

**Open access** • Posted Content • DOI:10.1101/2021.02.02.21249309

# Protocol for a nationwide Internet-based health survey in workers during the COVID-19 pandemic in 2020 — Source link []

Yoshihisa Fujino, Tomohiro Ishimaru, Hisashi Eguchi, Mayumi Tsuji ...+4 more authors Institutions: University of Occupational and Environmental Health Japan Published on: 05 Feb 2021 - medRxiv (Cold Spring Harbor Laboratory Press)

Related papers:

- Protocol for a Nationwide Internet-based Health Survey of Workers During the COVID-19 Pandemic in 2020.
- Engagement with COVID-19 Public Health Measures in the United States: A Cross-Sectional Social Media Analysis from June to November 2020
- COVID-19 Sources of Information, Knowledge, and Preventive Behaviors Among the US Adult Population.
- What positives can be taken from the COVID-19 pandemic in Australia?
- The knowledge and practice towards COVID-19 pandemic prevention among residents of Ethiopia. An online cross-sectional study.



- 1 Protocol for a nationwide Internet-based health survey in workers during the COVID-19
- 2 pandemic in 2020
- 3 Yoshihisa Fujino<sup>1</sup>, M.D., M.P.H., Ph.D., Tomohiro Ishimaru<sup>1</sup>, M.D., M.P.H., Ph.D.,
- 4 Hisashi Eguchi<sup>2</sup>, M.D., M.B.A., Ph.D., Mayumi Tsuji<sup>3</sup>, M.D., Ph.D., Seiichiro Tateishi<sup>4</sup>,
- 5 M.D., Ph.D., Akira Ogami<sup>5</sup>, M.D., Ph.D., Koji Mori<sup>6</sup>, M.D., Ph.D., Shinya Matsuda<sup>7</sup>,
- 6 M.D., Ph.D., for the CORoNaWork project
- <sup>7</sup> <sup>1</sup> Department of Environmental Epidemiology, Institute of Industrial Ecological Sciences,
- 8 University of Occupational and Environmental Health, Japan
- 9 <sup>2</sup> Department of Mental Health, Institute of Industrial Ecological Sciences, University of
- 10 Occupational and Environmental Health, Japan
- <sup>3</sup> Department of Environmental Health, School of Medicine, University of Occupational
- 12 and Environmental Health, Japan
- <sup>4</sup> Department of Occupational Medicine, School of Medicine, University of
- 14 Occupational and Environmental Health, Japan
- <sup>5</sup> Department of Work Systems and Health, Institute of Industrial Ecological Sciences,
- 16 University of Occupational and Environmental Health, Japan NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

| 17 | <sup>6</sup> Department of Occupational | Health Practice and I | Management, I | nstitute of I | ndustrial |
|----|-----------------------------------------|-----------------------|---------------|---------------|-----------|
|    |                                         |                       |               |               |           |

- 18 Ecological Sciences, University of Occupational and Environmental Health, Japan
- <sup>7</sup> Department of Preventive Medicine and Community Health, School of Medicine,
- 20 University of Occupational and Environmental Health, Japan
- 21
- 22 Address correspondence to Yoshihisa Fujino<sup>1</sup>, M.D., M.P.H., Ph.D.
- 23 Department of Environmental Epidemiology, Institute of Industrial Ecological Sciences,
- 24 University of Occupational and Environmental Health, Japan
- 25 1-1, Iseigaoka, Yahatanishiku, Kitakyushu, 807-8555, Japan
- 26 Tel: +81-93-691-7401
- 27 Email: zenq@med.uoeh-u.ac.jp

## 29 Abstract

| 30 | The ever-changing social implications of the COVID-19 pandemic have resulted in an        |
|----|-------------------------------------------------------------------------------------------|
| 31 | urgent need to understand the working environments and health status of workers. We       |
| 32 | conducted a nationwide Internet-based health survey in Japanese workers in December       |
| 33 | 2020, in the midst the country's "third wave" of COVID-19 infection. Of 33,087 surveys    |
| 34 | collected, 6,051 were determined to have invalid responses. The 27,036 surveys            |
| 35 | included in the study were balanced in terms of geographical area, participant sex, and   |
| 36 | type of work, according to the sampling plan. Men were more likely than women to          |
| 37 | have telecommuted, while women were more likely to have resigned since April 2020.        |
| 38 | Moreover, 40% and 9.1% of respondents had a K6 score of 5 or higher and 13 or higher,     |
| 39 | respectively, they did not exhibit extremely poor health. The present study describes the |
| 40 | protocol used to conduct an Internet-based health survey in workers and a summary of      |
| 41 | its results during a period when COVID-19 was spreading rapidly in Japan. In the future,  |
| 42 | we plan to use this survey to examine the impact of COVID-19 on workers' work styles      |
| 43 | and health.                                                                               |

