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Abstract. Consider the  following scenario: Alice and Rob, two parties who 
share n o  secret key init,ially b u t  whose goal it is to  generat.e a (large amount of)  
information-theoret,ically secure (or uncoritlitionally secure) shared secret key. 
are connected only by an insecure public channel t o  which an  eavesdropper Eve 
has perfect (read) access. Moreover, there exists a satelite hroadcasting random 
bits at a very low signal power. Alice ant1 Rob can receive these bits with cert.ain 
bit error probabilities c~ and 6 8 ,  respect.iveIy (e.g. = F B  = 302,) while Eve is 
assumed to receive the  same  bits much more reliably with bit  error probability 
E E  << C A ,  En (e.g. C E  = 1%). T h e  errors on the t,liree channels a re  assumed t.0 

occur at least part,ially independently. Practical protocols arc tliscu~scd 1)). w1iic.h 
Alice and Bob can generate a secret key clespitc t h e  facts t h a t  PI-e pnsscsses more 
information than both of t.licm and  Is assiimwl to have nnlimiictl compiitat,iorial 
resources as well as complete knou-ledge of the  protocols. 

T h e  described scenario is a special rase of a much more general w t u p  in  whiclt 
Alice, Bob and  Eve are assumed to know random variables S, I' and  2 joillt'lv 
distributed according to some probability tlistrihution P ~ I ~ z ,  respectively-. T h e  
results of this paper suggest t o  briiltl cryptographic syst,ems tha t  a re  provably 
secure against enemies witch unlimited comput.ing power under realistic assump- 
tions abou t  t he  partial independence of the  noise on the  involved communication 
channels. 
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@ Springer-Verlag Berlin Heidelberg 1993 
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1. Introduction 

One of the fundamental problems in cryptography is the t,ransmission of a 
message M from a sender (referred to  as Alice) to  a receiver (Rob) over an 
insecure communication channel such that  an enemy (Eve) with access to  this 
channel is unable to obtain useful information about M. 

In the classical model of a cryptosystem introduced by Shannon [9], Eve has 
perfect access to the insecure channel; thus she is assumed to  receive an identical 
copy of the ciphertext C received by the legitimate receiver Bob, where C is 
obtained as a function of the plaintext message M and a secret key I( shared by 
Alice and Bob. Shannon defined a cipher system to  be perfect if the ciphertext 
is statistically independent of the plaintext or, in information-theoretic terms, if 
the ciphertext gives no information about the plaintext: 

J(M: C )  = 0.  

When a perfect cipher is used to encrypt. a message ,If, a.n cnprny can do no 
better than guess 111 without. evm looking at the ciphertext C. 

It is assumed that the reader is faitiiliar w i t h  the  fundamental^ of information 
theory, in particular with the ent,ropy H ( X )  of a random variable .Y. the condi- 
tional entropy of S given Y ,  H(SIY),  and the mutual information hc twen  S 
and Y defined as I ( S ;  Y )  = H ( > Y )  - H(2Yll’). TVe refer to [4] for a n  introduction 
t o  information theory. 

Shannon gave as a simple example of a perfect cipher the well-known one- 
t ime pad which is completely impractical for most applications where only a 
short secret key is available. Shannon proved the pessimistic result that. pezfect 
secrecy can be achieved only when the secret key is at  least as long as the 
plaintext message or, more precisely, when 

Almost all presently-used ciphers are based on Shannon’s model but have 
only a short secret key: they can therefore theoretically be broken. for instance 
by an exhaustive key search. The goal of designing surh a practical cipher is to 
guarantee tha t  t,here exists no efficient; algorithm for breaking it, for a reasonable 
definition of breaking. However. for no existing cipher can the computational 
security be proved without invoking an unproven intractability hypothesis. 

Perfect secrecy on the other hand is often prejudged as being impractical 
because of Shannon’s pessimistic inequality (1). It, is one of the goals of this 
paper to  relativize this pessimism by pointing out that  Shannon’s apparently 
innocent assumption that ,  except for the secret key, the enemy h a s  access to 
precisely the same information as the legitimate receiver, is much more restrictive 
than has generally been realized. 
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The key to  perfect secrecy without a shared secret key K satisfying (1) 
is to modify Shannon’s model such that the enemy ca.nnot r 
(albejt almost) t.he same information as  t.he legit,imat,e receiver. Two previous 
approaches based on this idea are quantum cryptography introduced by Wiesner 
and put forward by Bennett, Brassard e t  n l .  [I], and hfaurer’s randomized cipher 
[7] which makes use of a public random string that is too long to  be read entirely 
in feasible time. Both these approaches are impractical a t  present I 

Another approa.ch is due to  Wyner [ll] and subsequently Csiszh and Korner 
[5] who considered a scenario in which the enemy Eve is assumed to receive 
messages transmitted by the sender Alice over a channel that  is noisier than 
the legitimate receiver Bob’s channel. The assumption that, Eve’s channel is 
worse than the main channel is unrealistic in general. The results of this paper 
demonstrate that  this unrealistic assumption is unnecessary if Alice and Bob 
can also communicate over a completely inseciire public channel. 

