
This paper is included in the Proceedings of the

24th USENIX Security Symposium

August 12–14, 2015 • Washington, D.C.

ISBN 978-1-939133-11-3

Open access to the Proceedings of

the 24th USENIX Security Symposium

is sponsored by USENIX

Protocol State Fuzzing of TLS Implementations
Joeri de Ruiter, University of Birmingham; Erik Poll, Radboud University Nijmegen

https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/de-ruiter

USENIX Association 24th USENIX Security Symposium 193

Protocol state fuzzing of TLS implementations

Joeri de Ruiter

School of Computer Science

University of Birmingham

Erik Poll

Institute for Computing and Information Science

Radboud University Nijmegen

Abstract

We describe a largely automated and systematic analysis

of TLS implementations by what we call ‘protocol state

fuzzing’: we use state machine learning to infer state ma-

chines from protocol implementations, using only black-

box testing, and then inspect the inferred state machines

to look for spurious behaviour which might be an indica-

tion of flaws in the program logic. For detecting the pres-

ence of spurious behaviour the approach is almost fully

automatic: we automatically obtain state machines and

any spurious behaviour is then trivial to see. Detecting

whether the spurious behaviour introduces exploitable

security weaknesses does require manual investigation.

Still, we take the point of view that any spurious func-

tionality in a security protocol implementation is danger-

ous and should be removed.

We analysed both server- and client-side implemen-

tations with a test harness that supports several key ex-

change algorithms and the option of client certificate au-

thentication. We show that this approach can catch an

interesting class of implementation flaws that is appar-

ently common in security protocol implementations: in

three of the TLS implementations analysed new security

flaws were found (in GnuTLS, the Java Secure Socket

Extension, and OpenSSL). This shows that protocol state

fuzzing is a useful technique to systematically analyse

security protocol implementations. As our analysis of

different TLS implementations resulted in different and

unique state machines for each one, the technique can

also be used for fingerprinting TLS implementations.

1 Introduction

TLS, short for Transport Layer Security, is widely used

to secure network connections, for example in HTTPS.

Being one of the most widely used security protocols,

TLS has been the subject of a lot of research and many

issues have been identified. These range from crypto-

graphic attacks (such as problems when using RC4 [4])

to serious implementation bugs (such as Heartbleed [13])

and timing attacks (for example, Lucky Thirteen and

variations of the Bleichenbacher attack [3, 30, 9]).

To describe TLS, or protocols in general, a state ma-

chine can be used to specify possible sequences of mes-

sages that can be sent and received. Using automated

learning techniques, it is possible to automatically ex-

tract these state machines from protocol implementa-

tions, relying only on black-box testing. In essence,

this involves fuzzing different sequences of messages,

which is why we call this approach protocol state fuzzing.

By analysing these state machines, logical flaws in the

protocol flow can be discovered. An example of such

a flaw is accepting and processing a message to per-

form some security-sensitive action before authentica-

tion takes place. The analysis of the state machines can

be done by hand or using a model checker; for the anal-

yses discussed in this paper we simply relied on manual

analysis. Both approaches require knowledge of the pro-

tocol to interpret the results or specify the requirements.

However, in security protocols, every superfluous state or

transition is undesirable and a reason for closer inspec-

tion. The presence of such superfluous states or transi-

tions is typically easy to spot visually.

1.1 Related work on TLS

Various formal methods have been used to analyse dif-

ferent parts and properties of the TLS protocol [33, 16,

22, 32, 20, 31, 26, 24, 28]. However, these analyses look

at abstract descriptions of TLS, not actual implementa-

tions, and in practice many security problems with TLS

have been due to mistakes in implementation [29]. To

bridge the gap between the specification and implemen-

tation, formally verified TLS implementations have been

proposed [7, 8].

Existing tools to analyse TLS implementations mainly

focus on fuzzing of individual messages, in particular the

194 24th USENIX Security Symposium USENIX Association

certificates that are used. These certificates have been

the source of numerous security problems in the past.

An automated approach to test for vulnerabilities in the

processing of certificates is using Frankencerts as pro-

posed by Brubaker et al. [10] or using the tool x509test1.

Fuzzing of individual messages is orthogonal to the tech-

nique we propose as it targets different parts or aspects of

the code. However, the results of our analysis could be

used to guide fuzzing of messages by indicating proto-

col states that might be interesting places to start fuzzing

messages.

Another category of tools analyses implementations

by looking at the particular configuration that is used.

Examples of this are the SSL Server Test2 and sslmap3.

Finally, closely related research on the implementation

of state machines for TLS was done by Beurdouche et al.

[6]. We compare their work with ours in Section 5.

1.2 Related work on state machine learn-

ing

When learning state machines, we can distinguish be-

tween a passive and active approach. In passive learning,

only existing data is used and based on this a model is

constructed. For example, in [14] passive learning tech-

niques are used on observed network traffic to infer a

state machine of the protocol used by a botnet. This

approach has been combined with the automated learn-

ing of message formats in [23], which then also used the

model obtained as a basis for fuzz-testing.

When using active automated learning techniques, as

done in this paper, an implementation is actively queried

by the learning algorithm and based on the responses a

model is constructed. We have used this approach before

to analyse implementations of security protocols in EMV

bank cards [1] and handheld readers for online banking

[11], and colleagues have used it to analyse electronic

passports [2]. These investigations did not reveal new

security vulnerabilities, but they did provide interesting

insights in the implementations analysed. In particular,

it showed a lot of variation in implementations of bank

cards [1] – even cards implementing the same Master-

Card standard – and a known attack was confirmed for

the online banking device and confirmed to be fixed in a

new version [11].

1.3 Overview

We first discuss the TLS protocol in more detail in Sec-

tion 2. Next we present our setup for the automated

learning in Section 3. The results of our analysis of nine

1https://github.com/yymax/x509test
2https://www.ssllabs.com/ssltest/
3https://www.thesprawl.org/projects/sslmap/

TLS implementations are subsequently discussed in Sec-

tion 4, after which we conclude in Section 5.