44 Keywords: COVID-19, Japan, Occupational Health, Surveys and Questionnaires,

45 Teleworking

### 46 Introduction

| 47                   | The global outbreak of COVID-19 in 2020 has had an enormous impact on the                                                                                                                                                                                                                                                                     |
|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 48                   | economy, daily life, and medical practice in Japan[1–3]. In April 2020, the Japanese                                                                                                                                                                                                                                                          |
| 49                   | government declared a state of emergency and asked the population to refrain from going                                                                                                                                                                                                                                                       |
| 50                   | out and for workplaces to close. These broad restrictions on movement, which aimed to                                                                                                                                                                                                                                                         |
| 51                   | control the pandemic, reduced economic activity, which in turn caused a deterioration in                                                                                                                                                                                                                                                      |
| 52                   | work environment, worsening of corporate financial performance, and increases in                                                                                                                                                                                                                                                              |
| 53                   | layoffs and unemployment[4]. Between February and December 2020, the COVID-19                                                                                                                                                                                                                                                                 |
| 54                   | pandemic caused more than 800 companies to declare bankruptcy[5].                                                                                                                                                                                                                                                                             |
|                      |                                                                                                                                                                                                                                                                                                                                               |
| 55                   | The COVID-19 pandemic has brought about dramatic changes to the work                                                                                                                                                                                                                                                                          |
| 55<br>56             | The COVID-19 pandemic has brought about dramatic changes to the work<br>environment. One major change is the wide adoption of telecommuting, which was                                                                                                                                                                                        |
|                      |                                                                                                                                                                                                                                                                                                                                               |
| 56                   | environment. One major change is the wide adoption of telecommuting, which was                                                                                                                                                                                                                                                                |
| 56<br>57             | environment. One major change is the wide adoption of telecommuting, which was<br>boosted by the government's state of emergency declaration in April[6,7]. In Japan,                                                                                                                                                                         |
| 56<br>57<br>58       | environment. One major change is the wide adoption of telecommuting, which was<br>boosted by the government's state of emergency declaration in April[6,7]. In Japan,<br>telecommuting was previously discussed as a strategy for reducing long working hours[8].                                                                             |
| 56<br>57<br>58<br>59 | environment. One major change is the wide adoption of telecommuting, which was<br>boosted by the government's state of emergency declaration in April[6,7]. In Japan,<br>telecommuting was previously discussed as a strategy for reducing long working hours[8].<br>The COVID-19 pandemic and the state of emergency declaration pushed many |

| 63 | and dietary habits. There are also concerns about the impact on musculoskeletal diseases, |
|----|-------------------------------------------------------------------------------------------|
| 64 | back pain, and video display terminal-related diseases in the home environment, which     |
| 65 | are inadequately managed compared to those occurring in the office environment.           |
| 66 | In December 2020, Japan experienced its "third wave" of infections, the largest           |
| 67 | increase to date even compared to the previous waves experienced in May and August.       |
| 68 | On December 22, the number of infections in the country reached a record high of          |
| 69 | approximately 3,200. On December 15, the Ministry of Health, Labor and Welfare            |
| 70 | announced that seven prefectures had reached Stage 4 of the government's four-stage       |
| 71 | alert scale, indicating that occupancy of hospital beds reserved for the severely ill had |
| 72 | exceeded 50%, and that the medical supply system was reaching its limit. On December      |
| 73 | 21, the Japan Medical Association declared a medical emergency. In a statement, it        |
| 74 | announced that patients infected with COVID-19 and regular people in Japan would not      |
| 75 | be able to receive normal medical care, and that all necessary medical care provisions    |
| 76 | across the country would be brought to a standstill[9].                                   |
| 77 | The ever-changing landscape and impact of the COVID-19 pandemic has                       |
| 11 | The ever-enanging landscape and impact of the COVID-19 pandemic has                       |
| 78 | resulted in an urgent need to understand the working and social environment and health    |
| 79 | status of workers. A number of concerns are emerging, including those related to the      |

| 80 | socioeconomic status, mental health, lifestyle, work productivity, isolation and loneliness, |
|----|----------------------------------------------------------------------------------------------|
| 81 | family relationships, infection anxiety, and infection prevention activities of workers, and |
| 82 | to the corporate support systems and corporate infection prevention measures put in place    |
| 83 | during the COVID-19 pandemic. We examined some of these by conducting an urgent              |
| 84 | large-scale Internet survey of workers in the midst of the third wave of COVID-19            |
| 85 | infection in Japan in December 2020.                                                         |

### 87 Methods

| 88  | This survey is a prospective cohort study conducted online among Internet                |
|-----|------------------------------------------------------------------------------------------|
| 89  | monitors. The baseline survey was conducted from December 22 to 25, 2020. A second       |
| 90  | survey is scheduled for 2021. The study targeted those who were working and between      |
| 91  | the ages of 20 and 65 at the time of the baseline survey, and was approved by the Ethics |
| 92  | Committee of the University of Occupational and Environmental Health, Japan.             |
| 93  |                                                                                          |
| 94  | Sampling plan                                                                            |
| 95  | To avoid geographic bias among participants, it was necessary to adopt a                 |
| 96  | sampling plan that accounted for regional characteristics. However, because some         |
| 97  | prefectures only had a few registered monitors, sampling by prefecture was not possible. |
| 98  | Therefore, the prefectures were divided into five regions based on geographic region     |
| 99  | and infection status: the prefectures were divided into four regions based on the        |
| 100 | cumulative infection rate, and the region with the highest cumulative infection rate was |
| 101 | further divided into the Kanto region and non-Kanto region (Table 1). The cumulative     |
| 102 | infection rate was based on information available as of December 16, 2020.               |
| 103 | The sampling plan was designed to collect an equal number of respondents                 |
| 104 | from across 20 collection units, each consisting of a combination of five regions, with  |

| 105 | comparable sex, and office and non-office worker status. The target sample size was        |
|-----|--------------------------------------------------------------------------------------------|
| 106 | 30,000, with 1,500 respondents from each collection unit. A total of 1,650 respondents,    |
| 107 | which represents the target sample size plus a margin of 10%, were collected from each     |
| 108 | collection unit. Ultimately, a total of 33,087 respondents were collected for the Internet |
| 109 | survey.                                                                                    |
| 110 |                                                                                            |
| 111 | Subject recruitment procedure                                                              |

The survey was commissioned by Cross Marketing Inc. (Tokyo, Japan), which has 4.7 million registered monitors. Of the registered monitors, 605,381 were sent an invitation to participate via e-mail. Of these, a total of 55,045 registered monitors answered the initial screening questions to participate in the survey, and 33,302 who matched the survey's criteria (worker status, region, sex, and age) responded to the survey.

had participated. Approximately 98% of the sample was collected by December 23.
Collection of the remaining sample, which consisted of women only, was completed on
December 26.

