
Protocol Testing:

Review of Methods and

Relevance for Software Testing

Gregor v. Bochmann and Alexandre Petrenko

D4partement dinformatique et de recherche op&a-

t.ionnelle, Universit6 de Montn%l, CP. 6128, Succ.

Centre-Ville, Montr6al, Canada H3C 3J7

Abstract. Communication protocols are the rules

that govern the communication between the differ-

ent components within a distributed computer sys-

tem. Since protocols are implemented in software

and/or hardware, the question arises whether the

existing hardware and software testing methods
would be adequate for the testing of communication

protocols. The purpose of this paper is to explain in
which way the problem of testing protocol imple-
mentations is different from the usual problem of

software testing. We review the major results in the

area of protocol testing and discuss in which way
these methods may also be relevant in the more

general context of software testing.

1. Introduction

During the last ten years, much research results
have been obtained in the area of protocol confor-
mance testing in view of obtaining better and more

systematic methods for the testing of protocol im-
plementations against their specifications. At the

same time, the methods for testing computer hard-

ware and software have also evolved. Since proto-

cols are implemented in software and/or hardware,

the question may arise whether the existing hard-

ware and software testing methods would be ade-

quate for the testing of communication protocols.

The purpose of this paper is to explain in which

way the problem of testing protocol implementa-
tions is different fkom the usual problem of soft-
ware testing, We will review the major results in
the area of protocol testing and discuss in which

way these methods may also be relevant in the

more general context of software testing.

Protocol testing is mainly based on the black-
box approach. Therefore the nature of the protocol
specification has a strong influence on protocol
testing. In fact, the methods for the development of

test cases are largely dependent on the specification
formalism.

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantaqe, the ACM copyright notice and the
title of the publication and Its date appear, and notice is given
that copying is by permission of the Association of Computing
Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.
ISSTA 94- 8/94 Seattle Washington USA
@ 1994 ACM 0-89791 -683-2/94/0008..$3.50

Most communication protocols have a reactive na-

ture; therefore specification languages for reactive

systems are favored which precisely define the

temporal ordering of interactions. It is therefore

understandable that the finite state machine (FSM)
model is often used for defining protocol specil3ca-
tions. For this reason, most work on protocol test-
ing has been based on FSM models.

In Section 1, we discuss the main characteristics

of communication protocols and different formal
description techniques which have been used in the
protocol engineering cycle.

In Section 2, we review the main results in the

area of test suite development based on specii3ca-

tions given in the form of deterministic or nonde-

terministic FSM models. Emphasis is put on meth-

ods that are related to a particular conformance re-
lation which the implementation under test should

satisfy in respect to the specification. Also, the test
suite should be complete in respect to a given fault
model, which is defined in terms of the set of faulty

implementations that the test suite should be able to

detect.
We then give in Section 3 an overview of some

testing issues related to test suite development for
specification written in LOTOS, or other specifica-
tion formalisms based on rendezvous communica-

tion.
In Section 4, we discuss the main approaches to

the testing in respect to specifications written in an

extended FSM formalism, such as the languages
SDL and Estelle. In this context, there are many
relations with software testing methods, because

the extensions of the FSM model are usually de-
fined with programming language concepts.

In Section 5, we discuss the impact of the test

architecture which, in the case of protocol testing,

usually involves several access points, partial ob-

servation and synchronization problems between
the different parts of the test system. These issues
have a strong impact on testability. Finally, we re-

view the practice of protocol conformance testing

and state our conclusions.

1.1. The nature of protocol testing
communication protocols are the rules that govern
the communication between the different compo-
nents within a distributed computer system. In or-

der to organize the complexity of these rules, they

are usually partitioned into a hierarchical structure

of protocol layers, as exemplified by the seven lay-
ers of the standardized 0S1 Reference Model
[1S7498].

Figure 1(a) shows a communication system

from the point of view of two users. The users in-

teract with the communication service through in-

teractions, called service primitives, exchanged at

109

so-called service access points (SAP). The defini-
tion of the behavior of the box which extends be-
tween the two users is called the service specifica-
tion. It defines the local rules of interactions at a
given service access point, as well as the so-called

end-to-end properties which relate the interactions

at the different access points and represent the
communication properties, such as end-to-end con-

nection establishment or reliable data transfer.

SAP1 SAP2

communication

service N communlcah

+
Figure 1: The architecture of a communication system.

Figure 1(b) shows a more detailed view of the

service box showing two so-called protocol entities
(PE) which communicate through an underlying,

more simple communication service. The definition

of the required behavior for a protocol entity is
called the protocol specification, and involves the
interactions at the upper and lower service access
points. In addition, the protocol specification usu-

ally identifies different types of so-called protocol
data units (PDU, or messages) which are coded

and exchanged between the protocol entities
through the underlying medium.

The discipline of protocol engineering

[Boch93], [Boch90] deals with the methods for

developing communication protocol specifications

and implementations, including the activities of
validation. Protocol implementations are tested

against the protocol specification in order to assure

compatibility with other implementations of the

same protocol. This is called protocol conformance

testing. In addition, implementations are usually

also tested for other properties, not specified by the
protocol, which may include implementation-spe-

cific choices, robustness to user errors and perfor-
mance properties. We call this type of testing im-
plementation assessment.

For certain protocol standards, the standardiza-
tion committees have also defined standardized
conformance test suites, which usually consist of a
large number of test cases. The successful execu-

tion of these test cases should provide a reasonable

assurance that the tested implementations follows

all the rules defined by the protocol.
One of the main characteristics of protocol test-

ing is the fact that conformance testing is black-box

testing. This implies that a precise reference speci-
fication must be provided, which is the basis for

the derivation of the test cases and the analysis of

the test results. (This specification is in fact the
protocol specification, which defines the required

properties of any implemented protocol entity).

1.2. Specification languages for communi-
cations protocols

As they develop, protocols must be described

for many purposes. Early descriptions provide a

reference for cooperation among designers of dif-
ferent parts of a protocol system. The design must

be checked for logical correctness. Then the proto-
col must be implemented, and if the protocol is in

wide use, many different implementations may
have to be checked for compliance with a standard.

Although narrative descriptions and informal walk-

throughs are invaluable elements of this process,

painful experience has shown that by themselves

they are inadequate.
The informal techniques traditionally used to

design and implement communication protocols
have been largely successful, but have also yielded

a disturbing number of errors or unexpected and

undesirable behavior in most protocols. The use of
a specification written in natural language gives the
illusion of being easily understood, but leads to

lengthy and informal specifications which often

contain ambiguities and are difficult to check for
completeness and correctness. The arguments for

the use of formal spec~lcation methods in the gen-
eral context of software engineering apply also to
protocols.

In this context, many different formal descrip-

tion techniques have been proposed fur the protocol

engineering cycle, including finite state machines

(FSM), Petri nets, formal grammars, high-level
progr amming languages, process algebras, abstract

data types, and temporal logic. The simpler mod-

els, such as FSM, Petri nets and formal grammars,

were often extended by the addition of data parame-

ters and attributes in order to naturally deal with

certain properties of the protocols, such as se-
quence numbering and addressing [Boch90].

With the begiming work on the standardization
for Open Systems Interconnection (0S1), special
working groups on “Formal Description Tech-
niques” (FDT) were established within 1S0 and
CCITT in the early eighties with the purpose of
studying the possibility of using formal speciilca-
tions for the definition of the 0S1 protocols and

services. Their work led to the proposal of three
languages, Estelle, LOTOS and SDL, which are
further discussed below (for a tutorial introduction

and further references, see [Budk87], [Bo1o87] and

~eli89], respectively). These languages are called

_ detiption techniques, since care has been

taken to define not only a formal syntax for the lan-

110

guage, but also a formal semantics which defines

the meaning, in a formal manner, of any valid

specification. This is in contrast to most program-
ming languages which have a formally defined

syntax (for instance in BNF), but an informally

defined semantics. The formal semantics is essen-

tial for the construction of tools which are helpful

for the validation of specifications or the develop-

ment of implementations.
While SDL had been developed within CC!ITT

since the seventies for the description of switching
systems, Estelle and LOTOS were developed
within ISO for the specification of communication
protocols and services. However, all these lan-
guages have potentially a much broader scope of
applications. However, their effective use in the

0S1 area, so far, has been relatively slow. This

may be partly explained by the competition between

these three languages, which each have certain ad-

vantages, and by the difficulty many people have in

learning anew language.

In Estelle, a speciilcation module is modeled by

an extended FSM. The extensions are related to in-
teraction parameters and additional state variables,
and involve type definitions, expressions and
statements of the Pascal programming language. In
addition, certain “Estelle statements” cover aspects

related to the creation of the overall system struc-

ture consisting in general of a hierarchy of module
instances. Communication between modules takes

place through the interaction points of the modules

which have been interconnected by the parent
module. Communication is asynchronous, that is,

an output message is stored in an input queue of the
receiving module before it is processed.

