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Abstract 

Rapid advances in microscopy have boosted research on cell biology. However sample preparation enabling excel-

lent reproducible tissue preservation and cell labeling for in depth microscopic analysis of inner cell layers, tissues 

and organs still represents a major challenge for immunolocalization studies. Here we describe a protocol for whole-

mount immunolocalization of proteins which is applicable to a wide range of plant species. The protocol is improved 

and robust for optimal sample fixation, tissue clearing and multi-protein staining procedures and can be used in 

combination with simultaneous detection of specific sequences of nucleic acids. In addition, cell wall and nucleus 

labelling can be implemented in the protocol, thereby allowing a detailed analysis of morphology and gene expres-

sion patterns with single-cell resolution. Besides enabling accurate, high resolution and reproducible protein detec-

tion in expression and localization studies, the procedure takes a single working day to complete without the need for 

robotic equipment.
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Background

Multicolor immunolocalization and imaging approaches 

are increasingly used in plant biology for a variety of dif-

ferent purposes including analysis of protein localization 

and protein–protein interactions in specific tissue con-

texts [1], tracking of cell anatomy [2], visualizing tissue 

and cellular distribution of specific low molecular weight 

molecules (i.e. hormones such as auxin) [3] and record-

ing signaling events at the organelle subcellular level. In 

plants robust and reliable techniques are highly required 

for the accurate whole-mount visualization of subcellu-

lar protein localization in relatively thick specimens, in a 

well preserved tissue structure to analyze patterns of gene 

expression in developmental studies. Current techniques 

for the whole-mount visualization of protein expression 

and subsequent three-dimensional (3D) imaging include 

fluorescent protein localization [4] and immunolocaliza-

tion with antibodies on Arabidopsis seedlings [5, 6]. �ese 

methods work relatively well on roots of very young Arabi-

dopsis seedlings, where tissue penetration is facilitated but 

they are currently limited with respect to the depth of pen-

etration within the tissue(s) and to the resolution that can 

be achieved. Confocal laser scanning microscopy of plant 

tissues allows analysis of relatively thin and semitranspar-

ent organs, while penetration and optical sectioning for 

3D reconstruction of relatively thick specimens is limited 

so that cellular and intracellular details are usually difficult 

to resolve also when two-photon confocal microscopes are 

used. Particularly, the simultaneous localization of nucleic 

acids (DNA, RNA) and of fluorescently labeled proteins 

(through translational fusions) are difficult to perform in 

depth on tissues, even if they have been cleared to reduce 

background fluorescence. Similarly, the use of antibod-

ies labeled with fluorescent dyes for immunolocalization 

studies suffer from poor tissue penetration or bad tissue 
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preservation after harsh chemical treatments which are 

necessarily performed to improve penetration of antibod-

ies into deeper cell layers. In addition, currently available 

whole-mount protocols [5, 6] consist of a large number 

of steps and are sometimes poorly reproducible due to 

limitations with respect to antibody penetrance and tissue 

preservation [7, 8]. We have systematically analyzed criti-

cal parameters for tissue fixation, improved cell permea-

tion techniques and developed a protocol for reproducible 

visualization of internal tissue structures of different plant 

organs (e.g. siliques, ovules, roots) at all stages of develop-

ment without requirement for sectioning.

Tissue fixation has been found as the most crucial step: 

effective and rapid penetration of the fixative in the inner 

cell layers has a primary importance for all further steps. 

�erefore an effective combination of vacuum with a 

detergent is crucial for successful fixation. �e plant cuticle 

is an extracellular hydrophobic layer that covers the aerial 

epidermis of all land plants, providing protection against 

desiccation. In our protocol hot methanol (up to 60 °C) has 

been implemented as an effective way for permeabilization 

of the cuticle and increasing tissue permeabilization, espe-

cially in dense organs in the inner cell layers.

We show that the protocol is fast, simple, suitable 

for automation, and presents a highly valuable, robust 

tool for the study of the cellular organization of a wide 

range of plant tissues. In addition the improved method 

allows simultaneous staining of nucleic acids and of pro-

teins, and enables obtaining high resolution images of 

a quality suitable for 3D confocal reconstruction of cel-

lular gene expression networks within a plant organ. 