The survey was launched on December 22, 2020, and by December 26, 33,302 people

122

### 123 Data retrieval

| 124 | Initially, of the 33,302 respondents, 215 were excluded because they were              |
|-----|----------------------------------------------------------------------------------------|
| 125 | deemed to have provided fraudulent responses by Cross Marketing Inc., leaving 33,087   |
| 126 | respondents. Subsequently, 6,051 surveys determined to contain invalid responses or    |
| 127 | response errors were excluded, leaving 27,036 samples for inclusion in the study. The  |
| 128 | exclusion criteria were as follows: extremely short response time (≤6 minutes),        |
| 129 | extremely low body weight (<30 kg), extremely short height (<140 cm), inconsistent     |
| 130 | answers to similar questions throughout the survey (e.g., inconsistency to questions   |
| 131 | about marital status and living area), and wrong answers to a staged question used to  |
| 132 | identify fraudulent responses (choose the third largest number from the following five |
| 133 | numbers).                                                                              |
| 134 |                                                                                        |
| 135 | Measurements                                                                           |
| 136 | The survey items included basic socio-demographic characteristics such as              |

The survey items included basic socio-demographic characteristics such as family structure, income, educational background, area of residence, area of employment, and work environment-related factors. The survey included work-related questionnaires like the Japanese version of the Job Content Questionnaire[10,11], the Japanese version of the 3-item Utrecht Work Engagement Scale [12,13], and Work Functioning

| 141 | Impairment Scale (WFun)[14], and inquired about frequency of working at home.           |
|-----|-----------------------------------------------------------------------------------------|
| 142 | Psychosocial conditions were examined through assessment of health-related quality of   |
| 143 | life (HRQOL), K6[15], and loneliness. HRQOL was measured using the CDC                  |
| 144 | HRQOL-4[16,17], which was originally developed by the US Centers for Disease            |
| 145 | Control and Prevention. Health-related items included medical history, treatment        |
| 146 | interruptions, back pain, and stiff shoulders. Lifestyle-related items included items   |
| 147 | related to smoking, drinking, exercise, and eating habits. The survey also asked about  |
| 148 | preventive behaviors against infection, such as hand washing and gargling, and concerns |
| 149 | about infection.                                                                        |

### 151 **Results**

| 152 | Target sample sizes were successfully obtained for all allocation conditions,             |
|-----|-------------------------------------------------------------------------------------------|
| 153 | including with regard to region, sex, and type of work (Table 1).                         |
| 154 | Table 2 shows the number of subjects included for further analyses and the                |
| 155 | number of surveys judged to contain fraudulent responses, by sampling unit and sex.       |
| 156 | There was no significant regional difference in the percentage of responses that were     |
| 157 | judged to be fraudulent.                                                                  |
| 158 | Table 3 compares the characteristics of respondents who were included and                 |
| 159 | excluded from the analysis. The following question was used to detect fraudulent          |
| 160 | responses: "Choose the third largest number from the following five numbers." We          |
| 161 | compared the characteristics of those who answered this question correctly versus         |
| 162 | incorrectly. Of those who answered incorrectly, 1.2% had extremely low body weight        |
| 163 | and 0.7% had extremely short height; both of these were significantly more prevalent      |
| 164 | than among respondents who answered correctly. Those who answered incorrectly were        |
| 165 | also more likely to provide inconsistent answers related to cohabitants and residence,    |
| 166 | and to have extremely short response times, compared to those who answered correctly.     |
| 167 | Conversely, people with extremely short response times were more likely than those        |
| 168 | with appropriate response times to answer the fraud-detecting question incorrectly, or to |

169 give inconsistent answers to questions about cohabitants and residence, or to have170 extremely low body weight or extremely short height.

Table 4 shows the characteristics of the analysis subjects by sampling unit. Region 5, corresponding to the Kanto region, which had the highest cumulative infection rate, had more high-income earners and more people with telecommuting experience than the other regions. Region 5 also had more people with high WFun scores, high K6 scores, and poor self-rated health. In addition, 54 (1%) respondents from Region 5 reported a history of COVID-19 infection, compared to 30 (0.6%) respondents from Region 1.

Table 5 summarizes the characteristics of the analysis subjects by sex. The sample size was balanced for sex and type of work according to the study design. Men accounted for 51% of the total sample. Office workers accounted for 49%, among both men and women. The smoking rate among men was 35.1%, higher than that among women (16.3%). Men were more likely than women to have telecommuted, while women were more likely to have resigned since April 2020. A total of 0.7% of both men and women reported a history of COVID-19 infection.

