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Abstract. Consider the following scenario: Alice and Bob, two parties who
share no secret key initially but whose goal it is to generate a (large amount of)
information-theoretically secure (or unconditionally secure) shared secret key,
are connected only by an insecure public channel to which an eavesdropper Eve
has perfect (read) access. Moreover, there exists a satelite broadeasting random
bits at a very low signal power. Alice and Bob can receive these bits with certain
bit error probabilities € 4 and ¢g, respectively (e.g. €4 = eg = 30%) while Eve is
assumed to receive the same bits much more reliably with hit error probability
¢g K €a,€p (e.g. €g = 1%). The errors on the three channels are assumed to
occur at least partially independently. Practical protocols are discussed by which
Alice and Bob can generate a secret key despite the facts that Eve possesses more
information than both of them and is assumed to have unlimited computational
resources as well as complete knowledge of the protocols.

The described scenario is a special case of a much more general setup in which
Alice, Bob and Eve are assumed to know random variables X, Y and Z jointly
distributed according to some probability distribution Pxyz, respectively. The
results of this paper suggest to build cryptographic systems that are provably
secure against enemies with unlimited computing power under realistic assump-
tions about the partial independence of the noise on the involved communication
channels.
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1. Introduction

One of the fundamental problems in cryptography is the transmission of a
message M from a sender (referred to as Alice) to a receiver (Bob) over an
Insecure communication channel such that an enemy (Eve) with access to this
channel is unable to obtain useful information about M.

In the classical model of a cryptosystem introduced by Shannon [9], Eve has
perfect access to the insecure channel; thus she is assumed to receive an identical
copy of the ciphertext C received by the legitimate receiver Bob, where C is
obtained as a function of the plaintext message M and a secret key K shared by
Alice and Bob. Shannon defined a cipher system to be perfect if the ciphertext
is statistically independent of the plaintext or, in information-theoretic terms, if
the ciphertext gives no information about the plaintext:

(M. C) = 0.

When a perfect cipher is used to encrypt a message M, an ecnemy can do no
better than guess M without even looking at the ciphertext C.

It is assumed that the reader is familiar with the fundamentals of information
theory, in particular with the entropy H#(.X) ol a random variable X, the condi-
tional entropy of X given Y, H(X|Y), and the mutual information between X
and Y defined as [(X;Y) = H(.\)—- H{X|Y). We refer to [4] for an introduction
to information theory.

Shannon gave as a simple example of a perfect cipher the well-known one-
time pad which is completely impractical for most applications where only a
short secret key is available. Shannon proved the pessimistic result that perfect
secrecy can be achieved only when the secret key is at least as long as the
plaintext message or, more precisely, when

H(K) > H(M). (1)

Almost all presently-used ciphers are based on Shannon’s model but have
only a short secret key; they can therefore theoretically be broken, for instance
by an exhaustive key search. The goal of designing such a practical cipher is to
guarantee that there exists no efficient algorithm for breaking it, for a reasonable
definition of breaking. However, for no existing cipher can the computational
security be proved without invoking an unproven intractability hypothesis.

Perfect secrecy on the other hand is often prejudged as being impractical
becanse of Shannon’s pessimistic inequality (1). It is one of the goals of this
paper to relativize this pessimism by pointing out that Shannon's apparently
innocent assumption that, except for the secret key, the enemy has access to
precisely the same information as the legitimate receiver, is much more restrictive
than has generally been realized.
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The key to perfect secrecy without a shared secret key K satisfying (1)
is to modify Shannon’s model such that the enemy cannot rececive precisely
(albeit almost) the same information as the legitimate receiver. Two previous
approaches based on this idea are quantum cryptography introduced by Wiesner
and put forward by Bennett, Brassard et al. [1], and Maurer’s randomized cipher
[7] which makes use of a public random string that is too long to be read entirely
in feasible time. Both these approaches are impractical at present.

Another approach is due to Wyner [11] and subsequently Csiszar and Korner
[5] who considered a scenario in which the enemy Eve is assumed to receive
messages transmitted by the sender Alice over a channel that is noisier than
the legitimate receiver Bob's channel. The assumption that Eve’s channel is
worse than the main channel is unrealistic in general. The results of this paper
demonstrate that this unrealistic assumption is unnecessary if Alice and Bob
can also communicate over a completely insecure public channel.

In this paper, the broadcast channel scenario is generalized to a scenario
where Alice, Bob and Eve know random variables X, Y and Z. respectively,
jointly distributed according to some probability distribution Pxy z, and where
Alice and Bob can also communicate over a public channel.