We demonstrate the usefulness of this protocol for the 

characterization of auxin transport routes in a number 

of dicotyledonous and monocotyledonous plant spe-

cies, during ovule reproductive organ development, and 

cytoskeleton labeling during mitosis. �e reported proto-

col allows robust immunolabeling of different tissues in 

a wide range of plant species at high penetration depth, 

independently from tissue transparency and density, ena-

bling better resolution and 3-D reconstruction for digital 

atlas of whole plants organs (roots, leaf etc.) [9].

Methods

Reagents and solutions

Antifade mounting medium: Fluoromount G (refractive 

index 1.393; Southern Biotech, cat. no. 0100-01) or Pro-

longGold (refractive index 1.47; http://products.invitro-

gen.com/ivgn/product/P36930);

Blocking solution: 2  % albumin fraction V BSA (Carl 

Roth, cat. no. 8076.2) in 1 × MTSB;

Calcofluor white (BR 28, Sigma, cat. no. F3543) 

(0.4  mg/l in 10  mM Tris-HCl  pH  9.2) (dilute from 

1 mg ml−1 stock in DMSO);

Cell wall digestion enzymes: 0.2  % Driselase (Sigma, 

cat. no. D9515), 0.15  % Macerozyme (Duchefa, cat. 

N  M8002.0010) in 2  mM MES (Sigma, cat. no M3671), 

pH 5.0;

Nuclear stain: DAPI (4′,6-diamidino-2-phenylindole 

dihydrochloride; Sigma, cat. no. D9564) (0.2  mg/l) in 

water (dilute from 1 mg ml−1 stock in water). Note: Dis-

solve DAPI in water at a concentration of 1  mg/ml and 

dilute it before use to 2 μl in 10 ml. A 1 mg/ml solution is 

stable for at least 1 year at 4 °C;

Fixative solution: 2 % paraformaldehyde (Merck, cat. no. 

1040051000) in 1× MTSB supplemented with 0.1 % Triton 

X-100 (Carl Roth, cat. no. 3051.2); Solution preparation: 

2  g of Para-formaldehyde is dissolved in 20  ml of water 

(10 % stock solution) by stripping and slightly warming to 

65-70 °C and addition of one drop of 1 M KOH. �e stock 

solution can be stored in 2 ml aliquots at −20 °C. Prior to 

usage it is diluted to 2  % paraformaldehyde in using 2× 

MTSB and water to reach 1× MTSB (final concentrations);

Methanol (Carl Roth, cat. no. 4627.2) for tissue fixa-

tion, clearing and cuticle solubilization;

MTSB (microtubule-stabilizing buffer): Preparation of 

stock solution (2× MTSB): 15 g PIPES (FW 302.4; Roth, 

cat. no. 9156.3), 1.90 g EGTA (FW 380.4; Roth, cat. no. 

3054.2), 1.22 g MgSO4·7H2O (FW 246.48; Carl Roth, cat. 

no. 8283.1) and 2.5 g KOH (FW 56.11; Carl Roth, cat. no. 

6751.1) are dissolved in a total of 500 ml water at pH 7.0 

(adjusted with 10 M KOH);

Permeabilization buffer: 3 % non-ionic detergent IGE-

PAL CA-630 (Sigma, cat. no. I3021) (Similar to Nonidet 

P-40, which is no longer commercially available) plus 

10  % dimethylsulfoxide (DMSO) (Carl Roth, cat. no. 

4720.2) in 1× MTSB buffer;

Primary antibody solution: the primary antibody solu-

tion is prepared in blocking solution; the optimal anti-

body concentration must be determined experimentally 

and can vary between 1:20 and 1:1000;

Propidium Iodine (PI, Sigma, cat. no. P4170) (1  mg/l) 

in 10 mM Tris–HCl, pH 7.5 diluted from 4 mg/ml stock 

in water;

RNAse solution (0.1  mg/ml) in 10  mM Tris–HCl, pH 

7.5 (Sigma, cat. no. R5000) prepared from 1 mg/ml stock, 

diluted in water;

Secondary antibody solution (preparation in 1× block-

ing buffer with 1:500 dilution immediately before use).

Equipment

Shaker for gentle shaking during fixation.

Agilent slides (G2534-60530 or G2534-60535, with 8 or 

4 rubber frames (Additional file 1) for whole plant/organ 

labeling;

Confocal microscope (recommended; alternatively, 

epifluorescent microscope);

http://products.invitrogen.com/ivgn/product/P36930
http://products.invitrogen.com/ivgn/product/P36930
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Conical tubes (Greiner) 15 and 50 ml;

Cover glasses: 0.17  mm thick; 24  ×  40  mm (Carl-

Roth, cat N. 1870.2); we recommend for high resolution 

microscopy always cover-glasses of defined thickness 

0.17 mm ± 0.01 or 0.005 mm.