### 186 **Discussion**

| 187 | We conducted an Internet-based health survey in workers during the third wave                 |
|-----|-----------------------------------------------------------------------------------------------|
| 188 | of COVID-19 infection in Japan in December 2020. Workers were asked about their               |
| 189 | socioeconomic status, health status, work status, infection prevention behaviors, and         |
| 190 | socio-psychological factors.                                                                  |
| 191 | Internet surveys have become more common in recent years in the fields of                     |
| 192 | public health and epidemiology because relatively large amounts of data can be collected      |
| 193 | in a short period of time. Compared with conventional population- and workplace-based         |
| 194 | surveys, Internet surveys have several advantages: it is easier to achieve the target sample  |
| 195 | size, it is possible to incorporate a large number of batteries, and they can be conducted in |
| 196 | a short period of time. In this case, an Internet survey was necessary because the aim was    |
| 197 | to conduct an urgent study during a phase of rapid spread of COVID-19 infection in Japan.     |
| 198 | We think our data are valuable for studying working conditions and worker health during       |
| 199 | the spread of infection.                                                                      |
| 200 | One of the drawbacks of Internet surveys is the issue of fraudulent                           |
| 201 | responses[18,19]. By answering questions, Internet monitors receive an incentive in the       |
| 202 | form of points, which have monetary value. This can cause some to provide random or           |
| 203 | fraudulent responses to earn points; thus, it is important to exclude such respondents. In    |

| 204 | this survey, we used several algorithms to detect fraudulent responses. First, we included |
|-----|--------------------------------------------------------------------------------------------|
| 205 | a staged question that asks respondents to choose the third largest number from five       |
| 206 | numbers. A total of 93% of respondents provided the correct answer for this question.      |
| 207 | Second, the time taken to answer the question was recorded by the system. Third, answers   |
| 208 | from respondents with extremely low body weight or short height were judged to be          |
| 209 | incorrect. Because height and weight questions required the respondents to type in         |
| 210 | numerical values using a keyboard, we assumed that fraudulent responses were more          |
| 211 | likely to occur in these questions than in simple click-and-answer questions. Fourth, we   |
| 212 | examined responses for inconsistencies among questions that were repeated throughout       |
| 213 | the survey. Questions used to verify inconsistencies inquired about the presence or        |
| 214 | absence of family members living together and the area of residence. Of 33,087             |
| 215 | respondents, 27,036 were judged to have responded appropriately. We confirmed that         |
| 216 | those who were found to have provided fraudulent responses under one of the four           |
| 217 | conditions above also often provided fraudulent responses under the other three            |
| 218 | conditions.                                                                                |
| 219 | In addition, we were able to increase the credibility of the data by confirming            |
| 220 | already known relationships between factors. For example, men were more likely to          |
| 221 | smoke than women, and women were more likely to have higher K6 scores. Region 5,           |

| 222 | the Kanto region, which includes Tokyo, had more high-income earners than the other          |
|-----|----------------------------------------------------------------------------------------------|
| 223 | regions. There was also more telecommuting experience in Region 5 than in the other          |
| 224 | relatively rural regions. Moreover, 195 (0.7%) of the 27,036 respondents reported that       |
| 225 | they had been infected with COVID-19. Because of the self-reported nature of the             |
| 226 | survey, the data should be interpreted with caution; however, the fact that the lowest       |
| 227 | infection rate of 0.6% was observed in Region 1, while the highest rate of 1% was in         |
| 228 | Region 5 are consistent with regional infection rates suggest the validity of this data.     |
| 229 | The sampling plan was very important in this study. Workers' work environment,               |
| 230 | socioeconomic status, and COVID-19 infection status, which comprised the objective           |
| 231 | variables of this survey, were expected to vary greatly by region and occupation. In         |
| 232 | contrast, we assumed that most of the pre-registered respondents in the Internet monitor     |
| 233 | would reside in urban areas, and that most of the respondents would be office workers.       |
| 234 | Therefore, we sampled respondents such that they were balanced in terms of sex, type of      |
| 235 | work, and region in which infection was confirmed.                                           |
| 236 | Selection bias is unavoidable in Internet surveys. This is because respondents               |
| 237 | are not representative of any group[18,19]. In addition, respondents to Internet surveys     |
| 238 | are thought to be subject to the volunteer effect due to self-selection for participation.   |
| 239 | Therefore, it is important to determine the characteristics of the target population of this |

| 240 | study by comparing a variety of factors with those in previous studies. The present         |
|-----|---------------------------------------------------------------------------------------------|
| 241 | study collected information on lifestyle-related factors such as smoking, alcohol           |
| 242 | consumption, and exercise and physical activity. In addition, we employed many health       |
| 243 | and work-related psychosocial batteries in this study, including K6, the Job Content        |
| 244 | Questionnaire, Utrecht Work Engagement Scale, WFun, self-rated health, and CDC              |
| 245 | HRQOL4. All of these have been employed in many workplaces and populations in               |
| 246 | previous studies.                                                                           |
| 247 | K6, for example, has been used in many studies. K6 was developed by Kessler                 |
| 248 | et al. to screen for psychiatric distress, such as that observed in depression and anxiety, |
| 249 | and is widely used in surveys of the general population as an indicator of mental           |
| 250 | health[20]. Depending on the survey, cutoff values of 5, 10, and 13 points are used for     |
| 251 | K6. In the 2007 National Survey on Basic Living Conditions, 27% of male and 33% of          |
| 252 | female workers had a K6 score of 5 or higher[21]. In a survey of multiple workplaces,       |
| 253 | 10.8% of 1,709 workers had K6 scores of 13 or higher[22]. In the present study, 40%,        |
| 254 | 19% and 9.1% had a K6 score of 5 or higher, 10 or higher, and 13 or higher,                 |
| 255 | respectively. These results suggest that while more subjects in this study experienced      |
| 256 | mild to moderate psychological distress than those in previous studies, they did not        |
| 257 | show extremely poor health.                                                                 |

- 258 In conclusion, this study describes the protocol used to conduct an
- 259 Internet-based health survey in workers and a summary of its results in December 2020,
- 260 when COVID-19 was spreading rapidly in Japan. In the future, we plan to use this
- survey to examine the impact of COVID-19 on workers' work styles and health.