SDL, which has the longest history, is also

based on an extended FSM model. For the data

extensions, it uses the concept of abstract data
types with the addition of a notation of program

variables and data structures, similar to what is in-

cluded in Estelle. However, the notation is not re-

lated to Pascal but to CHILL, the programming

language recommended by CCITI’. The communi-

cation is asynchronous and the destination process

of an output message can be identified by various
means, including process identifiers or the names
of channels or routes. Recently, the language has

been extended to include certain features for object-

oriented specifications In contrast to the other
FDT’s, SDL was developed, right from the begin-

ning, with an orientation towards a graphical repre-

sentation. The language includes graphical elements
for the FSM aspects of a process and the overall
structure of a specification. The data aspects are

only represented in the usual linear, program-like
form. In addition, a completely program-like form

is also defined, called SDL-PR, which is mainly

used for the exchange of specifications between

different SDL support systems.
LOTOS is based on an algebraic calculus for

communicating systems (CCS ~iln80]) which in-

cludes the concept of finite state machines plus

parallel processes which communicate through a

rendezvous mechanism which allows the specifica-

tion of rendezvous between two or more processes.

Asynchronous communication can be modeled by

introducing queues explicitly as data types. The in-

teractions are associated with gates which can be

passed as parameters to other processes participat-
ing in the interactions. These gates play a role simi-
lar to the interaction points in Estelle. The data as-
pects are covered by an algebraic notation for ab-
stract data types, called ACT ONE, which is quite

powerful, but would benefit fkom the introduction

of certain abbreviated notations for the description

of common data structures. A graphical representa-

tion for LOTOS has also been defined.
In addition to the formal description techniques

discussed above, the 0S1 standardization commit-

tees also use certain semi-formal languages (which
have no formally defined semantics). In particular,

a language called ‘ITCN [Sari92] is used for de-
scribing conformance test cases, and the ASN. 1
notation is used for describing the data structures of

the protocol data units (messages) exchanged by
the 0S1 application layer protocols ~euf92]. This

notation is associated with a coding scheme which

defines the format in which these data units are ex-

changed over the communication medium. All the
other languages mentioned above do not address
this problem.

In the context of application layer protocols, in

particular for Open Distributed Processing and dis-

tributed systems management, certain forms of ob-

ject-oriented specifications are being used which

are based on extensions of ASN. 1. Also the fonrml

specification language Z has been proposed, which
is based on set theory and predicate calculus, and

was originally developed for software specifica-

tions.

2. Testing based on FSM specifications
The development of testing methods based on

FSM specifications has initially been driven by

problems arising from functional testing of sequen-
tial circuits. The appearance of communication
protocols has given to this theory a new boost.

Currently, this model is also attracting much atten-

tion in relation with testing of object-oriented soft-
ware systems [Hoff!13], [Turn92]. Moreover, re-
cent results in binary decision diagram (13DD) tech-

nology have increased our ability to deal with the
large number of states [Brya86]. Traditional work

in this field has relied on the model of completely

111

specified deterministic finite state machines. Re-

cently, more complex FSM models have also been

studied.

2.1. Basic definitions: FSM models and
conformance relations

A nondeterministic fiite state machine (NFSM)
is an initialized nondeterministic Mealy machine

which can be formally defined as follows
[PBD93]. A nondeterministic finite state machine

A is a 6-tuple (S, X, Y, h, SO,DA), where S is a set

of n states with so as the initial state; X is a finite set
of input symbols; Y is a finite set of output sym-

boly DA is a specification domain which is a subset

of SXX; and h is a behavior function h;

DA+ P(SXY), where P(SXY) is the powerset of

SXY. The behavior functions defines the possible
transitions of the machine. For each present state Si
and input symbol x, each pair (s~ y) in the result of
the function represents a possible transition leading
to the next state Sjand producing the output y. This

is also written as a transition of the form Si-X/y->Sj.

The machine A becomes deterministic (FSM)

when lh(s~)l = 1 for all (SJ) e DA. In a determini-

stic machine, instead of the behavior function, we

use two functions: the next state function d, and the

output function A

In the general case, let a = x~xz...x~e X*, a is

called an acceptable input sequence for state Si e S,

if there exist k states sil, siz, sik c S and an

output sequence y= yIyQ. ..y~ G Y* such that there

is a sequence of transitions Si-Xz/yl- >Sil-X2/y2->Si2

-> . . . -> sik.l-x~yk- >Sik in the machine. We use

X ~ to denote the set of all the acceptable input se-

quences for the state si and x; for the state SO,i.e.
for A. We extend the behavior function to the set

xl of all acceptable input words (sequences) con-

taining the empty word e, i.e., h: SxX~ + P (S x

Y*) [PBD93].
An NFSM A is said to be completely specified,

if DA+ixX. If DA@xX then A is considered par-

tially specijied. An NFSM will be also referred to
as a complete or a partial machine.

The equivalence relation between two states Si

and Sj in the NFSM A holds if X7=XJ* and

VCXGx;(h2(si,~)=h2(sj,~)), otherwise, they are

nonequivalent, here hz is the second projection of
the behavior function which corresponds to the

output function of the deterministic FSM [Star72].

The machine is said to be retied if all its states are

pairwise nonequivalent. Two NFSMS A and B are

said to be equivalent if their initial states are equiva-
len~ intuitively, this means that the observable be-
haviors of the two machines are identical.

Given a NFSM A = (S, X, Y, h, SO,DA), A is

said to be initially connected if Vs G S 3 a~ Xl

(se hz(s~,a)), where hl is the frost projection of

the behavior function which corresponds to the
next function of the deterministic FSM [Star72].

Every NFSM is equivalent to an initially connected

one.
The complete NFSM B = (T~,Y,H,t~) is said

to be quasi-eqtu”valent to A if for all acceptable in-

put sequences a= X: (Hz(tO,tz)=hz(sO, a)). Intu-

itively, this means that for the input sequences for

which the behavior of A is defined, the behavior of
B is identical.

Given the NFSM A = (S, X, Y, h, SO,DA), and

complete NFSM B, B is said to be a reduction of

A, written B <A, if Va G X; (H2(to,a) G

Itz(sO,a)). Intuitively, this means that for the input

sequences for which the behavior of A is defined,

the output sequences of B are included in those de-
fined for A.

The equivalence, quasi-equivalence, and reduc-

tion relations between NFSMS are widely used as
the conformance relations between implementations

and their specifications in protocol test derivation

based on the finite state machines.

2.2. Interfaces, fault models and complete
test suites

In protocol engineering, it is customary to dis-

tinguish (at least) two levels of abstraction for the

description of module interfaces: For the protocol
and service specifications, the interactions at a SAP
are described at an abstract level in terms of atomic
events which normally correspond to a request by
the user or an indication received by the user from

the protocol entity. For each implementation of the
protocol, an implementation of the abstract interface
is provided either in software (e.g. procedure calls,

operating systems calls) or hardware. The nature of
the interface implementation is not defined by the
protocol specxlcation. Only the abstract properties
of interactions, their parameters and ordering con-
straints defined by the protocol specification must
be reflected by the implementation.

The test cases developed for the conformance

testing of a given protocol should be applicable to

all implementations of that protocol, irrespective of
the interface conventions used by the implementa-

tion. Therefore these test cases are based on the

112

abstract interface definition of the specification. In

order to execute such a test case with a given im-

plementation under test (JUT), these abstract inter-

actions must be realized in terms of the concrete

interface adopted by the protocol implementation.

For instance, the upper tester (UT) accessing the

upper SAP of the IUT (see Figure 2) must be

adapted to the particular SAP interface adopted by
the IUT.

We conclude that in case of black-box testing

based on the specification of the I’UT, the test suite
must be developed based on the abstract interfaces

defined within the specification, and it must be as-

sumed that the (abstract) properties of these inter-

faces are satisfied by the concrete realization of

these interfaces in the implementation under test

we call this the correct interjace assumption. (How
the validity of this assumption can be tested is out-

side the scope of this paper).
In the context of FSM-based testing, it is as-

sumed that the interface is event-driven, and more-
over, that all events on the interface are alternately
controlled by the environment and the IUT. In par-
ticular, there exist two channels, one is to convey

“inputs” of the environment and the second is to re-

ceive “outputs” from the IUT. Each abstract input
yields exactly one output symbol, and the next in-

put symbol can be sent to the IUT only after the

IUT has moved into a stable state and produced an
output symbol in response to the previous input.

An output reaction of the IUT to any input can be in

the form of a meaningful output (as explicitly de-
fiied by the specification), an “error” or a “null”

output (which means “no output”, and which will

be detected by waiting a specifkd time-out period).

All these outputs can be observed and are treated as

abstract output symbols.

Based on such an interface, the reference behav-

ior is assumed to be specified as an NFSM. The

correct interface assumption implies that any KIT
can also be modeled as an NFSM. In particular, no

IUT can “refuse” to execute any input in any of its

states or produce an output without any input. Any
IUT is thus a completely specified NFSM whose
input alphabet at least includes the one of the speci-

fication NFSM. Moreover, the implementations are
complete machines even if the specification is a

partial machine and include the input alphabet of the
reference NFSM.