Note that the need for a public channel entails no significant loss of practi-
cality in a cryptographic context because the channel need not provide secrecy.
It is assumed, however, that all messages sent over the public channel can be
received by Eve without error, but that she cannot modify messages or intro-
duce frandulent messages without being detected. If this last assumption cannot
realistically be made, authenticity and data integrity can be ensured by using
an unconditionally secure authentication scheme, for instance that of [10] based
on universal hashing, which requires that Alice and Bob share a short secret key
initially. In this case, the purpose of our protocols is to stretch (rather than to
generate) a secret key unconditionally securely. Part of the generated key can
be used for authentication in a subsequent instance of the protocol.

The use of a public channel by two parties for extracting a secret key from
an initially shared partially secret string was previously considered by Teung-
Yan-Cheong [6] and independently by Bennett, Brassard and Robert [3].

This paper is concerned with key distribution as well as encryption. An
unconditionally secure shared secret key generated by one of our protocols can
be used as the key sequence in the one-time pad, thus achieving (virtually)
perfect secrecy of the transmitted messages.
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2. Secret Key Agreement by Public Discussion

Consider the following general key agreement problem. Assume that Alice.
Bob and Eve know random variables X | Y and Z, respectively, with joint prob-
ability distribution Pxy z, and that Eve has no information about .X and ¥
other than through her knowledge of Z. More precisely, I{XY;T|Z) = 0 where
T summarizes Eve’s complete information about the universe. X, Y and 7 take
on values in some finite alphabets Y, Y and Z, respectively. Alice and Bob share
no secret key initially (other than possibly a short key required for gnarantee-
ing authenticity and integrity of messages sent over the public channel), but
are assumed to know Pxyz. In particular, the protocol and the codes used by
Alice and Bob are known to Eve. Every message communicated between Alice
and Bob can be intercepted by Eve, but it is assumed that Eve cannot inser:
fraudulent messages nor modify messages on this public channel without being
detected.

Alice and Bob use a protocol in which at each step either Alice sends a
message to Bob depending on .Y and all the messages previously received from
Bob, or vice versa (with X replaced by Y). Without loss of generality, we
consider only protocols in which Alice sends messages at odd steps (. Cy... )
and Bob sends messages at even steps (2, (y,.. ). Moreover, we can restrict
the analysis to deterministic protocols since a possible randomizer which Alice’s
and/or Bob’s strategy and messages mizht depend on can be considered as part
of X and Y, respectively. In other words, Alice and Bob can without loss
of generality extend their known randem variables X and Y, respectively. by

random bits that are statistically independent of XY and Z. At the ond of the

t-step protocol, Alice computes a key € as a function of .Y and 2 (Cyooo G

and Bob computes a key S” as a function of " and ", Their goal is to maximize
H(5) under the conditions that S and S’ agree with very high probability and
that Eve has very little information about S. More formally,

H{C|C7IX)y =0 (2
for odd 1,
H{CIC YY)y =0 (3)
for even 71,
H(S|C'X) =0 (4)
and
H(S'IC'Y) =10 (3)

and it is required that
PIS # 8] < c (6)
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and
I(S:C'Z)y < 6§ (7)
for some specified (small) § and e.

By Fano’s Lemma (cf. [4], p. 156) condition (6) implies that
H(S|S") < h(e) + elogy(|S[ - 1) (8)

where |S| denotes the number of distinct values that S takes on with non-zero
probability. Note that H(S|S') — 0 as ¢ — 0.

If one requires that P{S # $'] = 0 and I(5;C") = 0 (i.e., that ¢ = 0 in (6)
and & = 0 in (7) ) it appears obvious that I(X;Y) is an upper bound on H(S).
It appears to be similarly obvious that H(S) < I(X;Y|Z2) = I(XZ:YZ) —
H(Z) because even under the assumption that Alice and Bob could learn Z,
the remaining information shared by Alice and Bob is an upper bound on the

information they can share in secrecy. The following theorem, which is proved
in [8], summarizes these results.

Theorem 1. For every key agreement protocol satisfying (2)-(5),
H(S) < I(X:Y|Z)+ H(S|S') + I(S: C' 7).

In particular,
H(S) < I{X:Y)+ H(S|S") + [(S:C*).

The following corollary follows from Theorem 1, inequality (8) and from
I(8;C") < I(S;C'Z). Tt should be pointed out that I[(X;Y) < I(\:Y|Z) 1s
possible.

Corollary 2. For every key agreemen! protocol satisfying (2)-(7),

H(S) < mm[I(X:Y). I{(X:Y|Z)] + 6 + hie) + elogo(|S]— 1),

3. The Secret Key Rate

In order to be able to prove lower bounds on the achievable size of a key
shared by Alice and Bob in secrecy we need to make more specific assumptions
about the distribution Pxy z. One natural assumption is that the random exper-
iment generating \'Y Z is repeated many times independently: Alice, Bob and
Eve receive XV = [X;,..., Xn], YN = [¥i,....Y~] and ZN = [Z1,....Z~],

respectively, where
v
i

PX.V}'NzN = HP)(|Y‘Z‘

1=1
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and where Px y,z, = Pxyz for 1 <i < N.