# 262 Acknowledgements

| 263        | This study was funded by a research grant from the University of Occupational                                                                                   |
|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 264        | and Environmental Health, Japan; a general incorporated foundation (Anshin Zaidan) for                                                                          |
| 265        | the development of educational materials on mental health measures for managers at                                                                              |
| 266        | small-sized enterprises; Health, Labour and Welfare Sciences Research Grants:                                                                                   |
| 267        | Comprehensive Research for Women's Healthcare (H30-josei-ippan-002) and Research                                                                                |
| 268        | for the establishment of an occupational health system in times of disaster                                                                                     |
| 269        | (H30-roudou-ippan-007); and scholarship donations from Chugai Pharmaceutical Co.,                                                                               |
|            |                                                                                                                                                                 |
| 270        | Ltd.                                                                                                                                                            |
| 270<br>271 | Ltd.<br>Present members of the Collaborative Online Research on Novel-coronavirus                                                                               |
|            |                                                                                                                                                                 |
| 271        | Present members of the Collaborative Online Research on Novel-coronavirus                                                                                       |
| 271<br>272 | Present members of the Collaborative Online Research on Novel-coronavirus<br>and Work (CORoNaWork) project are: Dr. Yoshihisa Fujino (current chairperson), Dr. |

- 276 Ryutaro Matsugaki, Dr. Seiishiro Tateishi, Dr. Shinya Matsuda, Dr. Tomohiro Ishimaru,
- 277 Dr. Tomohisa Nagata, Dr. Yosuke Mafune, and Ms. Ning Liu, in alphabetical order. All

- 278 of the members are affiliated with the University of Occupational and Environmental
- 279 Health, Japan.

280

# 281 **Conflict of interests**

282 The authors declare no conflicts of interest associated with this manuscript.

### 284 **References**

- Jimi H, Hashimoto G. Challenges of COVID-19 outbreak on the cruise ship
   Diamond Princess docked at Yokohama, Japan: a real-world story. Glob Health
   Med. (2020);2: 63–65.
- Sayeed UB, Hossain A. How Japan managed to curb the pandemic early on:
   Lessons learned from the first eight months of COVID-19. J Glob Health.
   (2020);10: 020390.
- 291 3. Coronavirus Disease (COVID-19) Situation Reports. [cited 22 Dec 2020].
  292 Available:
- https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-report
   s
- 4. the Japan Institute for Labour Policy and Training. Novel Coronavirus
  (COVID-19). [cited 25 Dec 2020]. Available:
  https://www.jil.go.jp/english/special/covid-19/index.html
- 5. Databank T. Japan's Business Failures in December2020. [cited 25 Jan 2020].
  Available: https://www.tdb-en.jp/news\_reports/backnumber/brr2012.html
- 300 Tokyo Metroplolitan Government. [Results of an emergency survey on telework 6. 301 rates]. 11 May 2020 [cited 25 Dec 2020]. adoption Available: 302 https://www.metro.tokyo.lg.jp/tosei/hodohappyo/press/2020/05/12/10.html
- 303 7. NTT DATA INSTITUTE OF MANAGEMENT CONSULTING, Inc. In: [Survey
  304 on the implementation of telework before and after the declaration of emergency
  305 status of new coronavirus infection ] [Internet]. [cited 25 Dec 2020]. Available:
  306 https://www.nttdata-strategy.com/newsrelease/200910.html
- 3078.Ministry of Health, Labour and Welfare, Japan. [Study Group on Future Telework308WorkStyles].[cited25Dec2020].Available:309https://www.mhlw.go.jp/stf/shingi/other-kintou\_488802\_00001.html
- 3109.Japan Medical Association. Declaration of medical emergency. 21 Dec 2020 [cited31122Dec2020].Available:312https://www.med.or.jp/dl-med/teireikaiken/20201221\_11.pdf

313 10. Karasek RA. Job content questionnaire and users guide Lowell. MA USA:
314 University of Massachusetts, Department of Work Environment (1985).

11. Kawakami N, Kobayashi F, Araki S, Haratani T, Furui H. Assessment of job stress
dimensions based on the job demands- control model of employees of
telecommunication and electric power companies in Japan: reliability and validity
of the Japanese version of the Job Content Questionnaire. Int J Behav Med.
1995;2: 358–375.

- Shimazu A, Schaufeli WB, Kosugi S, Suzuki A, Nashiwa H, Kato A, et al. Work
  engagement in japan: Validation of the Japanese version of the Utrecht work
  engagement scale. Appl Psychol. (2008) ;57: 510–523.
- 323 13. Schaufeli WB, Shimazu A, Hakanen J, Salanova M, De Witte H. An ultra-short
  324 measure for work engagement: The UWES-3 validation across five countries. Eur J
  325 Psychol Assess. (2019);35: 577–591.
- 14. Fujino Y, Uehara M, Izumi H, Nagata T, Muramatsu K, Kubo T, et al.
  Development and validity of a work functioning impairment scale based on the
  Rasch model among Japanese workers. J Occup Health. (2015);57: 521–531.
- Furukawa TA, Kawakami N, Saitoh M, Ono Y, Nakane Y, Nakamura Y, et al. The
  performance of the Japanese version of the K6 and K10 in the World Mental
  Health Survey Japan. Int J Methods Psychiatr Res. (2008);17: 152–158.
- 16. Promotion USD of H&. HSCFDC (cdc); NCFCDP&. H, US Department of Health
  & Human Services Centers for Disease Control (CDC); National Center for
  Chronic Disease Prevention & Health Promotion. Measuring Healthy Days:
  Population Assessment of Health-Related Quality of Life. PsycEXTRA Dataset.
  2000. doi:10.1037/e372122004-001
- 17. Chimed-Ochir O, Mine Y, Okawara M, Ibayashi K, Miyake F, Fujino Y. Validation
  of the Japanese version of the CDC HRQOL-4 in workers. J Occup Health.
  (2020);62: e12152.
- 340 18. Greenacre ZA. The importance of selection bias in internet surveys. Open J Stat.
  341 (2016);06: 397–404.
- 342 19. Eysenbach G, Wyatt J. Using the Internet for surveys and health research. J Med