In order to introduce the notion of test coverage,

it is necessary to determine which faults of an im-

plementation should be covered. One way to intro-

duce a fault model is by defining a set of implemen-
tations with erroneous behavior that should be de-

tected by the test suite. If this set is finite, a finite

test suite exists that covers all faults; if it is not fi-
nite, there may be no finite test suite that covers all

faults. In order to define a fault model, we take the

mutation approach, where a mutant of a specifica-

tion A is any implementation that satisfies the cor-

rect interface assumption. In the case of FSM-

based conformance testing, the mutants of A are the

class of all completely specified NFSMS with the

same input alphabet. A fault model 5 is a subset of

this class.
The concept of conformance relation is needed

to distinguish mutants which could exhibit an erro-
neous behavior ~BD93]. It is usually introduced

when both the IUT and its corresponding specifi-

cation are represented with the same formalism. In
the case of the FSM model, the equivalence, quasi-

equivalence, and reduction relation are natural can-

didates for conformance relation. The given speci-
fication NFSM A and a conformance relation conf

partition the set of mutants 5 into the subsets of

conforming implementations C(A) = {1 I IG i? & I

conf A } and non-conforming implementations

N(A) for the given specification A, i.e., N(A)= {1 I

IC 3 & I notconf A }. Based on this partition, the

notion of a complete test suite for a given NFSM A

with respect to a given conformance relation and
fault model can be formally introduced as follows.

A test suite E sX~ is said to be compzete for the

specification NFSM A and the fault modeI 5 w.r.t.

the reduction relation if for any NFSM B = (T, X,

Y, H, to) in 5 which is not a reduction of A, these

exist an a= E and a yG Hp(to, a) such that

yzh2(s0,@. Similarly, complete test suites are de-

fined for the equivalence and quasi-equivalence re-

lations. A complete test suite guarantees detection

of all mutants in the fault model that do not con-
form to the specification.

Them are different ways to characterize a mu-

tant, or the set of mutants within a given fault

model. The traditional mutation approach defines a
set of mutation types, each representing a specific
type of structural fault, that is, a modification

which may be introduced into a specification in or-

der to obtain a different behavior. In the so-called
single fault model, the mutants considered are those

obtained from the specification by applying a single
mutation of one of the specified types. In the case
of the so-called multiple fault modkl, the mutants

are obtained by me or sev~ such mutations. In

the case of FSM speciflcat.ions, the mutation types

considered are usually ouqwt faults (the output of a
transition is wrong) or lransfer faults (the next state
of a transition is wrong). In the area of software

testing, various types of mutations may be consid-

ered, such as sequencing faults (e.g. missing alter-

113

native path, improper nesting of loops, WHILE
instead of REPEAT, wrong logic expression to

control a conditional or looping statement); arith-
metic and manipulative errors, such as ignoring

overflow, wrong operator (e.g. GT instead of GE

or + instead of *); calling of the wrong function;

wrong specification of data type and/or wrong for-
mat of data representation; wrong initial value, or

wrong number of data elements; or a reference to

an undefined variable or the wrong variable.

This “fault-based” identification of mutants

seems most natural in the context of diagnostic
testing where one wants not only detect erroneous

behavior, but also determine how the implementa-
tion could be changed in order to make it conform
to the specification (e.g. identify a faulty compo-

nent to be replaced, or identify the part of the pro-

- or the part of the FSM state table that should
be corrected). It seems that it works well in the

context of deterministic and completely defined
FSM specifications, however, in the context of
nondeterministic systems, there are many examples

where a few mutations lead to a mutant that con-
forms to the speciilcation; the correspondence be-

tween mutations and erroneous behavior is there-
fore not straightforward. Therefore one uses often

a “wholistic” identification of mutants, simply
characterizing the erroneous behavior of the mutant
by an appropriate model without comparing its

structure with the structure of the (correct) specifi-

cation.

2.3. Test derivation from completely

specified deterministic FSMS
The simplest fault models are defined for speci-

fications which can be represented by completely

specified deterministic FSMS. In this class of ma-

chines, the equivalence relation serves as confor-
mance relation, and the mutants are completely

specified deterministic machines.
When applied to such a machine, the mutation

technique yields a certain number of mutant FSMS.
A particular mutant FSM can be generated ilom the
specification FSM by changing the next state and/or

the output of a number of selected transitions be-

tween states. This mutant machine represents a
certain combination of output and transfer faults.
The number of all possible mutants grows expo-
nentially when the number of states and inputs in-
crease, therefore, some heuristics, such as infor-
mation about the implementation, severity of faults,

test hypotheses should guide this process. Based
on the set of mutants considered, it is possible to

find in one way or another a set of tests which dis-

tinguish (kill) all these mutants from the specifica-

tion FSM.

There are different methods for defining the set

of mutants in the fault model, such as the follow-
ing. In each case, corresponding methods of deriv-
ing a complete test suite have been developed.
(1) Limiting the number of states: The fault

model consists of the universe Sn of all complete

deterministic FSMS with a number of states lessor

equal to nt, and which have the input alphabet of
the specii3cation FSM A, where m > n, the number

of states in A. Guessing the bound m is an intuitive

process based on the knowledge of a specification,

the class of implementations and their interior

structure which have to be tested for conformance.
The value of m can be also limited due to economic
considerations. The larger the bound is chosen, the

larger the complete test suite is, as it is illustrated

by the existing upper bounds for the complexity of
tests [PBD93].

The methods for deriving complete test suites

horn complete deterministic machines are all based

on transition checking approach ~enn64]. Each
method, however, requires a distinct type of a

characterization set [Vasi73] (a W-set) used for
state identification. The UIOv-method [Vuon89],
for instance, constructs the W-set only from so-

called unique input/output sequences. The methods
[Yevt90a], [Petr91], [Petr92] are based on “har-
monized” state identifiers eliminating the verilZca-

tion phase that is necessary for the W- and Wp-
methods [Chow78], [Fuji9 1]. The methods in

[Vasi73], [Chow78], [Fuji91], [Yevt90a] allow the

IUT’S to have more states than in the specification

(i.e., m2n); and the others [Vuon89], [Petr91],

~etr92] do not (i.e., m=n). Which of these meth-

ods can produce a shorter complete test suite for a
given FSM and nz=n, is still an open question. All
the mentioned methods assume that a reliable reset

is available in the IUT’s; note that there is another

group of methods which guarantee full fault cover-

age without this assumption (see, e.g., ~enn64],
and the UIOG-method in [Yao93]). They can be
applied for reduced, deterministic, strongly con-
nected FSM’S. However, these methods usually
yield much longer complete test suites than the
former. Earlier reviews of the test derivation meth-

ods especially of those that do not guarantee full
fault coverage, can be found elsewhere (see, e.g.,
~ra.191], [Sidh89]).

The complexity of a corresponding complete test

suite seems to be the price for assuming such a
broad fault model. A more restricted fault model

requires, however, a justit3cation for each particular
application.

(2) Output faults only: These faults are rela-

tively easily to catch. Any test suite based a transi-

tion tour of A (i.e. traversing each transition of A
at least once) is already complete for this fault

114

model [Nait8 1]. This corresponds to the “all

branches” criteria used in software testing.
(3) Fault functions: grouped faults which can

be represented by a so-called fault function

[Petr92]. Let A = (S, X, Y, 6, A, SO) be a reduced

initially connected FSM. It is assumed that all pos-

sible mutants are deterministic reductions of an ap-

propriate NFSM F(A) = (S’, X, Y, H, SO) con-

structed from the specification FSM A in such a

way that A is a det&ministic submachine of F’A).
The behavior function H describes all output and

transfer faults for each transition and is called a
fault function for A. If F(A) is weakly initialized,
i.e. it has more that one initial state, then initializa-

tion faults are also included in this fault model. A
fault function is a general and flexible formalism to

model different faults. In fact, if H(sJ) = S’XY for

all (s,x)e S’XX, and lSl=nz, then all machines of

the set ~~ are deterministic submachine of F(A).

Output faults are easy expressed by a specific form

of the fault function as well: H(SJ) = { [XSJ),YI I

y= Y} for all (s,x)e S xX, S’=S. A natural ques-

tion on how a fault function can be chosen for the
given FSM arises. We believe, this function is,

frost of all, a tool to formalize hypotheses of a test
engineer about the defects in a given X’UT, but their

formulation is a process which is rather intuitive

and largely based on experience. He may have cer-

tain ideas on which part of the protocol (e.g.,

transitions) is more likely to be incorrectly imple-
mented, which errors are most critical or frequently

made by implementators of particular class of pro-

tocols, which part does require testing and so on.
Particular forms of the fault function are con-

structed in an obvious way in cases when, e.g., the
reference FSM describes the behavior of a com-

posite system and some component machines are

assumed to be error-fkee. Such cases are typical for

grey-box testing and encountered when a protocol
is represented by a composition of several FSMS or

by an EFSM. A so-called FF-method for generat-
ing a test suite which is complete for all faults de-
fined by any given fault function, is proposed in

[Pe@2]. It tunes a test suite to user-defined classes

of faults. Similar to the above considered methods,
it is also based on transition identification. How-

ever, next states of transitions are identified in cer-

tain subsets of states determined with the help of
the given fault function.