2 The TLS protocol

The TLS protocol was originally known as SSL (Secure

Socket Layer), which was developed at Netscape. SSL

1.0 was never released and version 2.0 contained numer-

ous security flaws [37]. This lead to the development of

SSL 3.0, on which all later versions are based. After SSL

3.0, the name was changed to TLS and currently three

versions are published: 1.0, 1.1 and 1.2 [17, 18, 19]. The

specifications for these versions are published in RFCs

issued by the Internet Engineering Task Force (IETF).

To establish a secure connection, different subproto-

cols are used within TLS:

• The Handshake protocol is used to establish session

keys and parameters and to optionally authenticate

the server and/or client.

• The ChangeCipherSpec protocol – consisting of

only one message – is used to indicate the start of

the use of established session keys.

• To indicate errors or notifications, the Alert protocol

is used to send the level of the alert (either warning

or fatal) and a one byte description.

In Fig. 1 a normal flow for a TLS session is given. In

the ClientHello message, the client indicates the desired

TLS version, supported cipher suites and optional exten-

sions. A cipher suite is a combination of algorithms used

for the key exchange, encryption, and MAC computa-

tion. During the key exchange a premaster secret is es-

tablished. This premaster secret is used in combination

with random values from both the client and server to

derive the master secret. This master secret is then used

to derive the actual keys that are used for encryption and

MAC computation. Different keys are used for messages

from the client to the server and for messages in the op-

posite direction. Optionally, the key exchange can be

followed by client verification where the client proves it

knows the private key corresponding to the public key

in the certificate it presents to the server. After the key

exchange and optional client verification, a ChangeCi-

pherSpec message is used to indicate that from that point

on the agreed keys will be used to encrypt all messages

and add a MAC to them. The Finished message is fi-

nally used to conclude the handshake phase. It contains

a keyed hash, computed using the master secret, of all

previously exchanged handshake messages. Since it is

sent after the ChangeCipherSpec message it is the first

message that is encrypted and MACed. After the hand-

shake phase, application data can be exchanged over the

established secure channel.

USENIX Association 24th USENIX Security Symposium 195

To add additional functionality, TLS offers the possi-

bility to add extensions to the protocol. One example of

such an extension is the – due to Heartbleed [13] by now

well-known – Heartbeat Extension, which can be used

to keep a connection alive using HeartbeatRequest and

HeartbeatResponse messages [36].

Client Server

ClientHello

ServerHello;

[Certificate;]

[ServerKeyExchange;]

[CertificateRequest;]

ServerHelloDone

ClientKeyExchange;

[Certificate;]

[CertificateVerify;]

ChangeCipherSpec;

{Finished}

ChangeCipherSpec;

{Finished}

{ApplicationData}

{ApplicationData}

Figure 1: A regular TLS session. An encrypted message

m is denoted as {m}. If message m is optional, this is

indicated by [m].

3 State machine learning

To infer the state machines of implementations of the

TLS protocol we used LearnLib [34], which uses a mod-

ified version of Angluin’s L* algorithm [5]. An imple-

mentation that is analysed is referred to as the System

Under Test (SUT) and is considered to be a black box.

LearnLib has to be provided with a list of messages it

can send to the SUT (also known as the input alphabet),

and a command to reset the SUT to its initial state. A test

harness is needed to translate abstract messages from the

input alphabet to concrete messages that can be sent to

the SUT. To be able to implement this test harness we

need to know the messages that are used by the SUT.

By sending sequences of messages and reset commands,

LearnLib tries to come up with hypotheses for the state

machine based on the responses it receives from the SUT.

Such hypotheses are then checked for equivalence with

the actual state machine. If the models are not equivalent,

a counter-example is returned and LearnLib will use this

to redefine its hypothesis.

As the actual state machine is not known, the equiv-

alence check has to be approximated, with what is ef-

fectively a form of model-based testing. For this we use

an improved version of Chow’s W-method [12]. The W-

method is guaranteed to be correct given an upper bound

for the number of states. For LearnLib we can specify a

depth for the equivalence checking: given a hypothesis

for the state machine, the upper bound for the W-method

is set to the number of found states plus the specified

depth. The algorithm will only look for counterexample

traces of which the lengths is at most the set upper bound,

and if none can be found the current hypothesis for the

state machine is assumed to be equivalent with the one

implemented. This assumption is correct if the actual

state machine does not have more states than the number

of found states plus the specified depth. The W-method

is very powerful but comes at a high cost in terms of per-

formance. Therefore we improved the algorithm to take

advantage of a property of the system we learn, namely

that once a connection is closed, all outputs returned af-

terwards will be the same (namely Connection closed).

So when looking for counterexamples, extending a trial

trace that results in the connection being closed is point-

less. The W-method, however, will still look for coun-

terexamples by extending traces which result in a closed

connection. We improved the W-method by adding a

check to see if it makes sense to continue searching for

counterexamples with a particular prefix, and for this we

simply check if the connection has not been closed. This

simple modification of the W-method greatly reduced the

number of equivalence queries needed, as we will see in

Section 4.

3.1 Test harness

To use LearnLib, we need to fix an input alphabet

of messages that can be sent to the SUT. This alpha-

bet is an abstraction of the actual messages sent. In

our analyses we use different input alphabets depend-

ing on whether we test a client or server, and whether

we perform a more limited or more extensive analy-

sis. To test servers we support the following mes-

sages: ClientHello (RSA and DHE), Certificate (RSA

and empty), ClientKeyExchange, ClientCertificateVer-

ify, ChangeCipherSpec, Finished, ApplicationData (reg-

ular and empty), HeartbeatRequest and HeartbeatRe-

sponse. To test clients we support the following mes-

sages: ServerHello (RSA and DHE), Certificate (RSA

and empty), CertificateRequest, ServerKeyExchange,

ServerHelloDone, ChangeCipherSpec, Finished, Appli-

cationData (regular and empty), HeartbeatRequest and

HeartbeatResponse.

We thus support all regular TLS messages as well as

the messages for the Heartbeat Extension. The test har-

196 24th USENIX Security Symposium USENIX Association

ness supports both TLS version 1.2 and, in order to test

older implementations, version 1.0. The input alphabet

is not fixed, but can be configured per analysis as de-

sired. For the output alphabet we use all the regular TLS

messages as well as the messages from the Alert protocol

that can be returned. This is extended with some special

symbols that correspond with exceptions that can occur

in the test harness:

• Empty, this is returned if no data is received from

the SUT before a timeout occurs in the test harness.