- 343 Internet Res. (2002);4: E13.
- 20. Kessler RC, Barker PR, Colpe LJ, Epstein JF, Gfroerer JC, Hiripi E, et al.
  Screening for serious mental illness in the general population. Arch Gen Psychiatry.
  (2003);60: 184–189.
- Inoue A, Kawakami N, Tsuchiya M, Sakurai K, Hashimoto H. Association of
  occupation, employment contract, and company size with mental health in a
  national representative sample of employees in Japan. J Occup Health. (2010);52:
  227–240.
- Fushimi M, Saito S, Shimizu T, Kudo Y, Seki M, Murata K. Prevalence of
  psychological distress, as measured by the Kessler 6 (K6), and related factors in
  Japanese employees. Community Ment Health J. (2012);48: 328–335.

|                                                                                                                                           | Cumulative COVID-19 |            | Office    | workers   | Non-offic | e workers |
|-------------------------------------------------------------------------------------------------------------------------------------------|---------------------|------------|-----------|-----------|-----------|-----------|
| Design / Drofesture                                                                                                                       | incidence rate per  | Total      | Male      | Female    | Male      | Female    |
| Region/Prefecture                                                                                                                         | million population  | (n=33,087) | (n=8,261) | (n=8,300) | (n=8,323) | (n=8,203) |
| (Kanto region) Tokyo*, Kanagawa, Saitama, Chiba                                                                                           |                     | 6,657      | 1,682     | 1,684     | 1,651     | 1,640     |
| (non-Kanto region) Okinawa, Osaka*, Hokkaido*, Aichi*,<br>Hyogo*, Fukuoka, Kyoto, Nara                                                    | 1168-3496           | 6,700      | 1,654     | 1,696     | 1,676     | 1,674     |
| Gunma, Ishikawa, Gifu, Kumamoto, Ibaragi, Miyagi,<br>Hiroshima, Shiga, Mie*, Kochi*, Sizuoka, Wakayama,<br>Miyazaki, Yamanashi, Kagoshima | 535-911             | 6,579      | 1,652     | 1,639     | 1,659     | 1,629     |
| Nagano, Saga, Tochigi, Oita, Toyama, Okayama, Fukui                                                                                       | 438-490             | 6,537      | 1,627     | 1,620     | 1,665     | 1,625     |
| Fukushima, Yamaguchi, Aomori, Ehime, Yamagata,<br>Nagasaki, Iwate, Tokushima, Shimane, Kagawa, Nigata,<br>Tottori, Akita                  | 97-356              | 6,614      | 1,646     | 1,661     | 1,672     | 1,635     |

### Table 1. Surveys collected based on sampling plan

\* Prefectures that had reached Stage 4 of the government's four-stage alert scale, indicating that occupancy of hospital beds reserved for the severely ill had exceeded 50%, according to the Ministry of Health, Labor and Welfare on December 15, 2020.

|                                                                                                                                           | Samples            | for analysis         | Samples judged to have invalid responses |                     |      |        |  |
|-------------------------------------------------------------------------------------------------------------------------------------------|--------------------|----------------------|------------------------------------------|---------------------|------|--------|--|
| Region/Prefecture                                                                                                                         | Mala               | E                    |                                          | F 1                 | %    |        |  |
|                                                                                                                                           | Male<br>(n=13,814) | Female<br>(n=13,222) | Male<br>(n=2,770)                        | Female<br>(n=3,281) | Male | Female |  |
| (Kanto region) Tokyo*, Kanagawa, Saitama, Chiba                                                                                           | 2,831              | 2,629                | 502                                      | 695                 | 18%  | 26%    |  |
| (non-Kanto region) Okinawa, Osaka*, Hokkaido*,<br>Aichi*, Hyogo*, Fukuoka, Kyoto, Nara                                                    | 2,783              | 2,667                | 547                                      | 703                 | 20%  | 26%    |  |
| Gunma, Ishikawa, Gifu, Kumamoto, Ibaragi, Miyagi,<br>Hiroshima, Shiga, Mie*, Kochi*, Sizuoka, Wakayama,<br>Miyazaki, Yamanashi, Kagoshima | 2,725              | 2,609                | 586                                      | 659                 | 22%  | 25%    |  |
| Nagano, Saga, Tochigi, Oita, Toyama, Okayama, Fukui                                                                                       | 2,766              | 2,684                | 526                                      | 561                 | 19%  | 21%    |  |
| Fukushima, Yamaguchi, Aomori, Ehime, Yamagata,<br>Nagasaki, Iwate, Tokushima, Shimane, Kagawa, Nigata,<br>Tottori, Akita                  | 2,709              | 2,633                | 609                                      | 663                 | 22%  | 25%    |  |
| Subtotal                                                                                                                                  | 13814              | 13222                | 2770                                     | 3281                | 20%  | 25%    |  |