For such a scenario of independent, repetitions of a random experiment, which
1s well motivated by models such as discrete memoryless sources and channels
previously considered in information theory, the quantity that appears to be of
most interest from an information-theoretic point of view is defined below.

Definition. The secret key rate of X and Y with respect to Z, denoted S(X:Y!|Z),
is the maximum rate at which Alice and Bob can agree on a secret key S while
keeping the rate at which Eve obtains information arbitrarily small, i.e., it is
the maximal R such that for every ¢ > 0 there exists a protocol for sufficiently
large N satisfying (2)-(6) with X and Y replaced by XV and YV respectively,
satisfying
Lisictzdy <

N -
and achieving

1
:’VH(S) > R—e.

Before deriving lower bounds on S(X:;Y||Z) we state the following theorem,
which is an immediate consequence of Corollary 2.

Theorem 3. The secret key rate of X and Y with respect to Z is upper bounded
by
S(X:Y)1Z) < min[I(X:Y), I(X:Y]Z)].

The following theorem (cf. 8] for a proof) states a nontrivial lower bound on
the secret key rate. If it is either the case that Eve has less information about
Y than Alice or, by symmetry, less information about X than Bob. then such a
difference of information can be exploited.

Theorem 4. The secret key rate of N and Y with respect to Z is lower bounded
by
S(XGY|Z) > max[[(Y: X)— I(Z, X)), I(X;Y)~{Z:Y).

Theorem 4 demonstrates that the upper bound in Theorem 3 is tight if either
Pyz,x = Pylx ' PZIX or szty = PXIY -Pz|y. The lower bound of Theorem 4
is not tight in general as will be demonstrated in the next section. In particular,
the lower bound of Theorem 4 is 0 for the situation described in the abstract
of the paper. There exist protocols with several rounds of interaction between
Alice and Bob which are superior to single-round protocols like the one used in

the proof of Theorem 4 (cf. [8]).
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4. Binary Symmetric Random Variables

In this section the case of symmetrically distributed binary random variables
is considered. One way of generating such a set X, Y, Z 1s by generating a random
bit R according to

Px(0) = Pr(1) = 1/2 (9)

and “sending” R over three independent binary symmetric channels (4, Cp and
CE with error probabilities €4, ¢g and ¢g, respectively, i.e., Pyy z is defined by

Pxyzir = Pxir - Pvir - Pzir (10)

where Px\p(z,7)=1—¢qif z =r and ¢4 else, Py\p(y.r) =1 —¢p ify =r and
ep else and Pzip(z.r) =1 —¢cg if s =r and g else.

Consider now an arbitrary probability distribution Pxyz over {0, 1}7 satis-
fving the symmetry condition

Pxyz{(z,y,2) = Pxyz(T.7.3) (11)

for z,y,z € {0,1}, where @ denotes the complement of a binary variable c. Note
that condition (11) implies that X, Y and Z are symmetrically distributed. One
can prove (see [8]) that every set X, Y and Z of random variables satisfving (11)
and for which not exactly for one of the pairs [X.Y], [X, Z] and [Y, Z] the two
random variables are statistically independent, can be generated according to
(9) and (10) for some €4,¢ep and €g.

As one realistic scenario where XY and Z with probability distribution
Pxy z satisfying (11) are available for two parties and an enemy, consider a
satellite broadcasting random bits at a very low signal-to-noise ratio such that
even an enemy Eve with a receiving antenna that is much larger and more
sophisticated than Alice’s and Bob’s antenna canuot receive the bits without
error. Note that Pyyz satisfies the given condition also when the channels
C4,Cp and Cg are dependent, as one would realistically have to assume. The
following theorem has been proved in [g].

Theorem 5. Let X, Y and 7 be binary random variables generated according

to (9) and (10). Then
S(X;Y||Z) > max[h(eateg—2€4eg). hleg+ep—2¢pep)] —h(ea+ep —2€4€cB).

The lower bound of Theorem 5 vanishes unless either ¢4 < ¢p or ep < €g,
i.e., unless either Alice’s or Bob’s channel is superior to Eve’s channel. Tt is
somewhat surprising that even when Eve’s channel is much more reliable that
both Alice’s and Bob’s channel, secret key agreement. is possible.
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The proof of Theorem 4 in (8] illustrates that by sending .X; + 1} over the
public channel, where X; is the ith random bit received by Alice and where
addition is modulo 2, Alice can send the bit V; over a conceptual broadcast
channel to Bob and Eve such that Bob receives V, as if it were sent over a
cascade of Alice’s and Bob’s channel (bit error probability €4 + €5 — 2¢.4¢5) and
Eve receives V; as if it were sent over a cascade of Alice’s and Eve’s channel (hit
error probability €4 + €5 ~ 2e4€g).