• Decryption failed, this is returned if decryption fails

in the test harness after a ChangeChipherSpec mes-

sage was received. This could happen, for example,

if not enough data is received, the padding is incor-

rect after decryption (e.g. because a different key

was used for encryption) or the MAC verification

fails.

• Connection closed, this is returned if a socket ex-

ception occurs or the socket is closed.

LearnLib uses these abstract inputs and outputs as la-

bels on the transitions of the state machine. To interact

with an actual TLS server or client we need a test harness

that translates the abstract input messages to actual TLS

packets and the responses back to abstract responses. As

we make use of cryptographic operations in the protocol,

we needed to introduce state in our test harness, for in-

stance to keep track of the information used in the key

exchange and the actual keys that result from this. Apart

from this, the test harness also has to remember whether

a ChangeCipherSpec was received or sent, as we have to

encrypt and MAC all corresponding data after this mes-

sage. Note that we only need a single test harness for

TLS to then be able to analyse any implementation. Our

test harness can be considered a ‘stateless’ TLS imple-

mentation.

When testing a server, the test harness is initialised by

sending a ClientHello message to the SUT to retrieve the

server’s public key and preferred ciphersuite. When a re-

set command is received we set the internal variables to

these values. This is done to prevent null pointer excep-

tions that could otherwise occur when messages are sent

in the wrong order.

After sending a message the test harness waits to re-

ceive responses from the SUT. As the SUT will not al-

ways send a response, for example because it may be

waiting for a next message, the test harness will gener-

ate a timeout after a fixed period. Some implementations

require longer timeouts as they can be slower in respond-

ing. As the timeout has a significant impact on the total

running time we varied this per implementation.

To test client implementations we need to launch a

client for every test sequence. This is done automati-

cally by the test harness upon receiving the reset com-

mand. The test harness then waits to receive the Client-

Hello message, after which the client is ready to receive

a query. Because the first ClientHello is received before

any query is issued, this message does not appear explic-

itly in the learned models.

4 Results

We analysed the nine different implementations listed

in Table 1. We used demo client and server applica-

tions that came with the different implementations ex-

cept with the Java Secure Socket Extension (JSSE). For

JSSE we wrote simple server and client applications. For

the implementations listed the models of the server-side

were learned using our modified W-method for the fol-

lowing alphabet: ClientHello (RSA), Certificate (empty),

ClientKeyExchange, ChangeCipherSpec, Finished, Ap-

plicationData (regular and empty), HeartbeatRequest.

For completeness we learned models for both TLS ver-

sion 1.0 and 1.2, when available, but this always resulted

in the same model.

Due to space limitations we cannot include the models

for all nine implementations in this paper, but we do in-

clude the models in which we found security issues (for

GnuTLS, Java Secure Socket Extension, and OpenSSL),

and the model of RSA BSAFE for Java to illustrate how

much simpler the state machine can be. The other mod-

els can be found in [15] as well as online, together with

the code of our test harness.4 We wrote a Python ap-

plication to automatically simplify the models by com-

bining transitions with the same responses and replacing

the abstract input and output symbols with more readable

names. Table 2 shows the times needed to obtain these

state machines, which ranged from about 9 minutes to

over 8 hours.

A comparison between our modified equivalence algo-

rithm and the original W-method can be found in Table 3.

This comparison is based on the analysis of GnuTLS

3.3.12 running a TLS server. It is clear that by taking

advantage of the state of the socket our algorithm per-

forms much better than the original W-method: the num-

ber of equivalence queries is over 15 times smaller for

our method when learning a model for the server.

When analysing a model, we first manually look if

there are more paths than expected that lead to a suc-

cessful exchange of application data. Next we determine

whether the model contains more states than necessary

and identify unexpected or superfluous transitions. We

also check for transitions that can indicate interesting be-

haviour such as, for example, a ’Bad record MAC’ alert

or a Decryption failed message. If we come across any

4Available at http://www.cs.bham.ac.uk/~deruitej/

USENIX Association 24th USENIX Security Symposium 197

Name Version URL

GnuTLS 3.3.8 http://www.gnutls.org/

3.3.12

Java Secure Socket Extension (JSSE) 1.8.0_25 http://www.oracle.com/java/

1.8.0_31

mbed TLS (previously PolarSSL) 1.3.10 https://polarssl.org/

miTLS 0.1.3 http://www.mitls.org/

RSA BSAFE for C 4.0.4 http://www.emc.com/security/rsa-bsafe.htm

RSA BSAFE for Java 6.1.1 http://www.emc.com/security/rsa-bsafe.htm

Network Security Services (NSS) 3.17.4 https://developer.mozilla.org/en-US/docs/

Mozilla/Projects/NSS

OpenSSL 1.0.1g https://www.openssl.org/

1.0.1j

1.0.1l

1.0.2

nqsb-TLS 0.4.0 https://github.com/mirleft/ocaml-tls

Table 1: Tested implementations

unexpected behaviour, we perform a more in-depth anal-

ysis to determine the cause and severity.

An obvious first observation is that all the models

of server-side implementations are very different. For

example, note the huge difference between the mod-

els learned for RSA BSAFE for Java in Fig. 6 and for

OpenSSL in Fig. 7. Because all the models are different,

they provide a unique fingerprint of each implementa-

tion, which could be used to remotely identify the imple-

mentation that a particular server is using.

Most demo applications close the connection after

their first response to application data. In the models

there is then only one ApplicationData transition where

application data is exchanged instead of the expected cy-

cle consisting of an ApplicationData transition that al-

lows server and client to continue exchanging application

data after a successful handshake.

In the subsections below we discuss the peculiarities

of models we learned, and the flaws they revealed. Cor-

rect paths leading to an exchange of application data are

indicated by thick green transitions in the models. If

there is any additional path leading to the exchange of

application data this is a security flaw and indicated by a

dashed red transition.