Concluding this section, we note, that to our
knowledge, there have been no systematic studies

to determine whether the assumptions on a particu-

lar fault model are realistic. The assumption of no

additional states seems to be justified in the case

that a direct implementation of a pure FSM specifi-

cation is realized by systematic translation expected
faults could be wrong output or transfer for speeiilc

transitions, but the number of states of the imple-
mentation would normally be the same as for the

specflcation. However, if additional parameters are

present (extended FSM model) the implementation

of these parameters may possibly lead to more

states in the implementation.

2.4. Partially specified FSMS
Most of the existing protocols are not completely

specified, in the sense that in real communication

systems, not all the sequences of interactions are
feasible. The model of a partial FSM adequately

expresses this feature of protocols. The semantics
of partial machines needs, however, ftier clarifi-

cation. A specific feature of a partial FSM is that it
has “undefined” transitions called also “non-core”

or “don’t care”. There are different conventions that
may be used to give a formal meaning to “unde-

fined” (we note that in the context of labeled transi-

tion systems, see Section 3, there is a different no-
tation, since an “undefined” means “blocking”, no
transition possible):
(1) “Implicitly defined” transitions. With

this convention, a partial FSM represents a com-

pletely specified FSM by adopting some “com-
pleteness assumption”. Such an assumption is

based on the fact that all implementations can be

represented by complete machines which never
refuse any input. It states that all “don’t care”

transitions in the specification are substituted by
looping transitions with the null outputs

(Convention la), or with transitions to an prror

(terminal) state with an “error” output (Convention
lb). In SDL specifications, for instance, unex-

pected or inopportune events are ignored, so Con-
vention la is applied. The convention used during

the process of implementation is assumed to be
known for testing purposes. The given partial FSM

is substituted by a quasi-equivalent completely

specitled FSM, and the problem of test derivation
fkom a partial machine is thus avoided.

(2) “Undefined by default” transitions.
This convention means that a partial FSM is inter-
preted as a set of complete FSMS taking into ac-

count that the result of a “don’t care” transition
might be any state and any output. This interpreta-

tion is suitable for conformance testing of the
given implementation when information about the
convention used by an implementator is absent. In
contrast to the first convention, all possible options
are left up to the implementor of the partial ma-

chine. A conforming implementation is, in fact, a

complete FSM that implements any of these options

~etr91]. The quasi-equivalence conformance rela-

115

tion exactly captures this interpretation. It is also

called weak conformance [Sidh89].
(3) “Forbidden” transitions. In some cases,

the behavior of a system is not completely specifkd

because its environment will never execute certain
input sequences. Invalid entries in state tables used
in the 0S1 protocol standards exemplify this situa-

tion. The set of acceptable input sequences Xl of
an FSM A represents all “admissible” sequences,

the remaining ones are “forbidden”, they define
“forbidden” transitions in the given partial FSM.

This convention is sirniku to the one of “undefined

by default” transitions, the difference is that in this

case, a tester cannot submit certain inputs to certain

states of the given partial FSM. An example is a
lower service provider that cannot deliver any mes-

sages to certain states of a tested protocol entity and

an upper protocoI entity that cannot deliver an un-

expected service primitive to any state of the IUT.
In all these situations we have to treat “don’t care”

transitions as “forbidden” and to avoid them in test

derivation. In contrast, transitions that are unde-

fined by default can be tested to determine the reac-

tion of the implementation for these “unexpected”
inputs; this is called “robustness testing” or testing
for strong conformance [Sidh89].

The conclusion is that to derive an abstract test

suite from even a completed specflcation of an em-

bedded IUT we might have to come back to a par-
tially specified machine. Therefore, even though
some specification languages based on the FSM
model impose complete specifications by a build-in

mechanism of implicitly defined transitions, there is

a need for deriving conformance tests directly from

partial machines. Note that grey-box testing, in

general, requires the model of a partial FSM

[Petr94].

Constructing a complete test suite for a machine

from this class is complicated by the fact that mini-

mality of a given FSM cannot anymore be taken for

granted, unlike in the case of complete machines. If
the machine is not reduced then some of its states

cannot be distinguished neither on the specification
leveI nor on the implementation level. The tradi-

tional transition identification approach is no more
applicable to these machines. A more general ap-
proach based on the idea of counting distinguish-

able states traversed by a test sequence gives meth-

ods [Yevt90b], [Petr9 1], [Yevt9 1], [Lu094] for
test derivation which can treat partial as well as
complete deterministic machines.

2.5. Test derivation from nondeterministic

FSM specifications

All the

protocols,
three major specification languages for
LOTOS, ESTELLE, and SDL support

116

the description of nondeterminism. So a machine

abstracted from the formal description of a protocol
might also be nondeterministic. Generally speak-

ing, a nondeterministic FSM model may be used to

represent different situations, such as the follow-
ing:
- a protocol entity with inherent nondeterminism,

- a set of deterministic protocol entities considered
as options of a given protocol;
- a deterministic IUT embedded in a given system
in such a way that a tester cannot directly observe

(see [Petr94] for more detail);

- nondeterrnini sm due to concurrency.

For nondeterministic protocol implementations,

a given test may give rise to different observations

of the output reaction. It is therefore not enough to
execute a test once, the same test should be repeat-
edly executed until all possible observations are

obtained. If the nondeterminism within the IUT
cannot be influenced from the testing environment,
it may be difficult, in general, to determine after

how many executions of the given test all possible

observations have been obtained. In order to de-
termine the verdict for a given test, it is therefore

necessary to assume the so-called complete testing

assumption ~uo94J which supposes that all pos-
sible observations have been obtained (see also the

“all weather conditions” assumption for LTS’S in
[Miln80]). Note that so-called intermittent faults

can also be modeled as an NFSM, however, it is
not clear how the complete testing assumption can
be satisfied. Their detection is not guaranteed

The equivalence, quasi-equivalence, and reduc-

tion relations defined for NFSMS seem suitable to

serve as conformance relations in protocol testing.

We note once more that for complete NFSMS, the

quasi-equivalence relation coincides with the

equivalence relation, and the choice has to be made

between the two relations. If, however, an imple-

mentation submitted for conformance testing is
known to exhibit a deterministic behavior only,

then the reduction relation has to be taken as a con-
formance relation between a nondeterministic spec-
ification and its deterministic implementation.

Test derivation flom such machines is currently
an active research area. Several methods have al-
ready been reported, some of them are guided by
certain heuristics, the others, like [Yevt9 1],
[Petr93], [Petr91], [Lu094], are based on fault
models and provide complete test suite w.r.t. the

chosen conformance relation. Similar to determin-
istic partial machines, these methods exploit the
idea of counting distinguishable (in the sense of the

chosen relation) states traversed by a test sequence,
to ensure the required relation between the specit3-

cation and implementation. Different conformance
relations yield usually different complete test suites

for the same specflcation machine, since states

which are not (quasi-) equivalent may satisfy the

reduction relation.

2.6. Length of complete test suites

The expected length of a complete test suite for
an arbitrary given (partially specified and nonde-

terministic) FSM w.r.t. the chosen conformance
relation is usually well within the upper bound of

the corresponding test derivation method. In the

worst case, it does not exceed the value IXlnrn,

where X is an input alphabet, n is the number of

states in the given machine, and M is the upper

bound on the number of states in possible imple-
mentations [Petr93]. The complete deterministic

FSMS have better upper bounds, see for instance
[Vasi73], [Yann91], [PBD93].

However, the actual complexity of the test suite

for FSMS modeling protocols seems much less

these upper bounds. The complexity depends on
properties of the characterization set on which the

test derivation method is based. Even though their
construction is shown to be PSPACE-complete
[Yann91], several empirical studies show that pro-

tocol machines tend to have rather short state iden-
tification sequences which result in test suites of

reasonable size. We give some examples in Section

6.

2.7. Fault coverage analysis

As with other software testing, the evaluation of
fault coverage for a given test suite is an important

issue in testing based on the FSM model and has

been studied in the context of traditional hardware
testing and, in recent years, in the context of proto-

cols. Methods that have been proposed are essen-

tially variations of the mutation analysis technique.
For instance, instead of using the exhaustive muta-

tion analysis approach, some researchers have in-

troduced a number of classes of mutant machines

~ahb88], ~ubu91], [Sidh89] and [Mott93]. The
mutant machines in a class will contain a certain

number of faults resulting from the changes of next
states and/or outputs of some transitions. For each

class, a limited numlxx of mutant machines are
randomly generated which are then executed

against the given test suite. Apparently, the fault

coverage evaluated in such a way is an estimation
of the real fault coverage of the test suite and its ac-

curacy relies on the total number of mutant ma-

chines randomly generated and executed.
Recently, a different procedure has been devel-

oped which, without the need of explicitly generat-
ing and then executing a (usually large) number of

mutant machines, can decide if the given test suite

provides complete fault coverage ~PB94]. When

the test suite does not provide full fault coverage,

the proposed approach can derive from the test

suite, by analyzing it against the specification ma-

chine, an incorrect implementation machine which

can pass the test suite and therefore allows an addi-
tional test case to be generated to distinguish this

particular implementation machine from the specifi-

cation. As such, full fault coverage can be achieved
by repeatedly applying this procedure. However,

this approach does not provide a numeric measure
for a test suite which does not have fill fault cover-

age. Consequently, it is impossible to use this ap-

proach to compare the fault coverage of two test

suites, if none of them provides full fault coverage.
A metric-based approach [Yao94] to the evaluation

of fault coverage of a test suite in respect to a given
specification machine can be used for this purpose.
This approach avoids the necessity of explicit gen-

eration and execution of mutant machines

representing possible implementations of the given

specification machine. It provides a numeric mea-

sure for a test suite no matter whether the test suite
has complete fault coverage (i.e., 100%) or not.
The experiments show [Yao94] that this method

gives a good approximation of the real fault cover-

age of the given test suite.