# Table 2. Number of survey responses eligible for analysis and the number judged to have invalid responses.

|                                                                          | Samples for analysis               |                                                       |         | Response to question aimed at detecting fraudulent responses |                     |          | Time taken to respond |                  |         |
|--------------------------------------------------------------------------|------------------------------------|-------------------------------------------------------|---------|--------------------------------------------------------------|---------------------|----------|-----------------------|------------------|---------|
|                                                                          | Samples for<br>analysis<br>n=27036 | Samples judged to have<br>invalid responses<br>n=6051 | p       | Correct<br>n=30652                                           | Incorrect<br>n=2435 | р        | >6 min<br>n=30688     | ≤6 min<br>n=2399 | р       |
| Age, mean (SD)                                                           | 47.0 (10.5)                        | 42.8 (10.9)                                           | < 0.001 | 46.5 (10.6)                                                  | 42.9 (11.4)         | < 0.001  | 46.7 (10.6%)          | 40.4 (10.0%)     | < 0.001 |
| Sex, male (%)                                                            | 13814 (51.1%)                      | 2770 (45.8%)                                          | < 0.001 | 15631 (51.0%)                                                | 953 (39.1%)         | < 0.001  | 15381 (50.1%)         | 1203 (50.1%)     | 0.980   |
| Weight <30kg (%)                                                         | 0 (0.0%)                           | 101 (1.7%)                                            | < 0.001 | 72 (0.2%)                                                    | 29 (1.2%)           | < 0.001  | 77 (0.3%)             | 24 (1.0%)        | < 0.001 |
| Height <140cm (%)                                                        | 0 (0.0%)                           | 71 (1.2%)                                             | < 0.001 | 55 (0.2%)                                                    | 16 (0.7%)           | < 0.001  | 58 (0.2%)             | 13 (0.5%)        | < 0.001 |
| Incorrect answer to question aimed at detecting fraudulent responses (%) | 0 (0.0%)                           | 2435 (40.2%)                                          | < 0.001 | 0 (0.0%)                                                     | 2435 (100.0%)       | ) <0.001 | 2080 (6.8%)           | 355 (14.8%)      | < 0.001 |
| Inconsistent responses regarding family members living together (%)      | 0 (0.0%)                           | 184 (3.0%)                                            | < 0.001 | 145 (0.5%)                                                   | 39 (1.6%)           | < 0.001  | 138 (0.4%)            | 46 (1.9%)        | < 0.001 |
| Inconsistent responses regarding area of residence (%)                   | 0 (0.0%)                           | 1852 (30.6%)                                          | < 0.001 | 1592 (5.2%)                                                  | 260 (10.7%)         | < 0.001  | 1525 (5.0%)           | 327 (13.6%)      | < 0.001 |
| Time taken to respond ≤6 minutes<br>(%)                                  | 0 (0.0%)                           | 2399 (39.6%)                                          | < 0.001 | 2044 (6.7%)                                                  | 355 (14.6%)         | < 0.001  | 0 (0.0%)              | 2399 (100.0%)    | < 0.001 |

#### Table 3. Comparison of analyzed and excluded samples

|                                                                                                                              | Sampling unit (n=27036) |              |              |              |              |         |  |
|------------------------------------------------------------------------------------------------------------------------------|-------------------------|--------------|--------------|--------------|--------------|---------|--|
|                                                                                                                              | Region 1                | Region 2     | Region 3     | Region 4     | Region 5     | p-value |  |
| N                                                                                                                            | 5342                    | 5450         | 5334         | 5450         | 5460         |         |  |
| Age, mean                                                                                                                    | 46.5 (10.7)             | 45.8 (10.8)  | 47.1 (10.5)  | 47.8 (10.3)  | 47.7 (10.3)  | < 0.001 |  |
| Sex, male (%)                                                                                                                | 2709 (50.7%)            | 2766 (50.8%) | 2725 (51.1%) | 2783 (51.1%) | 2831 (51.8%) | 0.770   |  |
| Marriage status                                                                                                              |                         |              |              |              |              |         |  |
| Currently married                                                                                                            | 3022 (56.6%)            | 3211 (58.9%) | 2999 (56.2%) | 2938 (53.9%) | 2859 (52.4%) | < 0.001 |  |
| Divorced or widowed                                                                                                          | 586 (11.0%)             | 588 (10.8%)  | 575 (10.8%)  | 601 (11.0%)  | 493 (9.0%)   |         |  |
| Never married                                                                                                                | 1734 (32.5%)            | 1651 (30.3%) | 1760 (33.0%) | 1911 (35.1%) | 2108 (38.6%) |         |  |
| Household income                                                                                                             |                         |              |              |              |              |         |  |
| Less than 2 million yen                                                                                                      | 385 (7.2%)              | 271 (5.0%)   | 368 (6.9%)   | 378 (6.9%)   | 307 (5.6%)   | < 0.001 |  |
| 2 to 9.99 million yen                                                                                                        | 4301 (80.5%)            | 4409 (80.9%) | 4293 (80.5%) | 4409 (80.9%) | 4419 (80.9%) |         |  |
| More than 10 million yen                                                                                                     | 656 (12.3%)             | 795 (14.6%)  | 767 (14.4%)  | 843 (15.5%)  | 1189 (21.8%) |         |  |
| Job type                                                                                                                     |                         |              |              |              |              |         |  |
| Mainly desk work (clerical or computer work)                                                                                 | 2689 (50.3%)            | 2684 (49.2%) | 2626 (49.2%) | 2701 (49.6%) | 2768 (50.7%) | < 0.001 |  |
| Mainly talking to people (customer service, sales, selling, etc.)                                                            | 1287 (24.1%)            | 1315 (24.1%) | 1304 (24.4%) | 1474 (27.0%) | 1547 (28.3%) |         |  |
| Mainly labor (work at production sites, physical work, nursing care, etc.)                                                   | 1366 (25.6%)            | 1451 (26.6%) | 1404 (26.3%) | 1275 (23.4%) | 1145 (21.0%) |         |  |
| Current smoker, %                                                                                                            | 1410 (26.4%)            | 1302 (23.9%) | 1386 (26.0%) | 1418 (26.0%) | 1488 (27.3%) | 0.002   |  |
| Do you telecommute? (Almost never)                                                                                           | 4641 (86.9%)            | 4632 (85.0%) | 4382 (82.2%) | 4174 (76.6%) | 3447 (63.1%) |         |  |
| Have you resigned or changed jobs since April 2020? (Yes)                                                                    | 320 (6.0%)              | 326 (6.0%)   | 369 (6.9%)   | 375 (6.9%)   | 331 (6.9%)   | 0.360   |  |
| Do you need any consideration or support from<br>your company to continue working in your<br>current health condition? (Yes) | 1369 (25.6%)            | 1395 (25.6%) | 1353 (25.4%) | 1339 (24.6%) | 1319 (24.2%) | 0.600   |  |
| Have you been infected with COVID-19? (Yes)                                                                                  | 30 (0.6%)               | 27 (0.5%)    | 38 (0.7%)    | 46 (0.8%)    | 54 (1.0%)    | 0.015   |  |
| WFun≥21                                                                                                                      | 1208 (22.6%)            | 1193 (21.9%) | 1189 (22.3%) | 1098 (20.1%) | 1103 (20.2%) | 0.001   |  |
| K6≥5                                                                                                                         | 2195 (41.1%)            | 2256 (41.4%) | 2180 (40.9%) | 2064 (37.9%) | 2122 (38.9%) | 0.004   |  |
| K6≥10                                                                                                                        | 1050 (19.7%)            | 992 (18.2%)  | 1033 (19.4%) | 990 (18.2%)  | 984 (18.0%)  | 0.080   |  |
| K6≥13                                                                                                                        | 519 (9.7%)              | 470 (8.6%)   | 551 (10.3%)  | 455 (8.3%)   | 465 (8.5%)   | < 0.001 |  |
| Perceived poor self-rated health                                                                                             | 2811 (52.6%)            | 2781 (51.0%) | 2723 (51.0%) | 2639 (48.4%) | 2626 (48.1%) | < 0.001 |  |