In this paper, the hroaclcast, channel scenario is generalized to a scenario 
where Alice, Rob and Eve know random variables X ,  Y and Z .  respectively, 
jointly dk r ibu ted  according to  some probability distribution F‘A-~Fz,  ant1 where 
Alice and Bob can also communicate over a public channel. 

Xote t h a t  the need for a piihlic channel entails no significant loss of practi- 
cality in a cryptographic context because the channel need not provide secrecy. 
It is assumed, however. t,hat all messages sent over the public clixnnel can be 
received by Eve without error, but that she cannot modify messages or intro- 
duce frai~dulent~ messages without being detected. If this last assumption cannot 
realistically be made, authenticity and dat,a integrit,y can be ensured by using 
an unconditionally secure aut,hentication scheme. for instance that  of [lo] based 
on universal hashing, which requires that Alice and Bob share a short, secret, key 
initially. In this case, the purpose of our protocols is t,o stretch (rather than to 
generate) a secret key unconditionally securely. Part  of the generated key can 
be used for authent.ication in a subsequent instance of t,he prot,ocol. 

The use of a public channel by two parties for extract,ing a secret key from 
an initially shared partially secret string was previously considtxred hy Leung- 
Yan-Cheong [6] and independent,ly by Bennett, Brassard and Robert. [3]. 

XU 
unconditionally secure shared secret key genemted by one of our protocols can 
be used as the key sequence in the onet ime pad, thus achieving (virtually) 
perfect secrecy of the transmitted messages. 

This paper is concerned with key dist,ribution as well as encrypt,ion. 
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2. Secret Key Agreement by Public Discussion 

Consider the following general key agreement problem. Assume that Alice. 
Bob and Eve know random variables .Y, Y and 2, respectively, wit  ti joint proh- 
ability distribution P x y z ,  and that Eve has no information about S and I; 
other than through her knowledge of Z .  More precisely, I ( S Y ;  TjZ) = 0 where 
T summarizes Eve’s complet,e iriformation about, the universe. ,Y, I‘ a n d  2 take 
on values in some f i n i k  a lphahets  .Y, y and -7, respectively. Alice antl Rob share 
no secret key initially (other than  possibly a short key required for giiaranter- 
ing authenticity and integrity of messages sent over the public channel), buT 
are assumed to know P x y z .  In particular, the protocol and the codes used by  
Alice and Bob are known to Eve. Every mcssage comrnunicatecl hetween Alice 
and Bob can be int,erceptert b y  Eve, but it is assumed that  Eve cannot. inser: 
fraudulent messages nor  rriodif\- messages on this public channel wit lioiit being 
detect,ed. 

Alice and Bob use a protocol in which at, each st,rp eirher Alic. sends :I 

message to Rob depending on .Y and all the messagcs previously recei\-t.il frfjrn 
Bob, or vice versa (with S replaced by Y). JVi thoi~t~  loss of generality. jvc 
consider only protocols in which Alice sends messages at odcl steps (C:. C3, . . . i  
and Bob sends messages a t  even steps IC3, C.l,. . .). Aforeover. we can  restrict 
the analysis to deterministic protocols since a possihlr randomizm- w l i i c l i  Alice‘s 
and/or Rob’s strxt.egy antl messages mi:lit dr3pentl on c a n  be considt>rbd as part 
of X and I - .  respectively. J n  other norlls, :\lice ancl no11 can rvit i iout low 
of generali1,y extenll their known  ando om ixrinl~lc~s S a n d  1’. rrSpecti:.ely. !,’!. 
random bits that  are st,atistic*ally iildcpcndcnt of >Y, 1’ and Z. ; I t  t l ic.  o f  tl!. 

t-step protocol, AA1ice computes a key z as a function of s ancl P 2 [c:. I I . , c.:: 
and Bob computes a key S’ as a function of I -  and P ,  Tlicir goal is t o  rnasiniizp 
H ( S )  under the conditions t,hat S and S’ agree w i t h  very high prohai,ility and  
that  Eve has very little information about S. More formally, 

fcr odd i .  

for even i, 
H ( S ~ C ‘ S )  = 0 

11(S’1Ct17 = 0. 