4.1 GnuTLS

Fig. 2 shows the model that was learned for GnuTLS

3.3.8. In this model there are two paths leading to a

successful exchange of application data: the regular one

without client authentication and one where an empty

client certificate is sent during the handshake. As we

did not require client authentication, both are accept-

able paths. What is immediately clear is that there are

more states than expected. Closer inspection reveals that

there is a ‘shadow’ path, which is entered by sending

a HeartbeatRequest message during the handshake pro-

tocol. The handshake protocol then does proceed, but

eventually results in a fatal alert (‘Internal error’) in re-

sponse to the Finished message (from state 8). From ev-

ery state in the handshake protocol it is possible to go to

a corresponding state in the ‘shadow’ path by sending the

HeartbeatRequest message. This behaviour is introduced

by a security bug, which we will discuss below. Addi-

tionally there is a redundant state 5, which is reached

from states 3 and 9 when a ClientHello message is sent.

From state 5 a fatal alert is given to all subsequent mes-

sages that are sent. One would expect to already receive

an error message in response to the ClientHello message

itself.

Forgetting the buffer in a heartbeat As mentioned

above, HeartbeatRequest messages are not just ignored

in the handshake protocol but cause some side effect:

sending a HeartbeatRequest during the handshake proto-

col will cause the implementation to return an alert mes-

sage in response to the Finished message that terminates

the handshake. Further inspection of the code revealed

the cause: the implementation uses a buffer to collect

all handshake messages in order to compute a hash over

these messages when the handshake is completed, but

this buffer is reset upon receiving the heartbeat message.

The alert is then sent because the hashes computed by

server and client no longer match.

198 24th USENIX Security Symposium USENIX Association

Figure 2: Learned state machine model for GnuTLS 3.3.8

Figure 3: Learned state machine model for GnuTLS 3.3.12. A comparison with the model for GnuTLS 3.3.8 in Fig. 2

shows that the superflous states (8, 9, 10, and 11) are now gone, confirming that the code has been improved.

USENIX Association 24th USENIX Security Symposium 199

#
st

a
te

s

T
im

eo
u

t

T
im

e
(h

:m
m

)

#
m

em
b

er
sh

ip
q

u
er

ie
s

#
eq

u
iv

a
le

n
ce

q
u

er
ie

s

GnuTLS 3.3.8 12 100ms 0:45 1370 5613

GnuTLS 3.3.12 7 100ms 0:09 456 1347

mbed TLS 1.3.10 8 100ms 0:39 520 2939

OpenSSL 1.0.1g + 16 100ms 0:31 1016 4171

OpenSSL 1.0.1j + 11 100ms 0:16 680 2348

OpenSSL 1.0.1l + 10 100ms 0:14 624 2249

OpenSSL 1.0.2 + 7 100ms 0:06 350 902

JSSE 1.8.0_25 9 200ms 0:41 584 2458

JSSE 1.8.0_31 9 200ms 0:39 584 2176

miTLS 0.1.3 6 1500ms 0:53 392 517

NSS 3.17.4 8 500ms 3:16 520 5329

RSA BSAFE for Java 6.1.1 6 500ms 0:18 392 517

RSA BSAFE for C 4.0.4 9 200ms 8:16 584 26353

nqsb-TLS 0.4.0 + 8 100ms 0:15 399 1835

+ Without heartbeat extension

Table 2: Results of the automated analysis of server implementations for the regular alphabet of inputs using our

modified W-method with depth 2

Alphabet Algorithm Time (hh:mm) #states Membership queries Equivalence queries

regular modified W-method 0:09 7 456 1347

full modified W-method 0:27 9 1573 4126

full original W-method 4:09 9 1573 68578

Table 3: Analysis of the GnuTLS 3.3.12 server using different alphabets and equivalence algorithms

This bug can be exploited to effectively bypass the in-

tegrity check that relies on comparing the keyed hashes

of the messages in the handshake: when also resetting

this buffer on the client side (i.e. our test harness) at the

same time we were able to successfully complete the

handshake protocol, but then no integrity guarantee is

provided on the previous handshake messages that were

exchanged.

By learning the state machine of a GnuTLS client

we confirmed that the same problem exists when using

GnuTLS as a client.

This problem was reported to the developers of

GnuTLS and is fixed in version 3.3.9. By learning mod-

els of newer versions, we could confirm the issue is no

longer present, as can be seen in Fig. 3.

To exploit this problem both sides would need to reset

the buffer at the same time. This might be hard to achieve

as at any time either one of the two parties is computing a

response, at which point it will not process any incoming

message. If an attacker would successfully succeed to

exploit this issue no integrity would be provided on any

message sent before, meaning a fallback attack would be

possible, for example to an older TLS version or weaker

cipher suite.

4.2 mbed TLS

For mbed TLS, previously known as PolarSSL, we tested

version 1.3.10. We saw several paths leading to a suc-

cessful exchange of data. Instead of sending a regular

ApplicationData message, it is possible to first send one

empty ApplicationData message after which it is still

possible to send the regular ApplicationData message.

Sending two empty ApplicationData messages directly

200 24th USENIX Security Symposium USENIX Association

after each other will close the connection. However, if in

between these message an unexpected handshake mes-

sage is sent, the connection will not be closed and only

a warning is returned. After this it is also still possible

to send a regular ApplicationData message. While this is

strange behaviour, it does not seem to be exploitable.

4.3 Java Secure Socket Extension

For Java Secure Socket Extension we analysed Java ver-

sion 1.8.0_25. The model contains several paths leading

to a successful exchange of application data and contains

more states than expected (see Fig. 4). This is the result

of a security issue which we will discuss below.

As long as no Finished message has been sent it is ap-

parently possible to keep renegotiating. After sending a

ClientKeyExchange, other ClientHello messages are ac-

cepted as long as they are eventually followed by another

ClientKeyExchange message. If no ClientKeyExchange

message was sent since the last ChangeCipherSpec, a

ChangeCipherSpec message will result in an error (state

7). Otherwise it either leads to an error state if sent di-

rectly after a ClientHello (state 8) or a successful change

of keys after a ClientKeyExchange.

Accepting plaintext data More interesting is that the

model contains two paths leading to the exchange of ap-

plication data. One of these is a regular TLS protocol

run, but in the second path the ChangeCipherSpec mes-

sage from the client is omitted. Despite the server not

receiving a ChangeCipherSpec message it still responds

with a ChangeCipherSpec message to a plaintext Fin-

ished message by the client. As a result the server will

send its data encrypted, but it expects data from the client

to be unencrypted. A similar problem occurs when trying

to negotiate new keys. By skipping the ChangeCipher-

Spec message and just sending the Finished message the

server will start to use the new keys, whereas the client

needs to continue to use its old keys.