Table 4. Basic characteristics of respondents by region

### Table 5. Basic characteristics of respondents by sex

|                                                                                                                              | T - 4 - 1     | Se             | x             |  |
|------------------------------------------------------------------------------------------------------------------------------|---------------|----------------|---------------|--|
|                                                                                                                              | Total         | Male           | Female        |  |
| N                                                                                                                            | 27036         | 13814          | 13222         |  |
| Age, mean                                                                                                                    | 47.0 (10.5)   | 51.52 (8.5)    | 42.3 (10.4)   |  |
| Sex, male (%)                                                                                                                | 13814 (51.1%) | 13814 (100.0%) | -             |  |
| Marriage status                                                                                                              |               |                |               |  |
| Currently married                                                                                                            | 15029 (55.6%) | 9449 (68.4%)   | 5580 (42.2%)  |  |
| Divorced or widowed                                                                                                          | 2843 (10.5%)  | 981 (7.1%)     | 1862 (14.1%)  |  |
| Never married                                                                                                                | 9164 (33.9%)  | 3384 (24.5%)   | 5780 (43.7%)  |  |
| Household income                                                                                                             |               |                |               |  |
| Less than 2 million yen                                                                                                      | 1709 (6.3%)   | 705 (5.1%)     | 1004 (7.6%)   |  |
| 2 to 9.99 million yen                                                                                                        | 21077 (78.0%) | 10561 (76.5%)  | 10516 (79.5%) |  |
| More than 10 million yen                                                                                                     | 4250 (15.7%)  | 2548 (18.4%)   | 1702 (12.9%)  |  |
| Job type                                                                                                                     |               |                |               |  |
| Mainly desk work (clerical or computer work)                                                                                 | 13468 (49.8%) | 6896 (49.9%)   | 6572 (49.7%)  |  |
| Mainly talking to people (customer service, sales, selling, etc.)                                                            | 6927 (25.6%)  | 3068 (22.2%)   | 3859 (29.2%)  |  |
| Mainly labor (work at production sites, physical work, nursing care, etc.)                                                   | 6641 (24.6%)  | 3850 (27.9%)   | 2791 (21.1%)  |  |
| Current smoker, %                                                                                                            | 7004 (25.9%)  | 4855 (35.1%)   | 2149 (16.3%)  |  |
| Do you telecommute? (Almost never)                                                                                           | 21276 (78.7%) | 10453 (75.7%)  | 10823 (81.9%) |  |
| Have you resigned or changed jobs since April 2020?<br>(Yes)                                                                 | 1721 (6.4%)   | 803 (5.8%)     | 918 (6.9%)    |  |
| Do you need any consideration or support from your<br>company to continue working in your current health<br>condition? (Yes) | 6775 (25.1%)  | 3338 (24.1%)   | 3437 (26.0%)  |  |
| Have you been infected with COVID-19? (Yes)                                                                                  | 195 (0.7%)    | 101 (0.7%)     | 94 (0.7%)     |  |
| WFun≥21                                                                                                                      | 5791 (21.4%)  | 2786 (20.2%)   | 3005 (22.7%)  |  |
| K6≥5                                                                                                                         | 10817 (40.0%) | 4779 (34.6%)   | 6038 (45.7%)  |  |
| K6≥10                                                                                                                        | 5049 (18.7%)  | 2249 (16.3%)   | 2800 (21.2%)  |  |
| K6≥13                                                                                                                        | 2460 (9.1%)   | 1055 (7.6%)    | 1405 (10.6%)  |  |
| Perceived poor self-rated health                                                                                             | 13580 (50.2%) | 6732 (48.7%)   | 6848 (51.8%)  |  |