Incubator (37 °C);

Forceps (Carl Roth, cat. no. K341.1);

Humid chambers are prepared from 90  mm Petri 

dishes with wet absorbent paper inside;

Micropipettes;

Microscope slides for mounting of specimens after 

labeling;

Parafilm strips;

Poly--Lysine Coated Microscope Slides (e.g. from Pol-

ysciences, cat. no. 22247-1) or home-made slides coated 

with 10 % Poly--Lysine solution were used when immu-

nolocalization experiments were performed on proto-

plasts or suspension cells;

Scalpel (Carl Roth, cat. no. 3607.1 or 3596.1);

Stereo microscope;

Vacuum pump (water-jet type or comparable) with a 

desiccator;

Well Suspension Culture Plate  12 or 24 well (Greiner, 

cat. no. 665102 or 662102).

Protocol: procedure steps

An overview of the main steps of the procedure is pre-

sented in Fig. 1, with the indication of the time required 

to perform each step and of steps where the procedure 

can be stopped. �e whole procedure is described step-

by-step below by giving a detailed description followed 

by background notes with comments. �e recommend 

volumes have been calculated for 24 wells plates and 8 

rubber frames slides.

Step 1: Fixation

Fixation A (Formaldehyde) Timing: 50–60 min.

  • Place explants in at least 1.5 ml of 2 % formaldehyde 

in 1× MTSB buffer supplemented with 0.1 % Triton, 

pH ~ 7, (ratio fixative/explants 10:1).

  • Apply vacuum infiltration for 2–3  min and then 

(slowly) release vacuum. Repeat it once again. �e 

fixation starts only after fixative penetrates (or air 

will be back to the desiccator).

  • Check if explants have sunk at the bottom, and con-

tinue fixation for 40  min under gentle shaking at 

37 °C.

  • Wash samples in 2 ml of distilled water ~10 min.

Alternative procedure

Fixation B (methanol) Timing: 40 min.

  • Place explants in 1.5  ml of 100  % p.a. methanol for 

20 min and incubate at 37 °C.

  • replace with 0.8  ml of fresh 100  % p.a. methanol 

(60  °C), incubate vials for 3  min and gradually add 

water till final concentration of methanol reaches 

20 % (ca 3.2 ml water). �ereafter transfer explants/

plants to a new vial with water. In our hands meth-

anol preserved protein structure and has allowed 

combining successfully tissue clearing with cuticle 

solubilization.

Comments �e goal of fixation is to maintain the cellular 

structure as intact as possible. Tissue fixation can be per-

formed by two different ways (reported above as fixation A 

and B, respectively) depending on the proteins of interest. 

Fixation with formaldehyde (fixation A) crosslinks proteins 

Fig. 1 Work flow diagram. The different steps of the immunolocaliza-

tion protocol are indicated in boxes linked by arrows and colored in 

yellow for fixation and permeabilization steps. Antibodies incubation 

steps are boxed in green. The time required for each step is indicated 

on the side of the box. Possible pause points are indicated in the 

diagram by wave line across the arrows
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with cellular components which preserve tissue and cell 

morphology. Rapid penetration of the fixative into the cells 

is crucial for proper fixation. �is is assured by vacuum infil-

tration of the fixative, containing 0.1 % Triton (surfactant), 

into the tissue. Freshly prepared 2 % formaldehyde solution 

from para-formaldehyde powder is used for this purpose, 

giving best results. If commercially available 37 % formalde-

hyde stock solution is used, the instability of formaldehyde 

in solution and its polymerization during long term stor-

age may hamper results and has to be taken into account. 

Specimens should be fixed in a multiwell culture plate with 

a large surface to enable efficient gas removal through vac-

uum application during fixation procedure. In many cases 

methanol fixation (fixation B) alone is enough to preserve 

protein and cellular structure and has allowed in our hands 

combining successfully tissue clearing with cuticle solubili-

zation, thus providing a good, faster and easier alternative 

to formaldehyde fixation. Absorbed methanol is oxidized 

within the plant cell to formaldehyde and formic acid [10].