P [ S  f S’] 5 F 

and 

and it is required that 

( r, ) 

(6)  
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and 
I ( S ; C t Z )  5 6 (7) 

for some specified (small) 6 and E .  

By Fano’s Lemma (cf. [.4], p. 156) condition (6) implies t,hat, 

ri(SlS’) 5 h(E) + rlog,(lSl - 1) ( 8 )  

where IS/ denotes the number of distinct values that  S takes on w i t h  non-zero 
probabilit,y. Not,e that  H(S1S’) -+ 0 as E -+ 0.  

If one requires that P[S # S’] = 0 and I(S;Ct) = 0 (i.e., t ha t  c = 0 in (6) 
and 6 = 0 in (7) ) i t  appears obvious that I ( S ;  1’) is an upper bound on H ( S ) .  
It appears to be similarly obvious that H ( S )  5 I(,Y;YlZ) = I ( S Z ; ’ I ” Z )  - 
H ( Z )  because even under the assumpt,ion t,hat Alice and Bob could learn 2. 
the remaining information sharrd by AIicp ant1 Bob is an tipper hound on the 
information they can share in secrecy. T h e  following theorem, which is proved 
in [8], summarizes these results. 

Theorem 1. For e v e r y  key a g r e e m e n t  protocol sa t i s fy ing  (2)-(5), 

H ( S )  5 I(X: YJZ) + H(.SJS’)  + I ( S ;  C‘Z)  

In particular, 
H ( S )  5 J(>Y; Y) + H(SIS ’ )  + rjs; C t )  

The following corollary follows from Theorem 1, inequality (8) and from 
I ( S ; C z )  5 I ( S ;  C‘Z) .  It should be pointed out tha t  l ( X ; Y )  < I(2Y:l’-\Z) is 
possible. 

Corollary 2. For eue ry  k e y  agreemen! pro foco l  sn f i sJ .y iug  (2)-[7),  

H ( S )  5 m i n [ l ( , Y ;  >,-). I(>Y; I-lZ)] + b + h ( c )  + clogzjlSI - 1). 

3. The Secret Key Rate 

In order to be able to  prow lower bounds on the achievable size, of a key 
shared by Alice and Bob in secrecy we nerd to make more specific assumptions 
about the distribution P x y z  One natural asslimption is that  the random exper- 
iment generating S Y Z  is rrpeatcd many times independently: Alirp, Bob and 
Eve receive X“ = [ X ,  . . . , ,U,v], Y N  = [Yi,. . . ~ Yv] and 2” = [ Z l , .  . . ,Z ,v ] ,  
respectively, where 
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and where Px,y,z, = P x y z  for 1 5 i 5 N .  
For such a scenario of independent, repetitions of a random experiment, which 

is well motivated by models such as discrete memoryless sources and  cliannels 
previously considered in information theory, the quantity that  appears to he of 
most interest from an information-theowtic point of view is defincd below. 

Definition. The secre2 key rate 0f.Y a n d  I' with respec f  lo 2, tlrnot.cd S(X; 17ilZ): 
is the maximum rate at which Alice and Bob can agree on a secret, key S while 
keeping the rate at  which Eve obtains information arbitrarily small, i.e., it is 
the maximal R such that for every e > 0 there exists a protocol for sufficiently 
large N satisfying (2)-(6) with ,Y and l7 replaced by X N  and Y N *  respectively, 
satisfying 

1 
N 

1 
- - N ( S )  '1 R - E .  *v 

- -T(S;CtZN) 5 E ,  

and achieving 

Before deriving lower b o u n d s  on S(X; Y l l Z )  we st,at,e the following t,heorern, 
which is an immediat,e consequence of Corollary 2. 

Theorem 3. The secret key rate of S a n d  I.' w i i h  respect t o  2 i s  u p p e r  b o u n d e d  

S(dY:YllZ) 5 niin[T(X'; I,-), I(S; l'\Z)]. 
b y  

The following t,heorem (cf .  [PI for a proof) st,ates a nontrivial lower hoiind on 
the secret key rate. If it is either t h e  case that Eve has less information about 
Y than Alice or,  by symmetry, less information ahout S t ,han Rob, then s u c h  a 
difference of information can be exploited. 

Theorem 4. The secret k e y  rate of S and Y with respec1 t o  Z is / o w r  h o u n d c d  
b y  

S ( S ;  YllZ) 2 rnas[I(l.-; S) - I ( Z ;  S), I ( S ;  Y )  - I ( Z :  I-)] .  