This bug invalidates any assumption of integrity or

confidentiality of data sent to the server, as it can be

tricked into accepting plaintext data. To exploit this issue

it is, for example, possible to include this behaviour in a

rogue library. As the attack is transparent to applications

using the connection, both the client and server applica-

tion would think they talk on a secure connection, where

in reality anyone on the line could read the client’s data

and tamper with it. Fig. 5 shows a protocol run where

this bug is triggered. The bug was report to Oracle and is

identified by CVE-2014-6593. A fix was released in their

Critical Security Update in January 2015. By analysing

JSSE version 1.8.0_31 we are able to confirm the issue

was indeed fixed.

Client Server

ClientHello

ServerHello;

Certificate;

ServerHelloDone

ClientKeyExchange;

Finished

ChangeCipherSpec;

{Finished}

ApplicationData

{ApplicationData}

Figure 5: A protocol run triggering a bug in the JSSE,

causing the server to accept plaintext application data.

This issue was identified in parallel by Beurdouche et

al. [6], who also reported the same and a related issue for

the client-side. By learning the client, we could confirm

that the issue was also present there. Moreover, after re-

ceiving the ServerHello message, the client would accept

the Finish message and start exchanging application data

at any point during the handshake protocol. This makes

it possible to completely circumvent both server authen-

tication and the confidentiality and integrity of the data

being exchanged.

4.4 miTLS

MiTLS is a formally verified TLS implementation writ-

ten in F# [8]. For miTLS 0.1.3, initially our test har-

ness had problems to successfully complete the hand-

shake protocol and the responses seemed to be non-

deterministic because sometimes a response was delayed

and appeared to be received in return to the next message.

To solve this, the timeout had to be increased consider-

ably when waiting for incoming messages to not miss

any message. This means that compared to the other im-

plementations, miTLS was relatively slow in our setup.

Additionally, miTLS requires the Secure Renegotiation

extension to be enabled in the ClientHello message. The

learned model looks very clean with only one path lead-

ing to an exchange of application data and does not con-

tain more states than expected.

4.5 RSA BSAFE for C

The RSA BSAFE for C 4.0.4 library resulted in a model

containing two paths leading to the exchange application

data. The only difference between the paths is that an

USENIX Association 24th USENIX Security Symposium 201

Figure 4: Learned state machine model for JSSE 1.8.0_25

empty ApplicationData is sent in the second path. How-

ever, the alerts that are sent are not very consistent as they

differ depending on the state and message. For exam-

ple, sending a ChangeCipherSpec message after an ini-

tial ClientHello results in a fatal alert with reason ‘Ille-

gal parameter’, whereas application data results in a fatal

alert with ‘Unexpected message’ as reason. More cu-

rious however is a fatal alert ‘Bad record MAC’ that is

returned to certain messages after the server received the

ChangeCipherSpec in a regular handshake. As this alert

is only returned in response to certain messages, while

other messages are answered with an ‘Unexpected mes-

sage’ alert, the server is apparently able to successfully

decrypt and check the MAC on messages. Still, an error

is returned that it is not able to do this. This seems to be

a non-compliant usage of alert messages.

At the end of the protocol the implementation does

not close the connection. This means we cannot take any

advantage from a closed connection in our modified W-

method and the analysis therefore takes much longer than

for the other implementations.

4.6 RSA BSAFE for Java

The model for RSA BSAFE for Java 6.1.1 library looks

very clean, as can be seen in Fig. 6. The model again

contains only one path leading to an exchange of appli-

cation data and no more states than necessary. In gen-

eral all received alerts are ‘Unexpected message’. The

only exception is when a ClientHello is sent after a suc-

cessful handshake, in which case a ‘Handshake failure’

is given. This makes sense as the ClientHello message is

not correctly formatted for secure renegotiation, which is

required in this case. This model is the simplest that we

learned during our research.

202 24th USENIX Security Symposium USENIX Association

Figure 6: Learned state machine model for RSA BSAFE for Java 6.1.1

4.7 Network Security Services

The model for NSS that was learned for version 3.17.4

looks pretty clean, although there is one more state than

one would expect. There is only one path leading to a

successful exchange of application data. In general all

messages received in states where they are not expected

are responded to with a fatal alert (‘Unexpected mes-

sage’). Exceptions to this are the Finished and Heart-

beat messages: these are ignored and the connection

is closed without any alert. Other exceptions are non-

handshake messages sent before the first ClientHello:

then the server goes into a state where the connection

stays open but nothing happens anymore. Although the

TLS specification does not explicitly specify what to

do in this case, one would expect the connection to be

closed, especially since it’s not possible to recover from

this. Because the connection is not actually closed in this

case the analysis takes longer, as we have less advantage

of our modification of the W-method to decide equiva-

lence.

4.8 OpenSSL

Fig. 7 shows the model inferred for OpenSSL 1.01j. In

the first run of the analysis it turned out that Heartbeat-

Request message sent during the handshake phase were

‘saved up’ and only responded to after the handshake

phase was finished. As this results in infinite models we

had to remove the heartbeat messages from the input al-

phabet. This model obtained contains quite a few more

states than expected, but does only contain one path to

successfully exchange application data.

The model shows that it is possible to start by sending

two ClientHello messages, but not more. After the sec-

ond ClientHello message there is no path to a successful

exchange of application data in the model. This is due

to the fact that OpenSSL resets the buffer containing the

handshake messages every time when sending a Client-

Hello, whereas our test harness does this only on initial-

isation of the connection. Therefore, the hash computed

by our test harness at the end of the handshake is not ac-

cepted and the Finished message in state 9 is responded

to with an alert. Which messages are included in the hash

differs per implementation: for JSSE all handshake mes-

sages since the beginning of the connection are included.

Re-using keys In state 8 we see some unexpected be-

haviour. After successfully completing a handshake, it is

possible to send an additional ChangeCipherSpec mes-

sage after which all messages are responded to with a

‘Bad record MAC’ alert. This usually is an indication of

wrong keys being used. Closer inspection revealed that

at this point OpenSSL changes the keys that the client

uses to encrypt and MAC messages to the server keys.