In general, from our experience, methanol works well 

for membrane proteins. In addition, aerial parts of plants 

(leaves of certain species) have a highly hydrophobic cuti-

cle to prevent water loss. In order to allow antibodies 

to penetrate inside cells, the cuticle needs to be solubi-

lized. �is can be achieved by treatment with methanol 

which solubilizes the majority of the cuticle and other 

waxes. We also experienced that methanol treatment also 

improved antibody penetration in the mature part of the 

root. Finally, chlorophyll, as a potential source of auto-

fluorescence, is readily removed by methanol treatment 

as well. However, one should also consider that some 

epitopes are very sensitive to methanol and may be not 

accessible anymore for antibody binding so a comparison 

of the two fixative methods should be considered.

Step 2: Cuticle solubilization and tissue clearing—

hydrophilisation

Timing: 50–60 min.

  • Replace water (from fixation A) with ~0.8 ml of 100 % 

p.a. methanol (60  °C) and incubate for ~5–10  min 

or, from fixation B, directly proceed to the following 

step.

  • Gradually decrease alcohol concentration by adding 

every 2 min 100–200 µl of water until the final alco-

hol concentration reaches ~20 % (this corresponds to 

the addition of 3.2 ml of water).

  • Wash twice for 5 min each in water.

  • Transfer plants to the agilent slides pre-loaded with 

60 µl of water.

Comments Gradual addition of water is important for 

preserving the structure of tissues/organs.

Step 3: Digestion of cell walls

Timing: 45 min.

  • Add 60 µl of the cell wall digestion solution into each 

well/frame (0.2 % Driselase and 0.15 % Macerozyme 

in 2 mM MES, pH 5.0).

  • Incubate for 30–40 min. at 37 °C.

  • Wash 1 × 4 min with 100 µl of the 1× MTSB pH 7.0.

Comments In contrast to animal cells, plant cells are sur-

rounded by a rigid cell wall, which needs to be at least 

partially digested for efficient antibody penetration. 

�erefore tissues are incubated with cell wall degrad-

ing enzymes. In addition, dense tissues specifically need 

to be macerated for effective antibody penetration into 

deeper layers. In the majority of published protocols 

Driselase is used dissolved in 1× MTSB buffer with pH of 

approximately 7.0 [3]. �ese conditions are suboptimal, 

because Driselase has quite low cell maceration activi-

ties and its pectolytic and cellulolytic activities have an 

optimum pH ranging from 4.0 to 6.0 and from 3.0 to 5.0, 

respectively [11]. In order to improve the cell wall diges-

tion and increase tissue maceration a mixture of Drise-

lase and Macerozyme R10 was used in MES buffer with 

pH 5.0. �is treatment is gentler and results reproducibly 

in excellent preserved tissues.

Step 4: Membrane permeabilisation

Timing: 30 min.

  • Add 60  µl of the membrane permeabilisation solu-

tion (3 % IGEPAL C630, 10 % DMSO in 1× MTSB) 

and incubate for 15–20 min at 37 °C.

  • Wash 4 times with 1x MTSB for 3 min each.

Comments After partial digestion of cell walls, the cellu-

lar membranes must be permeabilized. Membrane per-

meabilization creates pores in membranes, which allow 

the antibody to penetrate. For this purpose treatment 

with a mixture of DMSO and the detergent IGEPAL 

CA-630 was applied. �is treatment allows efficient and 

reproducible antibody penetration. As an alternative to 

treatment with IGEPAL/DMSO, one can completely dry 

the tissue on the slide. �is option is favorable for cell 

monolayer cultures (see supplementary protocol for sus-

pension cells), but also can help tissue permeabilization 

in the case of whole organs.

Step 5: Blocking

Timing: 30 min.

•  Add 60 μl of blocking buffer to each frame and incu-

bate for 20 min.
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Comments the goal of the blocking step is to minimize 

non-specific antibody binding. �e minimal duration of 

the blocking is 20  min., however, in some cases (when 

background noise is high), it can be extended to up to 2 h.

Step 6: Primary antibody incubation

Timing: 90–120 min.

  • Replace blocking solution with 60 µl of the primary 

antibody solution and incubate for 1–2 h at 37 °C;

  • Wash 2 × 5 min with 100 µl of the 1× MTSB.

Comments Do not mix solution during incubation with 

the primary antibody.