In order to share a secret key with Bob, Alice randomly selects a codeword
VN from the set of codewords of an appropriate error-correcting code C with
codewords of length N and sends it to Bob (and also to Eve) over the described
conceptual broadcast channel. The key to achieving a positive secret key rate
even if both ¢4 > ¢g and €5 > ¢g is for Bob to accept a received word only if
he can make a very reliable decision about the codeword sent by Alice, i.e., if it
is very close to some codeword of the code C, i.e., if the Hamming distance to a
codeword 1s much smaller than the number of errors correctable by an optimal
decoder for the code. For each received block Bob announces over the public
channel whether he accepts or rejects it.

The key observation in the above protocol is that although Eve receives code-
words V'V more reliably than Bob on the average, her conceptual channel may
nevertheless be worse (for appropriate choices of a code € and for an appropriate
reliability decision) than Bob's channel, if one averages only over those instances
accepted by Bob. Because consecutive uses of the channel are independent, the
words discarded by Bob are also useless for Eve.

The special case of a repeat code was considered in [8]. Alice sends each bit
N times over the conceptual channel, and Bob accepts a received word if and
only if all the bits are equal. Although this scheme demonstrates that secret key
agreement is possible even if ¢4 > ¢p and €5 > €g, it is extremcly inefficient
when eg is considerably smaller than both ¢4 and e¢g. The reason is that in
order to arrive at a situation where Bob’s channel is better than Eve’s channel if
averaged over those instances accepted by Bob. a large block length N must be
used in which case the probability that no error occurs within a block and thus
the block is accepted by Bob can be extremely small. It is one of the purposes of
this paper to describe protocols that are much more efficient than the protocol
discussed in [8].

An important observation towards improving the key agreement rate is that
several rounds of a protocol as described above can be used by Alice and Bob
to continuously increase the reliability of the shared string at the expense of
shrinking it. In a first step, and even in some subsequent steps, it is not required
that Bob knows Alice’s bits more reliably than Eve; it is sufficient that Eve’s
advantage is reduced in every step. Hence using several protocol steps with short
blocks allows to achieve comparable bit error probabilities for the finally shared
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string as if a long repeat code were used, but with a much larger rate.

Consider as an example a simple N = 3 repeat code. Bob accepts a received
block of length 3 if and only if all three bits agree, and announces which blocks
he accepts. The probability of accepting a block.is > 1/4; hence the strings
held by Alice and Bob are shrunk by this step by at most a factor 12. Alice
and Bob can use the same step on the resulting string repeatedly, each time
decreasing its length by at most a factor 12 while increasing the bit agreement
probability. It is straight-forward to verify that when k steps are used, Bob’s
and Eve’s bit error probabilities when guessing the bits of Alice’s final string are
precisely the same as if a repeat code of length 3* had been used in the above
described basic protocol, but that the expected rate at which random secret key
bits are extracted is exponentially larger in the new protocol.

Ezample. Let ¢4 = eg = 0.47 and let Eve’s channel be 100 times less noisy,
i.e., have 100 times greater capacity. From 1 —h{eg) = 100- (L —h(e4)) we obtain
eg = 0.2093. A repeat code of length 243 yields bit error probabilities 0.148 and
0.193 for Bob and Eve, but the probability that a block is accepted by Bob is not
significantly larger than 27242, On the other hand, 5 consecutive applications
of the described step with a code of length 3 allow to achieve the same bit error
probabilities, but only an expected number of at most 12% < 250.000 (actually
much less) bits are required for generating one bit shared with the mentioned
bit error probabilities.

Of course, additional protocol steps are required for exploiting the advantage
over Eve achieved by this protocol and reducing the bit error probability of the
final shared string. For example. error correcting codes can be used to remove
the errors between Alice’s and Bob’s string, and universal hashing as described
in [3] can be used to reduce Eve’s inlormation.

It should be pointed out that for given assumed ratios of the noise power on
the three channels, the signal power is a free parameter; thus €4 can be chosen
arbitrarily. The larger ¢4, the smaller is the signal power and hence the larger
can the satelite’s bit transmission rate be chosen.

The use of repeat codes as described above, and more generally of linear
error-correcting codes, is equivalent to the exchange of parity checks of the stored
string over the public channel, without gererating and encoding random bits, and
using as a new string some orthogonal parity checks. Reconciliation protocols
based on the exchange of parity checks were also discussed in [2].

A further improvement over the basic use of repeat codes described above is
for Bob to also accept instances for which a decision about the bit sent by Alice
is less reliable than if N identical bits were received. In such a scenario, Bob
informs Alice (and Eve) about the number of errors he has received in a block,
assuming that his majority decision is correct.
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