3. Testing based on specifications in the

form of labeled transition systems
Labeled transitions systems (LTS’S) are in some

sense a more general specification model than FS-

Ms, since interactions of a specified subsystem

with its environment are usually considered as ren-

dezvous interactions making no distinction between
input and output (see for instance the specification

formalism CCS [Miln80] or CSP ~oar85]). In the

case of the LOTOS language, more than two pro-

cesses may participate in a given rendezvous inter-

action. For an interaction to occur, it is necessary

that all participating processes have a specified

transition that leads from their present state to a
next state involving the interaction in question. If

such a transition is not defined for the present state,
we say that the interaction is blocked for the pro-

cess.
An LTS may be considered as a partially speci-

fied FSM without outputs where the interactions of

the LTS correspond to the inputs of the FSM, and
the meaning of an “undefined” transition is the
blocking behavior, as explained above. In addition,

LTS’S usually allow for internal events that are not

observable from the environment, denoted T (or i,

in the case of LOTOS). Nondeterminism may be
introduced by internal events or by several transi-

tions, for the same interaction, leading to different
states.

117

Different kinds of conformance relations maybe
considered for LTS’S. If only the traces of ob-

served interactions are of interest (like the traces of
inputs and outputs as considered for FSMS), one

may consider the trace equivalence and trace inclu-

sion relations, which correspond to the equivalence
and reduction relations defined for FSMS.

In the case of nondeterministic systems, the

blocking behavior cannot be deduced from the

possible traces. Therefore it becomes important to

consider explicitly the blocking behavior. This is

usually done by considering, for each possible
trace, a set of associated refusal sets; a refusal set

for trace t is a set of interactions that may be all re-

fused (i.e. blocked) by the system after executing

the trace t. The refusal behavior of an implementa-
tion may be tested by a testing environment that ex-
ecutes, in rendezvous with the IUT, the trace t and

then offers all the interactions in the refusal set. If

an execution of this test leads to deadlock after the
trace t, it is shown that the IUT includes the refusal

set in question. Note that in general, because of the
nondeterrninistic nature of the specification (and

possibly the implementation) each test must be exe-

cuted several times, as in the case of testing nonde-

terministic FSMS, since after a given trace t, the
IUT maybe in different states, each corresponding

to a different refusal set. Based on this testing
method, also called failure semantics, the confor-

mance relations test equivalence, reduction, exten-

sion and “confonrumce” maybe defined [Tret9 1].
Many other conformance relations may be con-

sidered (see for instance [Miln80], [Miln8 1],

[Glab90]). Depending on the properties of a tester

and the interface between the tester and the IUT,

different kinds of experiments on processes can be

defined, giving rise to an abundance of semantics
for the relations between processes. In the failure

trace semantics, for instance, a tester can not only
observe deadlocks but also continue testing after-
wards by offering another set of interactions,

which is not allowed for the failure semantics. In

several simulation-related semantics, the tester is, at

any time during a run of the IUT, capable of mak-

ing arbitrary many copies of the IUT in its current

state and observe them independently. This as-
sumption is, in fact, much stronger than the reliable
reset assumption in the realm of FSMS. It seems to
us that test hypotheses deeply influence the choice
of a conformance relation among this hierarchy of
the preorder relations and the associated equiva-
lence relations. We refer to work of R.J. van
Glabbek [Glab93], [Glab90], where 155 notions of

observability have been reviewed. The relations
have been mainly used for verification purposes in

process algebra and concurrent systems.

To our knowledge, current research in testing

implementations against a given reference LTS has

been concentrated on relations based on trace and

failure trace semantics. In recent years, much work
on the derivation of conformance tests from a given

LOTOS, or corresponding LTS specification, has
been done in the protocol engineering community
[Alde90], [Brin87], [Drir93], [FuBo 91],

lLa.ng89], mdu91], [pit@O], Neze90], mrin89],
~ret91]. Most of this work has addressed the dif-

ficult problem of dealing with nondeterministic

specifications.
It seems that the theories of test derivation from

FSM and LTS specifications have been developed

almost independently. Recently, it has been shown
~BD93] that it is possible to transfer the problem

of deriving a conformance test suite for an LTS to

the realm of the input/output FSM model, where
the test derivation theory has been elaborated for

several decades and a number of useful results have

been obtained already. The idea is to define, for a
given LTS specification and given conformance

relation, a corresponding FSM specification such

that the application of the FSM test suite (based on
trace conformance) is equivalent to the veritlcation

of the given conformance relation in respect to the
LTS specification. Unfortunately, the number of
transitions in the corresponding FSM may be much
larger than in the original LTS. Further work is re-

quired to determine whether this approach can lead

to practical results.

4. Testing of extended FSM models

The FSM model is often too restrictive for

defining all aspects of a protocol or any other kind

of spedlcation. Therefore an extended FSM model
is often used. With this model, the spec~lcation of

a system module, represented as an extended FSM,
includes additional state variables (in addition to the

FSM state variable) and the input and output inter-

actions include parameters. A transition is in gen-
eral characteriz~ in addition to the FSM character-
ization of present and next state and input and out-

put interactions, by a so-called enabling predicate

and a transition action. The enabling predicate must

be satisfied for the transition to be possible. It de-
pends on the pnxent module state (FSM and addi-
tional state variables) and the effective input pa-
rameters. The action defines the output produced,
including the effective output parameters, and pos-
sibly some updates of the additional state variables.

The notation used for the description of the
transition predicates and actions are usually bor-
rowed from some high-level programming lan-

guage. Therefon3, the issues of the systematic test-
ing of an implementation based on a given extended
FSM specification are closely related to the issues

of software testing. If certain limiting assumptions

118

are made about the form of the predicates and ac-

tions, the analysis of the behavior of the specii3ca-

tion and systematic test selection remains decidable

~ga94], but in general, in particular when the ac-

tions may include loops, the question of deciding

which input parameters should be used in order to
force the selection of a particular transition becomes
undecidable, like the question of deciding the exe-
cutability of a given branch of the program in soft-

ware testing.

Several researchers have proposed to use

dataflow analysis for the systematic selection of test

cases for extended FSM specifications. The
dataflow analysis involves the input and output pa-

rameters and the additional state variables. By se-

lecting appropriate test cases involving appropriate

transitions, it is possible to satisfy the testing crite-
ria that have been developed for software testing,

such as “all definition-use pairs”, etc. ~rank93]. A
number of methods are based on the construction

of control and data flow graphs [Sari87], wra187],

[Ura191], [Mil192], [Ura193]. By analyzing the

graphs, some guidelines are provided for choosing

test sequences based on traditional software testing

criteria. In order to clearly separate the control and

data flow aspects of a specification, the transfor-
mation into a normal form specification has been
proposed [Sari87]. In such a specification, all con-

trol flow aspects are represented by the underlying
FSM model, whereas the actions can be repre-

sented by straight-line code without branching

statements nor loops.

Clearly, the selection of the transition to be exe-
cuted cannot be done in an arbitrary manner, since

the FSM part of the specification prescribes certain

rules about the possible sequencing of the state
transitions. At the same time, it is desirable to cover

the faults of the FSM part of the specification, us-
ing one of the test selection methods developed for

pure FSM specification discussed in Section 2.

This interplay between the control part of the spec-

ification (represented by the pure FSM model) and

the data part (represented by the transition predi-

cates and actions) makes these test selection meth-
ods interesting.

The test selection methods for extended FSM
models usually ignore the problem of selecting ap-
propriate input parameter values in order to assure

that the desired transition predicates become en-
abled. The selection of appropriate input parameter
values is also important for the other reason that a

dataflow fault may not be revealed for a given
combination of input parameter values if the result-
ing output parameter values are (by chance) not af-

fected by the dataflow fault. Therefore the method

of repeating tests with different input parameter
values, selecting for each parameter the extreme

and some intermediate values, well-known in soft-
ware testing, is also proposed to be used for proto-

col testing [1S9646].

An EFSM can be viewed as a compressed nota-
tion of an FSM. It is possible to unfold it into a

pure FSM by expanding the values of the parame-
ters [Favr86], [Cast86], [Vuon89], [Faro90],
[Chun90]. Their domains have to be reduced in or-
der to avoid state and input explosion problem. In

this case, the FSM-based methods cover not only

the control part of a specification but also its data

part.
The mutant-killing technique has also been ap-

plied to derive test sequences from an EFSM spec-

ification of a protocol. A limited number of mutant
EFSMS are first constructed based on the given

EFSM, and then by comparing the behavior of two

machines a sequence which can distinguish them is
found, see for instance [Gu091], [Wang93]. The
BDD technology ~rya86] and implicit state enu-

meration methods can be used to save space for
constructing distinguishing sequences, see, e.g.