Antibodies used for immunostaining should be always 

affinity purified. According to our experience it is not 

advisable to use crude sera due to cross-reactivity with 

multiple proteins. Best results are obtained with antibod-

ies against epitope tags (HA, Myc) or GFP, but this is only 

suitable for genetically modifiable species like Arabidop-

sis. It is absolutely necessary to test antibody specificity 

in Western blots. A loss of function mutant where the 

protein of interest is absent, if available, should be ideally 

used as a negative control. As a negative control, samples 

should be also incubated in the presence of pre-immune 

serum.

Step 7: Secondary antibody incubation

Timing: 60 min.

  • Add 60  µl of the secondary antibody solution, and 

incubate for 1–2 h at 37 °C;

  • Wash 3 × 5 min with 1x MTSB.

Comments Do not mix solution during incubation with 

the secondary antibody. �e choice of fluorophore with 

which secondary antibodies are conjugated depends 

primarily on the task of investigation. Fluorophores are 

differing in terms of brightness, photobleaching and 

chemical stability. Many of the most popular secondary 

antibodies are Alexa conjugated (InVitrogen). However, 

recently new DyLight antibodies have been developed 

(InVitrogen, Agrisera, Abcam). DyLight ® conjugated 

secondary antibodies exhibit higher fluorescence inten-

sity, photo stability and water solubility and remain 

fluorescent from pH 4 to pH 9. Additionally, the water 

solubility of the DyLight® fluorophores allows a high dye-

to-antibody ratio to be achieved without causing precipi-

tation of conjugates.

For protein co-localization studies up to four primary 

and secondary antibodies can be used simultaneously, 

but they should be raised in different animals to avoid 

cross-reactivity.

Step 8: Co‑staining of the nucleus

Timing: 15 min.

  • Add 100 µl of the DAPI containing solution (0.2 mg/l) 

and incubate for 10 min;

  • Wash 3 × 5 min with 100 ml of distilled water.

Step 8 (alternative): Cell wall and nucleus staining

Timing: 50 min.

  • Incubate in 10 mM Tris–HCl, pH 7.5 for 10 min;

  • Incubate in 100 µl of the RNAse solution in 10 mM 

Tris–HCl, pH 7.5 for 30 min at 37 °C;

  • Wash 1 × 5 min with 100 µl of 10 mM Tris–HCl, pH 

7.5;

  • Incubate in 100 µl of the propidium iodine solution 

(0.4 mg/l) in 10 mM Tris–HCl, pH 7.5 for 10 min at 

37 °C;

  • Wash with water for 10 min;

  • Incubate in 100 µl of the 10 mM Tris–HCl, pH 9.2 for 

10 min;

  • Incubate in 100 µl of the calcofluor white solution in 

10 mM Tris, pH 9.2 for 20 min;

  • Wash 2 × 5 min in the 10 mM Tris–HCl, pH 9.2.

Comments In order to show the proteins of interest in 

a cellular and organ continuity, additional staining of 

cell walls and of nuclei with calcofluor white and pro-

pidium iodine, respectively, might be wishful. This 

procedure does not affect the detection of proteins. 

Calcofluor white requires an alkaline pH for binding to 

the cell wall. We recommend keeping pH at 8.5–9 also 

in the mounting solution by mixing 70  % of anti-

fade medium with 30 % of 500 mM Tris–HCl, pH 9.2 

(350 µl antifade medium + 150 µl 500 mM Tris–HCl, 

pH 9.2).

Step 9: Mounting

Transfer seedlings to microscopic slides with a jacket 

containing antifade medium, cover samples with a cover 

slip and store them in the fridge/cold-room (approxi-

mately 5 °C).

Comments To prepare samples for microscopy, they 

are embedded in commercially available antifade solu-

tions like Fluoromount G (Southern Biotech) or Prolong® 

Gold reagent (Invitrogen). �ese solutions satisfactorily 

protect samples from photo-bleaching. We highly recom-

mend to match as near as possible the refractive index 

of the mounting medium to the refractive index of the 

immersion medium used for the microscopical imag-

ing to avoid optical artifacts, strong fluorescence emis-

sion and signal loss due to a mismatch. One also can 

use home-made antifade solutions, containing glycerol 
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(50 %), N-propyl gallate (15 mg/ml) (final concentration) 

and H2O (50 %). For long term storage of samples addi-

tion of 0.1 % sodium azide to the anti-bleaching solution 

is mandatory. In order not to damage the samples we 

suggest to mount specimens after immunolocalization 

on microscopic slides with pre-inserted 120  µm spacer 

Fig. 2 PIN1 protein localization in cotyledons and hypocotyls of Arabidopsis seedlings. Four days old seedlings were fixed for 20 min in methanol 

and subjected to the standard immunolocalization procedure as described. Anti-PIN1 mouse monoclonal primary antibody (clone 10A7), diluted 1: 

