A, Li J, Pu
S, Datta N, Tikuisis AP, et al.: Global landscape of protein com-
plexes in the yeast Saccharomyces cerevisiae.  Nature 2006,
440(7084):637-643.

4. Uetz P, Giot L, Cagney G, Mansfield TA, Judson RS, Knight JR, Lock-
shon D, Narayan V, Srinivasan M, Pochart P, et al.: A comprehen-
sive analysis of protein-protein interactions in
Saccharomyces cerevisiae.  Nature 2000, 403(6770):623-627.

5. Jeong H, Tombor B, Albert R, Oltvai ZN, Barabasi AL: The large-
scale organization of metabolic networks.  Nature 2000,
407(6804):651-654.

Additional File 1

High confidence yeast interaction network.

Click here for file

[http://www.biomedcentral.com/content/supplementary/1471-

2105-8-S1-S4-S1.txt]

http://www.biomedcentral.com/content/supplementary/1471-2105-8-S1-S4-S1.txt
http://www.biomedcentral.com/1471-2105/8?issue=S1
http://www.biomedcentral.com/1471-2105/8?issue=S1
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16429126
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16429126
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10655498
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10655498
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10655498
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16554755
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16554755
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10688190
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10688190
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10688190
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11034217
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11034217


Publish with BioMed Central   and  every 
scientist can read your work free of charge

"BioMed Central will be the most significant development for 

disseminating the results of biomedical research in our lifetime."

Sir Paul Nurse, Cancer Research UK

Your research papers will be:

available free of charge to the entire biomedical community

peer reviewed and published immediately upon acceptance

cited in PubMed and archived on PubMed Central 

yours — you keep the copyright

Submit your manuscript here:

http://www.biomedcentral.com/info/publishing_adv.asp

BioMedcentral

BMC Bioinformatics 2007, 8(Suppl 1):S4 http://www.biomedcentral.com/1471-2105/8/S1/S4

Page 11 of 11

(page number not for citation purposes)

6. Beyer A, Wilhelm T: Dynamic simulation of protein complex
formation on a genomic scale.  Bioinformatics 2005,
21(8):1610-1616.

7. Soula H, Robardet C, Perrin F, Gripon S, Beslon G, Gandrillon O:
Modeling the emergence of multi-protein dynamic struc-
tures by principles of self-organization through the use of
3DSpi, a multi-agent-based software.  BMC Bioinformatics 2005,
6:228.

8. Broderick G, Ru'aini M, Chan E, Ellison MJ: A life-like virtual cell
membrane using discrete automata.  In Silico Biol 2005,
5(2):163-178.

9. Le Sceller L, Ripoll C, Demarty M, Cabin-Flamand A, Nystrom T, Saier
M, Norris V: Modelling bacterial hyperstructures with cellular
automata.  InterJournal 2000, 366: [http://www.interjournal.org/.].

10. Zanzoni A, Montecchi-Palazzi L, Quondam M, Ausiello G, Helmer-
Citterich M, Cesareni G: MINT: a Molecular INTeraction data-
base.  FEBS Lett 2002, 513(1):135-140.

11. von Mering C, Krause R, Snel B, Cornell M, Oliver SG, Fields S, Bork
P: Comparative assessment of large-scale data sets of pro-
tein-protein interactions.  Nature 2002, 417(6887):399-403.

12. Han JD, Bertin N, Hao T, Goldberg DS, Berriz GF, Zhang LV, Dupuy
D, Walhout AJ, Cusick ME, Roth FP, et al.: Evidence for dynami-
cally organized modularity in the yeast protein-protein
interaction network.  Nature 2004, 430(6995):88-93.

13. Ellis RJ: Macromolecular crowding: an important but
neglected aspect of the intracellular environment.  Curr Opin
Struct Biol 2001, 11(1):114-119.

14. Zachariae W, Nasmyth K: Whose end is destruction: cell divi-
sion and the anaphase-promoting complex.  Genes Dev 1999,
13(16):2039-2058.

15. Lemerle C, Di Ventura B, Serrano L: Space as the final frontier in
stochastic simulations of biological systems.  FEBS Lett 2005,
579(8):1789-1794.

16. Arkin AP: Synthetic cell biology.  Curr Opin Biotechnol 2001,
12(6):638-644.

17. Reguly T, Breitkreutz A, Boucher L, Breitkreutz BJ, Hon GC, Myers
CL, Parsons A, Friesen H, Oughtred R, Tong A, Stark C, Ho Y, Bot-
stein D, Andrews B, Boone C, Troyanskya OG, Ideker T, Dolinski K,
Batada NN, Tyers M: Comprehensive Curation and Analysis of
Global Interaction Networks in Saccharomyces cerevisiae.  J
Biol 2006, 5:11.

18. Varshavsky A: The N-end rule: functions, mysteries, uses.  Proc
Natl Acad Sci USA 1996, 93(22):12142-12149.

19. Ghaemmaghami S, Huh WK, Bower K, Howson RW, Belle A,
Dephoure N, O'Shea EK, Weissman JS: Global analysis of protein
expression in yeast.  Nature 2003, 425(6959):737-741.

20. Hardy J, Pomeau Y, de Pazzis O: Time evolution of two-dimen-
sional model system. I. Invariant states and time correlation
functions.  J Math Phys 1973, 14:1746-1759.

21. Hu Z, Mellor J, Wu J, Yamada T, Holloway D, Delisi C: VisANT:
data-integrating visual framework for biological networks
and modules.  Nucleic Acids Res 2005, 33(Web
Server):W352-357.

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15598828
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15598828
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16171521
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16171521
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16171521
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15972012
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15972012
http://www.interjournal.org/.
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11911893
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11911893
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12000970
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12000970
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15190252
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15190252
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15190252
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11179900
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11179900
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10465783
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10465783
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15763553
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15763553
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11849948
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16762047
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16762047
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8901547
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14562106
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14562106
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15980487
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15980487
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15980487
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Results
	Conclusion

	Background
	Results
	Comparison of association kinetics and complex composition at equilibrium in the two and three-dimensional models
	Association kinetics and complex size distribution as a function of the probability of association and dissociation
	Association kinetics at varying molecular crowding
	Input and output graph

	Discussion
	Methods
	The model
	Protein concentration
	Diffusion and rotation
	Association and dissociation

	Authors' contributions
	Additional material
	Acknowledgements
	References