[Cho91].
A similar problem is encountered in the area of

hardware design verification. To verify the design

one has finally to compare the two EFSMS and to

try to distinguish them, one represents the project,
the second one - the actual design.

The weak point of this technique (and possibly
all the EFSM-based methods) is the exhaustive
search for suitable paths. Fortunately, most of the

protocols do not contain complicated computation

and reveal the content of their variables within sev-
eral transitions, moreover, they tend to have simple

predicates.

5. Test architectures and testability

A typical protocol entity has two service access

points (SAP) to communicate with adjacent proto-
col layers, as shown in Figure 1(b). Their existence

is a distinctive feature of communication software,

it gives rise to a variety of architectures for protocol

testing. Several system architectures for confor-

mance testing have been identified in the context of
0S1 standardization ~ayn87]. These architectures

can also be used for implementation assessment.
The international standard [1S9646] distinguishes
four basic types of a test architecture: local, dis-
tributed, coordinated and remote. Local test archi-
tecture corresponds to traditional software testing,
here both SAP’s of the implementation under test

(TUT) are accessed by a single tester. In this archi-
tecture, the SAP’s can be viewed as parts of an in-
terface between the tester and the protocol imple-

mentation since the IUT and the tester reside within
the same computer system. The other (external) ar-
chitectures assume that the lower SAP is accessed

119

via an underlying communication service by the so-

called “lower tester” which is implemented in a

separate test system computer. The so-called dis-
tributed and coordinated test methods require along

with the lower tester the “upper tester” which has to

be interfaced with the IUT on its upper SAP. Fig-
ure 2 shows the distributed architecture, where the

KIT and a test user, called “upper tester”, reside in

a computer that is connected through a network to a
Nmote test system computer.

The difference between the two methods is that

the coordinated test architecture relies on a special
test coordination protocol which supports coordi-
nation or synchronization of the actions of both

testers. A separate communication channel is usu-

ally introduced, sometimes in the form of a terminal

connection to the remote test system, which allows

the operator at the system under test to coordinate

the activities of the test system with the operation of

the system under test. Various test coordination
protocols, sometimes using a separate channel,
have also been developed for automatically coordi-

nating the actions of the upper and lower testers.
—

E
Figure 2: Distributed test method.

The remote test architecture excludes the upper
SAP from the testing process since in a number of
practical situations, the IUT is embedded into a

complex system in such a way that the upper tester

simply cannot be included into the system. It is im-

portant to note that complete testing of a protocol

implementation implies the observation of the inter-

actions at the upper w lower interfaces. Neverthe-
less, in many cases the remote test architecture is

used which does not have a special upper tester and
therefore does not check the communication service
provided to the user. The remote and distributed

test architectures have the advantage that the test

system resides in a separate computer and can be
accessed over distance from a variety of systems

under test. In the context of 0S1, certain test cen-
ters provide public conformance testing services

which are accessed over public data networks.
The distributed test architecture presents some

diMculty to test execution concerning the synchro-
nization between the upper and lower testers, since

they reside indifferent computers and communicate
only indirectly through the IUT. Since the syn-

chronization becomes an important issue in the

cases when the upper and lower testers do not re-

side in the same computer, several FSM-methods

[Sari84], [Boyd91], [Lu093] attempt to produce
so-called synchronizable test suites which do not

need an external coordination of the two testers at

the penalty of an increased length and worse fault
coverage. Some protocols are intrinsically nonsyn-

chronizable, hence the distributed test architecture
without coordination between testers cannot guar-
antee complete fault coverage with any given test

suite.
Each of the external test methods comes in three

variant forms: single-layer, multi-layer or embed-

ded. Single-layer methods are designed for testing

a single-layer protocol implementation without ref-

erence to the layers above it, but assuming that the
protocol below has already been tested Multi-layer

methods are designed for testing a component that

implements several protocol layers as a whole.

Embedded test methods tune tests to a single proto-

col assuming that the protocols above and below

this layer have already been tested. The variety of

test architectures is suitable for different testing sit-
uations. It is obvious that these architectures have

different impacts on testability, i.e. controllability

and observability of the IUT.
As may be expected, testability of a protocol

implementation usually deteriorates when it is being

tested through an environment, e.g. other protocol
layers. The use of additional points of control and

observation (PCO) could compensate such a deteri-

oration, moreover, these PCOS could significantly
decrease the length of a required test suite for an
isolated protocol implementation. PCO’S for

testability are one of the techniques considered in

the design for testability of communication proto-

cols, which is an active research area [Dss090],
[Dss091], [Vuon93]. However, a third party

(conformance) testing usually does not rely on such

special features since most existing protocols have
been specified and implemented without confor-
mance testing in mind.

External and embedded test architectures entail

serious testing problems which are best formalized
in the context of grey-box testing. Opposed to the

black-box approaches, grey-box testing attempts to
profit from the internal knowledge of the system
accessed by testers. The major issue is that a
model, e.g. an LTS or an FSM, used to represent

the behavior of a given protocol entity alone, does
not characterize its behavior in such a test architec-
ture. Some actions are no longer directly controlled
or observed, certain faults are not easy to activate

by and/or to propagate to a tester, i.e. they even
may go undetected. At the same time, testability in
this case has its limits in the sense that there are
implementations that would not conform to the

120

isolated protocol specification, but when consid-

ered in the given architecture, become conforming.

This problem has been formally treated in terms of
the FSM model in [Petr93], [Petr94] and the LTS

model in ~r93]. As shown in [Petr94], the be-

havior of a component under test even if it is de-

terministic and completely specifkxl, when it can be

externally controlled and observed, may be ade-

quately represented by a partially specified and
nondeterministic FSM within a particular context.

Tests derived fkom such a testable representation

ensure that all faults detectable within the given test
amhitecture are revealed. Similar considerations are
reported in the area of hardware, see for instance

~ata93].

6. The practice of protocol conformance

testing

Testing of distributed systems is required at sev-

eral levels, such as in-house validation during the
design and implementation process, protocol con-
formance and implementation assessment testing,

inter-operability testing between different imple-
mentations of the same protocol, and quality of

service testing concerning specific performance

questions. For conformance testing of standardized

protocols, standardized conformance test suites

have been developed which are intended to be ap-

plied in a standardized test architecture and envi-

ronment. Most of these test suites have been devel-

oped using ad hoc techniques inspired by ideas of

the existing formal methods.
Based on standardized test suites conformance

testing services are offered by a number of protocol
test centers throughout the world. According to
data provided by the Open Systems Testing Con-

sortium (OSTC), the test campaign for a protocol

implementation may last ffom a few days to several

weeks depending on the complexity of the proto-

col. For example, 7 days are required to perform

conformance testing of an 0S1 session protocol
implementation, according to the OSTC. Unfortu-

nately, not much data is currently available on the

statistics of real faults in tested protocol implemen-

tations. One of the possible reasons for this is that
protocol implementators areas usually reluctant to

disclose such information.
Protocol test derivation and execution requires

specflc support tools. Due to space limitations, we
cannot discuss these issues here; the interested

reader is referred to a recent review [Chan93]. Ac-

cording to some data, the cost of test suite produc-
tion can be reduced by at least 40% by using such
tools. Note that tools for automated test derivation
quite often constitute a part of a protocol develop-
ment environment based on one of the FDT’s
[Prob89], [Chan93].

Software tools based on formal methods for test
derivation were used in a number of protocol case

studies; we mention only a few. The Wp-method
~uji91], for example, has been applied in Liu93]

to derive test sequences for a control subset of the
XTP protocol. This subset is modeled by an FSM

with 10 states. Altogether, 458 test cases were gen-

erated, each of lengths is shorter than 10 inputs.

Another case study [Shev91] dealt with the 0S1

Session protocol, which can be represented by a

state table with 29 control states 28 context vari-

ables, among them 9 are integers and the others
Boolean; and 71 predicates. Based on this state
table, a number of FSMS for different functiomil

blocks of the protocol have been constructed by un-
folding and decomposing the table. Domains of in-

put parameters and integers were fwst reduced in

such away that all the predicates can be execut.d at
least once. Finally, the method [Petr91] was ap-

plied to each of these FSMS and a test suite of ap-
proximately 11700 test cases was generated. The

total number of input test events is about 67000.
The test suite provides complete fault coverage in
terms of the constructed FSM models. The ISDN
protocol LAPD was used in a case study at AT&T

[Sher90]. An FSM model with 9 states was con-

structed for the protocol and a test suite of 1500 in-

put test events was formally generated by applying

the UIO-method [Aho88]. Later on, a document
containing the standardized test suite for ISDN

LAPD became available, which consists of more

than 1200 pages containing tables of test cases
specified in ‘ITCN. These applications and others
[Sidh89] have demonstrated that formal methods
for conformance test generation are quite effective
for rather complex communication protocols.