50. ALEXA Fluor ® 488 conjugated goat anti-mouse IgG (Invitrogen) was used as secondary antibody diluted 1:800. Co-staining with DAPI visualized 

nuclei (red). a Cotyledon; b hypocotyl; Scale bar 20 µm

Fig. 3 Auxin efflux carrier PIN1 localization in Arabidopsis flower organs. Whole siliques were fixed in formaldehyde and treated for 20 min with 

methanol. Anti-PIN1 mouse monoclonal primary antibody (clone 10A7), diluted 1:50 and ALEXA Fluor ® 488 goat anti-mouse IgG as secondary anti-

body (Invitrogen) diluted 1:800 were used. Co-staining with DAPI visualizes nuclei (blue). a Arabidopsis silique, stage 1; b Arabidopsis silique, stage 2; 

c Isolated ovules. Scale bar 20 µm
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made from TVC isolation tape. �e tape is cut in small 

stripes and pasted on the slide before samples insertion. 

Appropriate thickness of the jacket avoids tissue pressing 

and enables to reconstruct 3D images from the organs/

seedlings. For Arabidopsis whole mounted seedlings a 

100 μm thick spacer is sufficient to keep the original 3D 

structure.

Comments and concluding remarks

�e reported protocol for immunolocalization allows 

researchers to study metabolites, nucleic acids and pro-

tein localization in virtually any plant species and organs 

in relatively thick specimens speeding up throughput and 

resolution of protein localization studies also in non-

model plants. �e presented methodologies significantly 

improve the accuracy and resolution of protein detection 

in expression and localization studies and do not have 

a limit regarding tissue type. Manual sectioning can be 

avoided and 3D reconstruction can be easily done. Its 

shortest version takes only 7  h to complete without the 

need for robotic equipment,  as shown in Fig.  1.  Addi-

tional applications of the protocol are also provided for 

immunolocalisation on isolated plant cells and proto-

plasts and for 3D reconstuction (Additional file 2).

Previously published immunolocalization protocols [4] 

require at least two working days and cannot be applied 

to non-transparent tissues. �ese protocols have been 

applied for analysis of the root meristem of Arabidopsis 

thaliana, while for other plant species and for more dense 

tissues of Arabidopsis (e.g. hypocotyls or leaves) research-

ers prefer to use paraplast sections which are labor and 

time consuming and do not allow 3D reconstruction. For 

example, Bustos-Sanmamed et  al. [2] suggested to use 

paraplast sections for immunolocalization in Medicago 

plants, which are extremely time and labor consuming. 

In our hands Medicago can be subjected to whole-mount 

Fig. 4 Protein immunolocalization in Medicago sativa L. and Lycopersicum esculentum L. Plants were fixed for 30 min in formaldehyde. Anti-PIN1 

mouse monoclonal primary antibody (clone 10A7) diluted 1:50 plus Alexa Fluor®488 goat anti-mouse IgG as secondary antibody diluted 1:800 

(shown in green color) and H+-ATPase (AS07 260) rabbit primary antibody plus Alexa Fluor® 555 goat anti-rabbit IgG as secondary antibody diluted 

1:800 (shown in red color) were used. Nuclei are visualized by co-staining with DAPI (blue). Scale bar 20 µm. White arrows show polar PIN1 localisa-

tion. a Medicago sativa roots; b Medicago sativa leaf; c, d- Lycopersicum esculentum root

Fig. 5 PIN1 protein localization in Hedera helix stem, leaf and flowers. 

Explants were fixed in formaldehyde for 30 min. Anti-PIN1 mouse 

primary antibody (clone 10A7) diluted 1:50 plus Alexa Fluor® 488 

goat anti-mouse as secondary antibody diluted 1:800 was used. Co-

staining with DAPI visualizes nuclei (shown as artificial color in red). 