This means that in both directions the same keys are used

from this point.

We observed the following behaviour after the addi-

tional ChangeCipherSpec message. First, OpenSSL ex-

pects a ClientHello message (instead of a Finished mes-

sage as one would expect). This ClientHello is responded

to with the ServerHello, ChangeCipherSpec and Fin-

ished messages. OpenSSL does change the server keys

then, but does not use the new randoms from the Client-

Hello and ServerHello to compute new keys. Instead the

old keys are used and the cipher is thus basically reset

(i.e. the original IVs are set and the MAC counter reset

to 0). After receiving the ClientHello message, the server

does expect the Finished message, which contains the

keyed hash over the messages since the second Client-

Hello and does make use of the new client and server

randoms. After this, application data can be send over

the connection, where the same keys are used in both di-

rections. The issue was reported to the OpenSSL team

and was fixed in version 1.0.1k.

USENIX Association 24th USENIX Security Symposium 203

Figure 7: Learned state machine model for OpenSSL 1.0.1j

Figure 8: Learned state machine model for OpenSSL 1.0.1g, an older version of OpenSSL which had a known security

flaw [27].

204 24th USENIX Security Symposium USENIX Association

Early ChangeCipherSpec The state machine model

of the older version OpenSSL 1.0.1g (Fig. 8) reveals a

known vulnerability that was recently discovered [27],

which makes it possible for an attacker to easily com-

pute the session keys that are used in the versions up to

1.0.0l and 1.0.1g, as described below.

As soon as a ChangeCipherSpec message is received,

the keys are computed. However, this also happened

when no ClientKeyExchange was sent yet, in which case

an empty master secret is used. This results in keys that

are computed based on only public data. In version 1.0.1

it is possible to completely hijack a session by sending

an early ChangeCipherSpec message to both the server

and client, as in this version the empty master secret is

also used in the computation of the hash in the Finished

message. In the model of OpenSSL version 1.0.1g in

Fig. 8 it is clear that if a ChangeCipherSpec message is

received too early, the Finished message is still accepted

as a ChangeCipherSpec is returned (see path 0, 1, 6, 9, 12

in the model). This is an indication of the bug and would

be reason for closer inspection. The incoming messages

after this path cannot be decrypted anymore however, be-

cause the corresponding keys are only computed by our

test harness as soon as the ChangeCipherSpec message is

received, which means that these keys are actually based

on the ClientKeyExchange message. A simple modifi-

cation of the test harness to change the point at which

the keys are computed will even provide a successful ex-

ploitation of the bug.

An interesting observation regarding the evolution of

the OpenSSL code is that for the four different versions

that we analysed (1.0.1g, 1.0.1j, 1.0.1l and 1.0.2) the

number of states reduces with every version. For ver-

sion 1.0.2 there is still one state more than required, but

this is an error state from which all messages result in a

closed connection.

4.9 nqsb-TLS

A recent TLS implementation, nqsb-TLS, is intended to

be both a specification and usable implementation writ-

ten in OCaml [25]. For nsqb-TLS we analysed ver-

sion 0.4.0. Our analysis revealed a bug in this imple-

mentation: alert messages are not encrypted even af-

ter a ChangeCipherSpec is received. This bug was re-

ported to the nqsb-TLS developers and is fixed in a newer

version. What is more interesting is a design decision

with regard to the state machine: after the client sends

a ChangeCipherSpec, the server immediately responds

with a ChangeCipherSpec. This is different compared to

all other implementations, that first wait for the client to

also send a Finished message before sending a response.

This is a clear example where the TLS specifications are

not completely unambiguous and adding a state machine

would remove room for interpretation.

5 Conclusion

We presented a thorough analysis of commonly used

TLS implementations using the systematic approach we

call protocol state fuzzing: we use state machine learn-

ing, which relies only on black box testing, to infer a

state machine and then we perform a manual analysis of

the state machines obtained. We demonstrated that this

is a powerful and fast technique to reveal security flaws:

in 3 out of 9 tested implementations we discovered new

flaws. We applied the method on both server- and client-

side implementations. By using our modified version of

the W-method we are able to drastically reduce the num-

ber of equivalence queries used, which in turn results in

a much lower running time of the analysis.

Our approach is able to find mistakes in the logic in

the state machine of implementations. Deliberate back-

doors, that are for example triggered by sending a par-

ticular message 100 times, would not be detected. Also

mistakes in, for example, the parsing of messages or cer-

tificates would not be detected.

An overview of different approaches to prevent secu-

rity bugs and more generally improve the security of soft-

ware is given in [38] (using the Heartbleed bug as a ba-

sis). The method presented in this paper would not have

detected the Heartbleed bug, but we believe it makes a

useful addition to the approaches discussed in [38]. It

is related to some of the approaches listed there; in par-

ticular, state machine learning involves a form of neg-

ative testing: the tests carried out during the state ma-

chine learning include many negative tests, namely those

where messages are sent in unexpected orders, which one

would expect to result in the closing of the connection

(and which probably should result in closing of the con-

nection, to be on the safe side). By sending messages in

an unexpected order we get a high coverage of the code,

which is different from for example full branch code cov-

erage, as we trigger many different paths through the

code.

In parallel with our research Beurdouche et al. [6] in-

dependently performed closely related research. They

also analyse protocol state machines of TLS implemen-

tations and successfully find numerous security flaws.

Both approaches have independently come up with the

same fundamental idea, namely that protocol state ma-

chines are a great formalism to systematically analyse

implementations of security protocols. Both approaches

require the construction of a framework to send arbi-

trary TLS messages, and both approaches reveal that

OpenSSL and JSSE have the most (over)complicated

state machines.

USENIX Association 24th USENIX Security Symposium 205

The approach of Beurdouche et al. is different though:

whereas we infer the state machines from the code with-

out prior knowledge, they start with a manually con-

structed reference protocol state machine, and subse-

quently use this as a basis to test TLS implementations.

Moreover, the testing they do here is not truly random, as

the ‘blind’ learning by LearnLib is, but uses a set of test

traces that is automatically generated using some heuris-

tics.