Theorem 4 demonstrates t,hat the  upper bound in Theorem 3 is tight if either 
PYZ~X = pvlx . pzlx or Pxzly = Pxly . Pzly. The lower bound of Theorem 4 
is not tight in general as will be demonstrat,ed in t,he next sect,ion. In part,icular, 
the Iower bound of Theorem 4 is 0 for the situation described in the abstract 
of the paper. There exist protocols with several rounds of interaction between 
Alice and Bob which are superior to single-round protocols like the one used in  
the proof of Theorem 4 (cf. [el). 
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4. Binary Symmetric Random Variables 

In this section the case of symmet,rically distributtd hinary random variables 
is considered. One way of generat,ing such a set S, I’, Z is by generating a random 
bit R according to 

(9) P K ( 0 )  = P R ( 1 )  = 1/2 

and “sending” I2 over three i n d e p e n d e n t  hinary  symmetric channels C.4. Cg ant1 
CE with error probabilities 6 . 4 , ~ ~  and E E ,  respecti\-’~l?;’. i .e.,  P,yyz is defined by 

where P x l ~ ( z ,  r )  = 1 - 
E B  else and PzIR(=.  r )  = 1 - CE if z = T and EE else. 

fying the symmetry condition 

if  T = r and E A  else, P Y ; R ( y .  r )  = 1 - E B  if y = r and 

Consider now an arbitrary probability distrihiition P X Y Z  over (0, 1)’ satis- 

for t, y, z E {0,1}, where C denotes the complement, of a binary varinlile c. Note 
that  condition (11) implies that  ,Y, f’ and 2 are synmetrica.lly di,strihutetf. One 
can prove (see [8]) that every set ,Y,Y and 2 of random variables satisfying (11) 
and for which not exactly for one of the pairs [S. 1-1, [X, Z ]  and [Iv> Z ]  the two 
random variables are st,atisticnlly independent, ran be generated according to 
(9) and (10) for some C A ~ C H  and 6 ~ .  

As one realistic scenario where S. 1- and 2 w i t h  probability tliqtrihution 
P ~ v z  satisfying (11) are available for two parties and an enemy. consider a 
satellite broadcasting random bits a t  a very low signal-to-noise ra t io  s i ich that, 
even an enemy Eve with a rcreiving antenna that, is mucli 1 a r p r  anct morc 
sophisticated than Alice’s and Boh’s antenna cannot receive t,he 1,its withollt 
error. Not,e t,hat f xyz  sa.tiafies the given condition also whcn the channels 
CA! C g  and CE are dependent, as one ~vould  rcalistically have to assiirrie. Tile 
following theorem has been proved in [8]. 

Theorem 5 .  Le t  Xy;Y and Z be b i n n r y  random rnr inb/e . s  g e n e r a f e d  according 
t o  (9) and (10). Then 

T h e  lower bound of Theorem 5 vanishes unless either < FE or E B  < E E .  

i.e., unless either Alice’s or Bob’s channel is superior to Eve’s channel. It is 
somewhat surprising that even when Eve’s channel is milch more reliable tha t  
both Alice’s and Bob’s channel, secret key agreement. is possihle. 
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The proof of Theorem 4 in [8] illustrates that, by sending .Y; + over the 
public channel, where .Yi is the ith random bit received by Alice and where 
addition is modulo 2, Alice can send the bit I$ over a conceptual broadcast 
channel to  Bob and Eve such that Bob receives V ,  as if it. were sent, over a 
cascade of Alice’s and Bob’s channel (bit. error probability EA + E B  - 2 6 . 4 ~ ~ )  and 
Eve receives 6 as if it were sent over a cascade of Alice’s and Eve’s channel (hit 
error probability E A  + E E  -  FACE). 

In order to  share a secret key with Bob, Alice randomly selects a codeword 
V-v from the set of codewords of an appropriate error-correcting code C with 
codewords of length ili and sends it to Bob (and also to  Eve) over the described 
conceptual broadcast channel. The key to achieving a positive secret key rate 
even if both E A  > 6~ and C B  > E E  is for Bob to  accept a received word only if 
he can make a very reliable decision about the codeword sent by Alice, i.e., if i t  
is very close to  some codeword of the code C ,  i.e., if the Hamming distance to a 
codeword is much smaller than the numher of errors correctable by an optimal 
decoder for the code. For each received block Bob announces over the public 
channel whether he accepts or rejects it. 