Scale bar 20 µm. a stem; b leaf; c flowers initial
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immunolocalization in any organ with further 3D recon-

struction. Our whole-mount protocol is applicable to the 

analysis of any plant species and organ including non-

transparent tissues. It is also easily applicable to suspen-

sion cultures and can be completed for most specimens in 

5–6 h. Detection of proteins deep inside tissues requires a 

fine balance between fixation, clearing of tissues, cell wall 

digestion and permeabilisation. �rough improved tis-

sue clearing combined with tissue-specific combinations 

of cell wall degrading enzymes, proteins can be detected 

e.g. in ovules of intact pistils or xylem-parenchyma cells of 

hypocotyls while keeping the outer cell structures intact 

(Figs.  2, 3). �e excellent tissue preservation is demon-

strated by labeling of microtubules and actin in the elon-

gation zone of Arabidopsis roots (Fig.  4), which often 

appeared destroyed using previously published auto-

mated whole-mount method [3]. Due to the use of small 

volumes in Microarray slides, the procedure described 

here reduces the amount of reagents and limits the use of 

particularly precious antibodies, but also allows handling 

of specimens up to 1  cm wide. �e general applicability 

of the protocol was successfully tested for localization of 

Fig. 6 Protein immunolocalization in different Triticum aestivum organs. Three days old wheat seedlings were fixed for 30 min in formaldehyde. 

Anti-PIN1 mouse monoclonal primary antibody (clone 10A7) diluted 1:50 and Alexa Fluor® 488 goat anti-mouse IgG as secondary antibody diluted 

1:800 were used (shown in green color) (a–e); anti-PIN2 Guinea pig primary antibody plus Goat anti-Guinea pig IgG Alexa Fluor® 647 conjugate as 

secondary antibody diluted 1:800 (shown in red color) (e) and anti-BIP2 (AS09 615) rabbit primary antibody plus Goat anti-rabbit IgG DyLight® 549 

conjugate (AS09 642) as secondary antibody diluted 1:3000 (shown in red color) (f) were used. Co-staining with DAPI visualizes nuclei (blue). a leaf; b 

meristem; c coleoptile; d–f roots. Arrows point polarly located PIN1 and PIN2 proteins. Scale bar 20 µm

Fig. 7 3D reconstruction of Arabidopsis root epidermis cells undergoing telophase: co-localization of β-Tubulin (TUB) and PIN1 in division plates. 

Four days old Arabidopsis seedlings were fixed for 30 min in formaldehyde. a Anti-PIN1 mouse monoclonal primary antibody (10A7) diluted 1:50 

plus ALEXA Fluor ® 555 anti-mouse as secondary antibody diluted 1:800 (shown in green color) and anti-TUB (AS10 681) rabbit primary antibody 

diluted 1:600 plus Goat anti-rabbit IgG (H&L), DyLight® 488 Conjugate (AS09 633) diluted in 1:3000 as secondary antibody (shown in red color) were 

used. b Anti-PIN2 Guinea pig polyclonal primary antibody (clone A193) dilution 1:800 plus ALEXA Fluor ® 555 anti-Guinea pig as the secondary 

antibody dilution 1:800 (show in green color) and anti-TUB (Agrisera, AS10 681) rabbit primary antibody diluted 1:600 plus Goat anti-rabbit IgG 

(H&L), DyLight® 488 Conjugate (AS09 633) as secondary antibody diluted in 1:3000 (shown in red color) were used. Co-staining with DAPI visualizes 

nucleus (blue). Scale bar 20 µm. The Insertion in a shows an ortho-view of dividing cells
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PIN proteins in root and flower tissues from Medicago 

sativa, Triticum aestivum, Lycopersium esculentum, and 

Hedera helix (Figs. 5, 6, 7). �e fixation procedure using 

ethyldimethylaminopropyl carbodiimide (EDAC, carboxyl 

activating agent for hormones bonding with proteins) and 

formaldehyde was optimized for detection of low molecu-

lar weight molecules (e.g. auxin) with antibodies (Fig. 8).      

In addition, the protocol allows further appli-

cations such as the detection of DNA replication 

events by using incorporation of the thymidine 

analogue BrdU/EdU into nuclear DNA followed by 

subsequent detection with an antibody recogniz-

ing BrdU/EdU (Fig.  9) [12]. This approach opens 

the possibility to monitor the duration of the S and 

G2 phases of the cell cycle, as well as to detect cells 

within tissues that undergo DNA reduplication. The 

protocol, being reasonably streamlined and simple, 

can be used for analysis of protein expression and 

localization in up to 30 samples simultaneously 

without the requirement of laboratory robots. As a 

concluding remark, our improved protocol, by keep-

ing better intact organs structure, enables precise 

analysis of protein expression/localization in whole 

organs, thus performing a fundamental shift from 

two dimensional to three dimensional tissue atlases, 

required for our previously described automated 

organ analysis [9]. Examples of 3D reconstruction 

after immunolabelling with our protocol are shown 

on Additional files 3–6.