The difference in the issues identified by Beurdouche

et al. and us can partly be explained by the difference

in functionality that is supported by the test frameworks

used. For example, our framework supports the Heart-

beat extension, whereas theirs supports Diffie-Hellman

certificates and export cipher suites. Another reason is

the fact that our approach has a higher coverage due to

its ‘blind’ nature.

One advantage of our approach is that we don’t have to

construct a correct reference model by hand beforehand.

But in the end, we do have to decide which behaviour

is unwanted. Having a visual model helps here, as it is

easy to see if there are states or transitions that seem re-

dundant and don’t occur in other models. Note that both

approaches ultimately rely on a manual analysis to as-

sess the security impact of any protocol behaviour that is

deemed to be deviant or superfluous.

When it comes to implementing TLS, the specifica-

tions leave the developer quite some freedom as how

to implement the protocol, especially in handling errors

or exceptions. Indeed, many of the differences between

models we infer are variations in error messages. These

are not fixed in the specifications and can be freely cho-

sen when implementing the protocol. Though this might

be useful for debugging, the different error messages are

probably not useful in production (especially since they

differ per implementation).

This means that there is not a single ‘correct’ state ma-

chine for the TLS protocol and indeed every implemen-

tation we analysed resulted in a different model. How-

ever, there are some clearly wrong state machines. One

would expect to see a state machine where there is clearly

one correct path (or possibly more depending on the con-

figuration) and all other paths going to one error state –

preferably all with the same error code. We have seen

one model that conforms to this, namely the one for RSA

BSAFE for Java, shown in Fig. 6.

Of course, it would be interesting to apply the same

technique we have used on TLS implementations here on

implementations of other security protocols. The main

effort in protocol state fuzzing is developing a test har-

ness. But as only one test harness is needed to test all

implementations for a given protocol, we believe that this

is a worthwhile investment. In fact, one can argue that

for any security protocol such a test harness should be

provided to allow analysis of implementations.

The first manual analysis of the state machines we ob-

tain is fairly straightforward: any superfluous strange be-

haviour is easy to spot visually. This step could even be

automated as well by providing a correct reference state

machine. A state machine that we consider to be correct

would be the one that we learned for RSA BSAFE for

Java.

Deciding whether any superfluous behaviour is ex-

ploitable is the hardest part of the manual analysis, but

for security protocols it makes sense to simply require

that there should not be any superfluous behaviour what-

soever.

The difference behaviour between the various imple-

mentations might be traced back to Postel’s Law:

‘Be conservative in what you send,

be liberal in what you accept.’

As has been noted many times before, e.g. in [35], this

is an unwanted and risky approach in security protocols:

if there is any suspicion about inputs they should be dis-

carded, connections should be closed, and no response

should be given that could possibly aid an attacker. To

quote [21]: ‘It’s time to deprecate Jon Postel’s dictum

and to be conservative in what you accept’.

Of course, ideally state machines would be included in

the official specifications of protocols to begin with. This

would provide a more fundamental solution to remove –

or at least reduce – some of the implementation freedom.

It would avoid each implementer having to come up with

his or her own interpretation of English prose specifica-

tions, avoiding not only lots of work, but also the large

variety of state machines in implementations that we ob-

served, and the bugs that some of these introduce.

References

[1] AARTS, F., DE RUITER, J., AND POLL, E. Formal models of

bank cards for free. In Software Testing Verification and Valida-

tion Workshop, IEEE International Conference on (2013), IEEE,

pp. 461–468.

[2] AARTS, F., SCHMALTZ, J., AND VAANDRAGER, F. Inference

and abstraction of the biometric passport. In Leveraging Appli-

cations of Formal Methods, Verification, and Validation, T. Mar-

garia and B. Steffen, Eds., vol. 6415 of Lecture Notes in Com-

puter Science. Springer, 2010, pp. 673–686.

[3] AL FARDAN, N., AND PATERSON, K. Lucky Thirteen: Breaking

the TLS and DTLS record protocols. In Security and Privacy

(SP), 2013 IEEE Symposium on (2013), IEEE, pp. 526–540.

[4] ALFARDAN, N., BERNSTEIN, D. J., PATERSON, K. G., POET-

TERING, B., AND SCHULDT, J. C. N. On the security of RC4 in

TLS. In Presented as part of the 22nd USENIX Security Sympo-

sium (USENIX Security 13) (2013), USENIX, pp. 305–320.

[5] ANGLUIN, D. Learning regular sets from queries and counterex-

amples. Information and Computation 75, 2 (1987), 87–106.

206 24th USENIX Security Symposium USENIX Association

[6] BENJAMIN BEURDOUCHE, KARTHIKEYAN BHARGAVAN, A.
D.-L., FOURNET, C., KOHLWEISS, M., PIRONTI, A., STRUB,
P.-Y., , AND ZINZINDOHOUE, J. K. A messy state of the union:
Taming the composite state machines of TLS. In Security and

Privacy (SP), 2015 IEEE Symposium on (2015), IEEE, pp. 535–
552.

[7] BHARGAVAN, K., FOURNET, C., CORIN, R., AND ZALINESCU,
E. Cryptographically verified implementations for TLS. In Pro-

ceedings of the 15th ACM Conference on Computer and Commu-

nications Security (2008), CCS ’08, ACM, pp. 459–468.

[8] BHARGAVAN, K., FOURNET, C., KOHLWEISS, M., PIRONTI,
A., AND STRUB, P. Implementing TLS with verified crypto-
graphic security. 2013 IEEE Symposium on Security and Privacy

(2013), 445–459.

[9] BLEICHENBACHER, D. Chosen ciphertext attacks against pro-
tocols based on the RSA encryption standard PKCS #1. In
Advances in Cryptology – CRYPTO ’98, H. Krawczyk, Ed.,
vol. 1462 of Lecture Notes in Computer Science. Springer, 1998,
pp. 1–12.

[10] BRUBAKER, C., JANA, S., RAY, B., KHURSHID, S., AND

SHMATIKOV, V. Using Frankencerts for automated adversar-
ial testing of certificate validation in SSL/TLS implementations.
In Security and Privacy (SP), 2014 IEEE Symposium on (2014),
pp. 114–129.

[11] CHALUPAR, G., PEHERSTORFER, S., POLL, E., AND

DE RUITER, J. Automated reverse engineering using Lego. In
8th USENIX Workshop on Offensive Technologies (WOOT 14)

(2014), USENIX.