However, the data portion of protocols remains the

most difficult problem for the existing formal

methods.

7. Conclusions

A protocol entity is a reactive system, therefore

the temporal ordering of the interactions, with the
user and with the remote peer entity, is an impor-

tant aspect of each protocol specification. For this
reason, FSM models are often used for protocol
specifications. However, in order to capture the
real requirements of a protocol specification, the

model of a partially specifkxl, partly nondetermin-
istic FSM must be used. In addition to this “as-

pect”, there are usually other aspects which are

more easily specified in terms of data parameters

and operations; in the specification of protocol
standards, these aspects are usually described in
Englisly however, they maybe formalized using an

extended FSM formalism. Several so-called formal
description techniques (PDT’s) have been devel-

121

oped for the specification of communication proto-

cols and services (SDL, LOTOS, and Estelle)

which include facilities for the control and data as-

pects of system specifications. These specification
requirements are similar to other kinds of reactive

systems.
Another specification aspect speciilc to commun-

ication protocols is the coding of the protocol data

units which are exchanged between the peer enti-

ties. Usually, ad hoc specification methods are

used for this purpose. However, in the case of

most application layer protocols, generic rules for

coding data structures are used for this purpose;

some rules of this type are defined by the ASN. 1
notation used for 0S1 application layer protocols.

Protocol conformance testing uses a black-box
approach based on the protocol specification. Most
methods for the development of a test suite from a

given specification are based on a fault model of

possible erroneous implementations that should be
detected by the test suite. Guarantees for the cover-

age of the test suite are therefore dependent on the
assumption of the fault model. These fault models

depend on the nature of the specification. Corre-

sponding to the different aspects of a protocol
specification, different fault models relate to the
control part (FSM), data part (software related fault

models) and coding (specific fault model depending

on the coding scheme, not much work has been
done in this area). The authors do not know of any

systematic study showing how realistic these fault
models are.

The methods for test suite development are not

only specific to the fault model and specification
paradigm used for the protocol specification, but

depend also on the conformance relation that

should hold between the implementation under test

and the specification. In the case of partial and

nondeterministic specifications, different confor-
mance relations may be considered. The test meth-
ods based on deterministic, completely specified
FSM models are best investigated, however, most
protocol specifications do not satisfy the underlying
assumptions. Methods for partial and nondetermin-

istic systems have been developed recently, includ-
ing work on testing based on LTS specifications
(e.g. written in LOTOS) which are based on ren-
dezvous interactions.

For the testing based on extended FSM models,
two approaches can be adopted: (1) unfolding the

specification into the form of a pure FSM model
(with the danger of state explosion), or (2) separat-
ing the control and data aspects of the specification,

and using FSM and software testing methods for
these two aspects, respectively.

Testing of distributed systems is required at sev-

eral levels, such as in-house validation during the

12

design and implementation process, protocol con-

formance and implementation assessment testing,

inter-operability testing between different imple-

mentations of the same protocol, and quality of

service testing concerning specific performance
questions. For conformance testing of standardized
protocols, standardized conformance test suites
have been developed which are intended to be ap-
plied in a standardized test architecture and envi-

ronment. Most of these test suites have been devel-

oped using ad hoc techniques inspired by the for-

mal methods.

The complexity of real protocol specifications

are such that the systematic test development meth-
ods described in Sections 2 through 4 could pro-
vide good benefit. Containing typically between 10
and 20 control states and a few data variables, the
complexity of the specification can be handled by

the automated tools, but is usually too big to be
processed “by hand”. The length of the obtained

test suites are usually much shorter than those pre-

dicted by the “upper bound’ formulas which make
worst case assumptions on the spectilcation.

It seems that the methods developed for protocol

testing have a much larger applicability. In the area
of software testing, application domains such as re-
active systems, control systems, possibly designed
in an object-oriented fkamework, could make use of

these methods. They can also be applied to the
functional testing of sequential circuits.

Areas for future research include design for

testability and test architectures; systematic test

suite development for nondeterministic and partial

specifications; the integration of the FSM fault
model for control flow and the software fault model

suitable for the extensions of the FSM model
within the context of extended FSM models, in-

cluding test derivation based on specifications

titten in languages such as SDL, Estelle or LO-

TOS; test development in the case of object-ori-
ented specialization hierarchies; and testing of real-

time aspects.
It is difficult to describe in a short paper all di-

rections of research related to protocol testing.

Further details can be found in the proceedings of
IFIP-sponsored conference series, such as Interna-

tional Symposiums on Protocol Specification,
Testing and Verification (PSTV), International

Workshops on Protocol Test Systems (IWPTS),
International Conferences on Formal Description

Techniques for Disrnbuted Systems and Communi-
cation Protocols (FORTE).

Acknowledgments: This research was sup-
ported by the IDACOM-NSERC-CWARC Indus-

trial Research Chair on Communication Protocols
at the University of Montreal. The authors wish to

2

thank Tom Ostrand for a list of questions which

stimulated the prepsration of this article.

References

[Aho88] A. V. Aho et al., “An Optimization Technique for
Protocol Conformance Test Generation basedon UIO Se-
quences and Rural Chinese Postman Tours”, PSTV’88.

[Alde90] R. Alderden. “COOPER, the Compositional Con-

struction of a CanonicalTester”, FORTE’90.
CEteli89]F. Belina and D. Hogrefe, ‘The CCI’lT-Speciflca-
tion and Description Language SDL”, Computer Networks
and ISDN Systems,Vol. 16, 1989.
@och90] G. v. Boehmann,“Protocol specification for ON”,
Comp. Networks and ISDN Systems18April, 1990.
Boch91] G. v. Bochmann,et al. “Fault Models in Testing”,
IWPTS’91.
@Mch93]G. v. Boehmann, “Protocol Engineering”, contri-
bution to Concise Encyclopedia of Software Engineering,
Derrick Morris and Boris Tamm eds., Pergarnon Press,
1993.
Po1o87] T. Bolognesi andE. Brinksma, “Introduction to the
1S0 Specification Language Lotos”, Computer Networks
and ISDN Systems,vol. 14, No. 1, 1987.
llloyd91] S. Boyd, H. Ural, “The Synchronization Problem
in Protocol Testing and its Complexity”, Inf. Proc. Letters,
Vol.40, No. 8, 1991.
[Brin87] E. Brinksma, “On the Existence of Canonical
Testers”,MemorandumINF-87-5, Univ. of Twente, 1987.
@Mn89] E. Brinksma, et al, “A Formal Approach to Con-
formance Testing”, IWPTS’89.

@3rin91] E. Brinksm~ et al, “A Framework for Test Selec-

tion”, IWPTS’910

@rya86] R. E. Bryant, “Graph-based Atgorimths for Boolean

Function Manipulation”, IEEE Trans., vol. C-35, No.12,
1986.
i@so90] R. Dssouli, R. Fournier, G. v. Bochmann, “Con-

formance Testing and FIFO Queues”, FORTE’90.

[Dss091] R. Dssouli and R. Fournier, “Communication

Software Testability”, PTS’91.

lBudk871 S. Budkowski and P. Dembinski, “An Introduction
to Estelle a Specification Language for Distributed Sys-
tems”, Computer Networks and ISDN Systems, vol. 14,

No. 1, 1987.

[Cast86] R. Castanet et al, “ Methods and Semi-automatic
Tools for Preparing Distributed Testing”, PSTV’86.

[Chan93] S. T. Chanson, A. A. F. Loureiro, S. T. Vuong,
“On Tools Supporting the Use of Formal Description Tech-
niques in Protocol Development”, Computer Nehvorks and

ISDN Systems, 25, 1993.

[Chen93] K.-T. Cheng, A. S. Krishnakumar, “Automatic

Functional Test Generation using the Extended Finite State

Machine Model”, Proc. of DAC’93.

[Cho91] H. Cho, G. Hachel, F. Somenzi, “Fast Sequential

ATPG Based on Implicit State Enumeration”, Intl. Test

Conference, 1991.

[Chow78] T.S. Chow, “Test Design Modeled by Finite-
State Machines”, IEEE Trans. SE-4, 3,1978.
[Chun90] W. Chun and P. Amer, “Test Case Generation for

Protocols Spedlled in ESTELLE”, FORTE’90.
[Dahb88] A. Dahbura and K. Sabnani, “Experience in Esti-

mating Fault Coverage of a Protocol Test”, INFOCOM’88.

@)rir93] K. Drira, et al., “Testability of a Communicating

System through an Environment”, LNCS, 668, 1993.

lllubu91] M. Dubuc, R. Dssouli and G.V. Bochmann,

‘TEST’L A Tool for Incremental Test Suite Design Based

on Finite State Model”, IWPTS’91.