The key observation in the above protocol is that although Eve receives code- 
words \’” more reliahly t,han Rot: on t h e  average, her conceptual channel may 
nevertheless be worse (for appropriate choices of a code C and for an appropriak 
reliability decision) than Bob’s channel, i f  one averages only over thosr instances 
accepted by Bob. Because consecutive uses of the channel are indcpcndt,nt,, the 
words discarded by Bob are also usplcss for Evr .  

The special case of a repeat code was consitlrreti i t1  [a]. Alice sentls each l i i t  

N times over the conceptual channel. and Bob accepts a received word if  and 
only if all the bits are equal. Although this scheme demorist.rntrs that secret key 
agreement is possible even if > E E  and E B  > E E !  it is extremcl?; incficient 
when E E  is considerably smaller t,han bot,h c-4 and 6 ~ .  The reaSon is that  in 
order to  arrive at a situation where Bob‘s channel is bet,ter than Eve’s channel if 
averaged over those instances accepted by Bob. a large block length ,V must. be 
used in which case the probability t.hat no error occurs within a block and thus 
the block is accepted by Bob can be extremely small. It is one of the purposes of 
this paper to  describe protocols that are much more efTicient t 8 h m  the protocol 
discussed in [8]. 

An important observation towards improving the key agreement, rate is that  
several rounds of a protocol as described above can be used by Alice and Rob 
to  continuously increase the reliability of the shared string at. t.he expense of 
shrinking i t .  In a first step, a.nd even in some subsequent steps, it is not, required 
that  Bob knows Alice’s bits more reliably than Eve; it is sufficient tha t  Eve’s 
advantage is reduced in every step. Hence using several protocol s k p s  w i t h  short, 
blocks allows to  achieve comparable bit error probabilities for the finally shared 
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string as if a long rep& code were used. hut wit,h a much larger rate. 

Consider as an example a simple J’V = :3 repeat code. Bob accepts a received 
block of length 3 if and only if all three bits agree, and announces which  blocks 
he accepts. The probability of accepting a block-is 2 1/4; hence the strings 
held by Alice and Bob are shrunk by this step by at most a factor 12. Alice 
and Bob can use the same step on the resulting string repeatedly. each time 
decreasing its length by a t  most a factor 12 while increasing the bit agreement 
probability. It is straight-forward to  verify that  when k steps are used, Bob’s 
and Eve’s bit error probabilit,ies when guessing the bits of Alice’s final string are 
precisely the same as if a repeat code of length Sk had been used in t.he above 
described basic protocol, but that the expected rate a t  which random secret key 
bits are extracted is e.uponeritmially larger i r i  the new protocol. 

Example. Let C A  = €5 = 0.47 and let, Eve’s channel be 100 times less noisy, 
i.e., have 100 times greater capacity. From l - h ( ~ E )  = l O o . ( l - h ( ~ A ) )  we obtain 
E E  = 0.2093. 1-1 repeat code of length 243 yields bit error probabilities 0.148 and 
0.193 for Bob and Eve, but the probabi1it.y that  a block is accept,ed by Rob is not 
significantly larger than TZ4’. On the other hand, 5 consecutive applications 
of the described step with a code of length 3 allow to achieve the snnir hit error 
probabilities, but, only an cxpectrcl n i i m h e r  of at most. < 25O.nOn (actually 
much less) bits are required for generating one bit shared with the mentioned 
bit error probabilities. 

Of course, additional protocol steps are required for exploiting tlic advantage 
over Eve achieved by this protocol and reducing the bit error probal)ility of the 
final shared string. For example. error correct.iiig codes can he used to remove 
the errors between Alice’s and Bob’s string, and universal hashing as described 
in [3] can be used to reduce Eve’s information. 

It should he point,ed out t,hat for given assumed ratios of the noise power on 
the three channels, the signal power is a free paramekr:  thus 6.4 can he chosen 
arbitrarily. The larger € A ,  the smaller is the signal powPr and hence the larger 
can the  satelite‘s bit transmission rate be chosen. 

The use of repeat codes as described above, and rnore generally of linear 
error-correcting codes, is equivalent to the exchange of parity checks of t’he stored 
string over the public channel, without gemrating and encoding ra.ndom bits, and 
using as a new string some orthogonal parity checks. Reconciliation protocols 
based on the exchange of parity checks were also discussed in [2]. 

A further improvement over the basic use of repeat codes descrihed above is 
for Bob to also accept, instances for which a. decision ahout the bit, sent by Alice 
is less reliable than if !V idrntical bits were received. In such a scenario, Bob 
informs Alice (and Eve) ahorit the niiniber of errors lie h a s  received in a block, 
assuming that  his ma.jority decision is correct. 
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