[12] CHOW, T. Testing software design modeled by finite-state ma-
chines. IEEE Transactions on Software Engineering 4, 3 (1978),
178–187.

[13] CODENOMICON. Heartbleed bug. http://heartbleed.com/.
Accessed on June 8th 2015.

[14] COMPARETTI, P., WONDRACEK, G., KRUEGEL, C., AND

KIRDA, E. Prospex: Protocol specification extraction. In Secu-

rity and Privacy, 2009 30th IEEE Symposium on (2009), IEEE,
pp. 110–125.

[15] DE RUITER, J. Lessons learned in the analysis of the EMV

and TLS security protocols. PhD thesis, Radboud University Ni-
jmegen, 2015.

[16] DÍAZ, G., CUARTERO, F., VALERO, V., AND PELAYO, F. Auto-
matic verification of the TLS handshake protocol. In Proceedings

of the 2004 ACM Symposium on Applied Computing (2004), SAC
’04, ACM, pp. 789–794.

[17] DIERKS, T., AND ALLEN, C. The TLS protocol version 1.0.
RFC 2246, Internet Engineering Task Force, 1999.

[18] DIERKS, T., AND RESCORLA, E. The Transport Layer Security
(TLS) protocol version 1.1. RFC 4346, Internet Engineering Task
Force, 2006.

[19] DIERKS, T., AND RESCORLA, E. The Transport Layer Security
(TLS) protocol version 1.2. RFC 5246, Internet Engineering Task
Force, 2008.

[20] GAJEK, S., MANULIS, M., PEREIRA, O., SADEGHI, A.-R.,
AND SCHWENK, J. Universally composable security analysis of
TLS. In Provable Security, J. Baek, F. Bao, K. Chen, and X. Lai,
Eds., vol. 5324 of Lecture Notes in Computer Science. Springer,
2008, pp. 313–327.

[21] GEER, D. Vulnerable compliance. login: The USENIX Magazine

35, 6 (2010), 10–12.

[22] HE, C., SUNDARARAJAN, M., DATTA, A., DEREK, A., AND

MITCHELL, J. C. A modular correctness proof of IEEE 802.11i
and TLS. In Proceedings of the 12th ACM Conference on Com-

puter and Communications Security (2005), CCS ’05, ACM,
pp. 2–15.

[23] HSU, Y., SHU, G., AND LEE, D. A model-based approach to
security flaw detection of network protocol implementations. In
Network Protocols, 2008. ICNP 2008. IEEE International Con-

ference on (2008), IEEE, pp. 114–123.

[24] JAGER, T., KOHLAR, F., SCHÄGE, S., AND SCHWENK, J. On
the security of TLS-DHE in the standard model. In Advances

in Cryptology – CRYPTO 2012, R. Safavi-Naini and R. Canetti,
Eds., vol. 7417 of Lecture Notes in Computer Science. Springer,
2012, pp. 273–293.

[25] KALOPER-MERŠINJAK, D., MEHNERT, H., MADHAVAPEDDY,
A., AND SEWELL, P. Not-quite-so-broken TLS: Lessons in
re-engineering a security protocol specification and implemen-
tation. In 24th USENIX Security Symposium (USENIX Security

15) (2015), USENIX Association.

[26] KAMIL, A., AND LOWE, G. Analysing TLS in the strand spaces
model. Journal of Computer Security 19, 5 (2011), 975–1025.

[27] KIKUCHI, M. OpenSSL #ccsinjection vulnerability. http://

ccsinjection.lepidum.co.jp/. Access on June 8th 2015.

[28] KRAWCZYK, H., PATERSON, K., AND WEE, H. On the security
of the TLS protocol: A systematic analysis. In Advances in Cryp-

tology – CRYPTO 2013, vol. 8042 of Lecture Notes in Computer

Science. Springer, 2013, pp. 429–448.

[29] MEYER, C., AND SCHWENK, J. SoK: Lessons learned from
SSL/TLS attacks. In Information Security Applications, Y. Kim,
H. Lee, and A. Perrig, Eds., Lecture Notes in Computer Science.
Springer, 2014, pp. 189–209.

[30] MEYER, C., SOMOROVSKY, J., WEISS, E., SCHWENK, J.,
SCHINZEL, S., AND TEWS, E. Revisiting SSL/TLS imple-
mentations: New bleichenbacher side channels and attacks. In
23rd USENIX Security Symposium (USENIX Security 14) (2014),
USENIX Association, pp. 733–748.

[31] MORRISSEY, P., SMART, N., AND WARINSCHI, B. A modular
security analysis of the TLS handshake protocol. In Advances in

Cryptology – ASIACRYPT 2008, J. Pieprzyk, Ed., vol. 5350 of
Lecture Notes in Computer Science. Springer, 2008, pp. 55–73.

[32] OGATA, K., AND FUTATSUGI, K. Equational approach to for-
mal analysis of TLS. In Distributed Computing Systems, 2005.

ICDCS 2005. Proceedings. 25th IEEE International Conference

on (2005), IEEE, pp. 795–804.

[33] PAULSON, L. C. Inductive analysis of the internet protocol TLS.
ACM Trans. Inf. Syst. Secur. 2, 3 (1999), 332–351.

[34] RAFFELT, H., STEFFEN, B., AND BERG, T. LearnLib: a library
for automata learning and experimentation. In Formal methods

for industrial critical systems (FMICS’05) (2005), ACM, pp. 62–
71.

[35] SASSAMAN, L., PATTERSON, M. L., AND BRATUS, S. A patch
for Postel’s robustness principle. Security & Privacy, IEEE 10, 2
(2012), 87–91.

[36] SEGGELMANN, R., TUEXEN, M., AND WILLIAMS, M. Trans-
port Layer Security (TLS) and Datagram Transport Layer Secu-
rity (DTLS) Heartbeat Extension. RFC 6520, Internet Engineer-
ing Task Force, 2012.

[37] TURNER, S., AND POLK, T. Prohibiting Secure Sockets Layer
(SSL) version 2.0. RFC 6176, Internet Engineering Task Force,
2011.

[38] WHEELER, D. Preventing Heartbleed. Computer 47, 8 (2014),
80–83.