~aro90] A. Faro and A. Petrenko, “Sequence Generation

from EFSMS for Protocol Testing”, COMNET90.

l_Favr86] J.-P. Favreau, R. J. Linn, “Automatic Generation

of Test Scenario Skeletons from Protocol Specifications

Written in ESTELLE, ISPTSV’86.
Frank93] P. G. Frankl, S. N. Weiss, “An Experimental

Comparison of the Effectiveness of Branch Testing and Data
Flow Testingn, IEEE Trans., vol SE-19, No.8, 1993

lFuBo91] S. Fujiwara, G. v. Bochmann, “Testing Non-

deterministic State Machines with Fault Coverage”,
IWPTS’91.

[Glab90] R. J. v. Glabbeek, “The Linear Time-Branching
Time Spectrum”, LNCS, 458, 1990.

[Gu091] F. Guo, R. Probert, “E-MPT Protocol Testing:

Preliminary Experimental Results”, PSTV’91.

ll?uji91] S. Fujiwara, G. v. Bochmann, F. Khen&k, M.
Amalou, A. Ghedamsi, “Test Selection Based on Finite

State Models”, IEEE Trans., SE-17, No.6, 1991.

[Glab93] R. J. v. Glabbeek, “The linear Time-Branching

Time Spectrum II”, LNCS, 715,1993.

@enn64] F. C. Hennie, “Fault Detecting Experiments for

Sequential Circuits”, IEEE 5th Ann. Symp. on Switching

Circuits Theory and Logical Design, 1964.
Wga!kl] T. Higashino, G. v. Bochmann, “Automatic Anal-

ysis and Test Derivation for a Restricted Class of LOTOS

Expnxwions with Data Parameters”, IEEE Tran., SE-20, No.

1, 1994.

llloar 85] C. A. R. Hoare, Communicating Sequential Pro-

cesses,Prentice Hall, 1985.

fHoff93], D. Hoffman and P. Strooper, “A Case Study in

Class Testing”, in CASCON’93.
[1S9646] 0S1 Conformance Testing Methodology and

Framework.

DS7498] Reference Model for 0S1.

wg89] R. Langerak, “A Testing Theory for LOTOS Us-

ing Deadlock Detection”, PSTV’89.

WU91] G. Leduc, “Conformance Relation, Associated

Equivalence, and New Canonical Tester in LOTOS”,

PSTV’91.
ziu93] F. Liu, “Test Generation Based on the FSM Model
with Timers and Counters,”, M. Sc. Theses, Universit4 de

Montr6al, DIRO, 1993.

Lu093] G. Luo, R. Dssouli, G. v. Bochmann, P.

Venkatamm, A, Ghedamsi, “Generating SYnehronizable Test

Sequences based on Finite State Machines with Distributed
Ports”, IWPTS’1993.

Lu094] G. Luo, A. Petrenko, G. v. Bochmann, “Test Selec-

tion based on Communicating Nondeterministic Finite State

Machines using a Generalized Wp-Method”, IEEE Trans.,

Vol. SE-20, No. 2, 1994.
~iln80] R. Milner, A Calculus of Communicating Sys-

tems, LNCS, 92, 1980.
[Mil192] R. E. Miller and S. Paul, “Generating Confor-

mance Test Sequences for Combined Control and Data Flow

of Communication Protocols”, PSTV’92.

llfoor56] E. F. Moore, “Gedanken-Experiments on Sequen-
tial Machines”, Automata Studies, Princeton University

123

Press, Princeton, New Jersey, 1956.
[Mott93] H. Motteler, A. Chung and D, Sidhu, “Fault Cov-

erage of UIO-based Methods for Protocol Testing”,

IWPTS’1993.

l?leuf92] G. Neufeld and S. Vuong, “An overview of
ASN.1”, Computer Networks and ISDN Systems, 23, 1992.

mh91] A. Petrenko, “Checking Experiments with Protocol

Machines”, ms’1991.

retr92] A. Petrenko, N. Yevtushenko, “Test Suite Genera-

tion for a FSM with a Given Type of Implementation Er-

rors”, ISPTSV’92.
~BD93] A. Petrenko, G. v. Bochmann, R. Dssouli, “Con-

formance Relations and Test Derivation”, IWPTS’1993.

~etr93] A. Petrenko, N. Yevtushenko, A. Lebedev, A. Das,

“Nondeterministic State Machines in Protocol Conformance

Testing”, IWPTS’1993.

retr94] A. Petrenko, N. Yevtushenko, R. Dssouli, “Grey-

Box FSM-based Testing Strategies”, Department Publication

911, University de Montrd.al, 1994, 22p.
p%ob89] R. L. Probert, H. Ural, M. W. A. Hombeek, “A

Comprehensive Software Environment for Developing Stan-

dardized Conforrnanee Test Suites”, Computer Networks and

ISDN Systems, 18, 1989/1990.

lRayn87] D. Rayner, “0S1 Conformance Testing”, Com-

puter Networks and ISDN Systems, 14,1987.

[Sari84] B. Sarikaya G. v. Bochmann, “Synchronization and

Specification Issues in Protocol Testing”, IEEE Trans., vol.

COM-32, No.4, 1984.

[Sari871 B. Sarikaya, G. v. Bochmann, E. Cemy, “A Test
Design Methodology for Protocol Testing”, IEEE Trans.,

VO1. SE-13, No.5, 1987.

[Sari92] B, Sarikaya and A, Wiles, “Standard Conformance
Test Specification Language TTCN”, Computer Standards&

Interfaces, VO1.14, No.2, 1992.

[Sher90] M. H. Sherif, M. U. Uyar, “Protocol Modeling for

Conformance Testing: Case Study for the ISDN LAPD Pro-

tOCOl”, AT&T Technical Jourmd, January 1990.
[Shev91] V. Shevelkov, “Development of Methods and

Tools for Session Interconnection Provision in Open Sys-

tems Networks”, Ph.D. Theses, Riga, 1991.

[Sidh89] D. P. Sidhu and T. K. Leung, “Formal Methods for

Protocol Testing A Detailed Study”, IEEE Trans. SE-15,4,

1989.
[Star72] P. H. Starke, Abstract Automata, North-Hol-

land/American Elsevier, 1972, 419P.

~ret!)l] J. Tretmans, P. Kars, E. Brinskma, “Protocol Con-

formance Testing: A Formal Perspective on 1S0 IS-9646,

IWPTS’91.

rum92] C.D. Turner and DJ. Robson, “The Testing of Ob-

ject-oriented Programs”, TR-13/92, Univ. of Durham, 1992.
Wm187] H. Ural, “Test Sequence Selection based on Static

Data Flow Analysis”, Computer Communications, Vol. 10,

No. 5, 1987.

llJra191] H. Ural, “Formal Methods for Test Sequence Gen-

eration”, Computer Comm., Vol. 15, No. 5, 1992.
lJ.ha193] H. Ural, A. Williams, “Test Generation by Explos-

ing Control and Data Dependencies within System Specitlca-

tions in SDL”, FORTE’93.
[Vasi73] M. P. Vasilevski, “Failure Diagnosis of Au-

tomata”, Cybernetics, Plenum Publ. Corporation, N.Y., No.

4, 1973.

[Vuon89] S. T. Vuong, W. L. Chan, and M. R. Ito, “The

UIOv-method for Protocol Test Sequence Generation”,

IWPTS’89.

lVuon93] S. Vuong, A. A. F. Loureiro, S. T. Chanson, “A

Framework for the Design of Testability of Communication

IWOCOIS”, ms’93.

wang93] C.-J. Wang and M. T. Liu, “Generating Test

Cases for EFSM with Given Fault Model”, INFOCOM93.
lJVata93]Y. Watanabe,R. Brayton, “The Maximum Set of
Permissible Behavior for FSM Networks”, CAD’93.
Weze90] C. D. Wezeman, “The CO-OP Method for Com-
positional Derivation of ConformanceTesters”,PSTV’90.
[Yann91] M. Ymmakakis, “Testing Finite State Machines”,

Proc. of the 23d Annual ACM Symposium on Theory of

Computing, 1991.

mao94] M. Yao, A. Petrenko, G. v. Bochmann, “ A Struc-

tural Analysis Approach to Evaluating Fault Coverage of

Software Testing in Respect to the FSM Model”, Dep.

Publ. #920, University de Montreal, 1994.

mevt%la] N. Yevtushenko, A. Petrenko, “Synthesis of Test

Experiments in Some Classes of Automata”, Automatic

Control and Computer Sciences, Allerton Press, Inc., N.Y.,
VO1.24, No.4, 1990.

Wevt90b] N. Yevtushenko, A. Petrenko, “Method of Con-

structing a Test Experiment for an Arbitrary Deterministic

Automaton”, Automatic Control and Computer Sciences,

Allerton Press, Inc., N.Y., VO1.24, No.5, 1990.

Nevt91] N. Yevtushenko, A. L&edev, A. Petrenko, “On

the Checking Experiments with Nondeterministic Au-

tomata”, Automatic Control and Computer Sciences, Aller-

ton Press, Inc., N.Y., VO1.25, No.6, 1991.

[YPB93] M. Yao, A. Petrenko and G,v. Bochmann, “Con-
formance Testing of Protocol Machines without Reset”,

PSTV’93.
~B94] M. Yao, A. Petrenko and G.v. Bochmann, “Fault

Coverage Analysis in Respect to an FSM Specification”,

INFOCOM’94.

124