Fig. 8 Auxin immunolocalisation in Arabidopsis roots. Four days old 

Arabidopsis seedlings were treated with 1 µM 1-N-Naphthylphtha-

lamic acid (NPA) for 24 h to enhance accumulation of auxin in roots. 

Seedlings were fixed for 20 min in 4 % EDAC in 1× MTSB, and next 

30 min in 4 % EDAC+ 2 % Formaldehyde. Anti-indole 3 acetic acid 

(IAA) rabbit primary antibody (Agrisera, AS06 193) diluted 1:600 plus 

Goat anti-rabbit IgG (H&L), DyLight® 549 Conjugate (AS09 633) as 

secondary antibody diluted in 1:3000 (shown in red color) were used. 

Scale bar 20 µm

Fig. 9 Simultaneous DNA and protein localization in Arabidospis 

roots. Four days old Arabidopsis thaliana seedlings were pre-cultured 

for 30 min in the presence of 15 μM BrdU in the dark. Plants were 

fixed in formaldehyde. Anti-PIN1 Guinea pig polyclonal primary 

antibody diluted 1:800 plus ALEXA Fluor ® 555 anti-Guinea pig as 

the secondary antibody diluted 1:800 (red color) and mouse BrdU 

primary antibody (Amersham, RPN202; http://www5.gelifesciences.

com) diluted 1:150 (containing DNAse) plus ALEXA Fluor ® 488 goat 

anti-mouse IgG as secondary antibodies diluted 1:800 were used. Co-

staining with DAPI visualizes nuclei (shown as artificial color in white). 

The projection of a 3D reconstruction of confocal images with IMARIS 

Software (Bitplane) is shown

http://www5.gelifesciences.com
http://www5.gelifesciences.com
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Additional �les

Additional �le 1. Agilent microarray slides suitable for 

immunolocalization.

Additional �le 2. Supplementary protocols.

Additional �le 3. 3D reconstruction of the Arabidopsis leaf after labelling 

with PIN1 antibody and co-staining with DAPI for cell visualization. Four 

days old Arabidopsis seedlings were fixed for 30 min in formaldehyde. 

Anti-PIN1 mouse monoclonal primary antibody (clone 10A7) diluted 1: 50 

plus Alexa Fluor® 488 goat anti-mouse IgG as secondary antibody diluted 

1: 800 (shown in green color) (panel A-E) were used; Co-staining with DAPI 

visualizes nuclei (shown as artificial color in white). Ortho-view is shown. 

Scale bar 50 µm.

Additional �le 4. 3D reconstruction of Nicotaina tabacum roots after 

labelling with PIN1 antibody. Five days old Tobacco seedlings were fixed 

for 30 min in 2 % formaldehyde. Anti-PIN1 mouse monoclonal primary 

antibody (clone 10A7) diluted 1: 50 plus Alexa Fluor® 488 goat anti-mouse 

IgG as secondary antibody diluted 1: 800 (shown in green color) (panel A) 

were used. Co-staining with DAPI visualizes nuclei (shown as artificial color 

in white) (panel B). Ortho-view was shown. Scale bar 100 µm.

Additional �le 5. 3D reconstruction of Arabidopsis leaf after labelling 

with calcofluor white (cell wall) and propiduim iodine (nucleus). Five days 

old seedlings have been fixed and stained with propidium iodine (nucleus 

is shown in red) and calcofluor white (cell wall, displayed in green). Ortho-

view was shown. Scale bar 50 µm.

Additional �le 6. Example of the automatic analysis of 3D images after 

EdU labelling. Five days old Arabidopsis seedlings have been incubated 

with EdU/colchicine for 90 min., fixed and cleared with hot methanol. 

Cell wall has been digested and membrane has been permeabilized. 

Seedlings have been incubated with EdU specific dye (C1037, Invitrogen) 

for 40 min., stained with DAPI and mounted on microscopic slides. Whole 

stacks have been scanned and 3D reconstruction has been performed 

using the iRoCS toolbox (http://lmb.informatik.uni-freiburg.de/lmbsoft/

iRoCS). Scale bar 50 µm. Nuclei are in red; EdU are in green. Axis is in 

yellow.
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