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Abstract—This paper presents a new class of rate-compatible
LDPC codes, protograph-based Raptor-like (PBRL) codes. The
proposed PBRL codes are jointly decodable with an iterative
belief propagation decoder. As with Raptor codes, additional
parity bits can be easily produced by exclusive-or operations
on the precoded bits, providing extensive rate compatibility.
This paper provides a design procedure that optimizes this
class of rate-compatible LDPC codes. The new PBRL codes
outperform 3GPP rate-compatible turbo codes with the same
short blocklength at high SNR and show no sign of an error
floor at the FER region of 10

−7.

I. INTRODUCTION

Low-density parity-check (LDPC) codes are a prominent

class of error correcting codes. They were proposed by Gal-

lager [1] in the early 1960s but did not receive much attention

until decades later [2]. LDPC codes have a sparse parity

check matrix and are decoded efficiently by the iterative belief

propagation (BP) algorithm. (See, for example, [3].) In recent

years, a new class of LDPC codes was introduced by Thorpe

[4] and studied extensively in [5] and [6]. These protograph-

based LDPC codes (protograph codes) use a relatively small

graph (the protograph) that is replicated many times. This

structure allows efficient decoder implementation in hardware.

Introduced by Luby [7] and Shokrollahi [8], LT codes and

Raptor codes share many similarities with LDPC codes and

are shown to achieve the capacity of the binary erasure channel

(BEC) universally. Etesami et al. [9] explore the application of

Raptor codes to binary memoryless symmetric channels and

derive various results on the output degree distribution of LT

codes. Results on Raptor codes such as [8] and [9] rely heavily

on the assumption of large information blocks.

Rate-compatible punctured codes are widely used in incre-

mental redundancy (IR) schemes, including rate-compatible

punctured convolutional (RCPC) codes and rate-compatible

turbo (RCPT) codes. These code families use a good “mother”

code at the lowest rate and obtain the higher-rate codes by

puncturing. One must carefully choose the puncturing patterns

to avoid undue performance degradation as the rate increases.

One drawback of rate-compatible puncturing is the difficulty

This research was carried out in part at the Jet Propulsion Laboratory,
California Institute of Technology, under a contract with NASA. This research
was supported by a gift from the Broadcom Foundation. Dr. Wesel has
consulted for the Broadcom Corporation on matters unrelated to this research.

of optimization over a large number of possible puncturing

patterns.

Recent work [10]–[12] using a sphere-packing analysis

to investigate the potential performance of feedback with

incremental redundancy indicates that feedback with IR can

allow short blocklength codes to achieve high throughput

(approaching capacity) with surprisingly low latency. RCPC

codes perform close to the sphere-packing analysis until the

latency exceeds the effective traceback of the convolutional

code. In general, the strength of convolutional codes scales

with the number of states in the trellis rather than the code

length. Hence it is of interest to find rate-compatible LDPC

codes whose performance improves with blocklength in the

short blocklength regime.

This paper proposes two schemes, protograph-based Raptor-

like (PBRL) codes that perform well in the short-blocklength

regime and punctured-node protograph-based Raptor-like (PN-

PBRL) codes that achieve improved thresholds by introducing

punctured nodes. Similar to Raptor codes, the PBRL and PN-

PBRL codes are rate-compatible and lend themselves to the

IR application. Unlike rate-compatible punctured LDPC codes,

PBRL and PN-PBRL codes do not puncture a mother code.

Rather, they encode a precode and generate additional parity

bits by exclusive-or operations on the precoded symbols.

Some similar construction techniques for finding rate-

compatible LDPC codes with fixed information blocks are

available in the literature. See, for example, [13]–[15], for

the technique called extending. The main differences between

extending and the construction presented in this paper are

as follows: First, the structural design is based on a proto-

graph and can hence be easily optimized in two stages, the

protograph design and the design of the permutations used

during the lifting process. Second, an additional degree-one

variable node attached to each new check node allows efficient

encoding of the incremental redundancy.

The paper is organized as follows: Section II reviews the

preliminaries of LT codes and Raptor codes. Section III

reviews the structure of protograph-based LDPC codes and

introduces the construction of PBRL codes. Section IV gives

the optimization method of PBRL codes, and Section V pro-

vides the construction of PN-PBRL codes. Simulation results

comparing PBRL and PN-PBRL codes to 3GPP turbo codes



are provided in Section VI. Finally, Section VII concludes the

paper.

II. RAPTOR CODES

This section reviews the preliminaries of Luby transform

(LT) codes [7] and Raptor codes [8]. An LT code is described

by the output degree distribution Ω on its output symbols.

Let n be a positive integer that denotes the number of the

input symbols. Let Ω = [Ω1,Ω2, . . . ,Ωn] be a distribution

on a set of integers {1, 2, . . . , n} such that Ωj denotes the

probability of the value j being chosen. For the ith output bit,

the encoder first chooses an integer di randomly according

to the distribution Ω. It then chooses di input symbols uni-

formly (without replacement) from {1, 2, . . . , n}, and taking

exclusive-or of these chosen input bits yields the output bit.

This encoding process continues indefinitely for i = 1, 2, . . . ,
often concluding only when all interested receivers have been

able to decode the message.

Let C be an (n, k) linear block code. A Raptor code is

a serial concatenation of a code C, which is also called the

“precode,” and an LT code. A Raptor code is described by

the parameters (k, C,Ω(x)), where Ω(x) =
n
∑

i=k

Ωix
i is the

generator polynomial of the output degree distribution of the

LT code.

The decoding of the Raptor code is performed in two-stages:

the decoder first decodes the LT code and recovers a fraction

of the precoded symbols (or provides the soft information of

the precoded symbols in the case of AWGN channel). The

decoder then attempts to recover the remaining symbols by

decoding the precoded symbols with the precode C.

III. PROTOGRAPH-BASED RAPTOR-LIKE LDPC CODE

This section reviews the structure of a protograph-based

LDPC code and introduces the protograph-based Raptor-like

(PBRL) LDPC codes. We will refer this family of codes as

PBRL codes for the rest of the paper.

A protograph-based LDPC code is constructed by a “copy-

and-permute” operation (also called “lifting”) from a Tanner

graph with a relatively small number of nodes. The lifting

operation first makes N copies of the protograph and then

the edges of the same type among the protograph replicas are

permuted.

Fig. 1 shows the protograph of a PBRL code. This proto-

graph consists of two parts: (1) a relatively simple protograph

code (on the left) representing the protograph of the precode

and (2) a number of check nodes (on the right) that are

each connected to several variable nodes of the first part

and an additional degree-one variable node. The second part

represents the protograph of an LT code.

After the lifting operation, the first part can be seen as

an LDPC precode, and the degree-one variable nodes of the

second part can be efficiently encoded with the precoded

symbols in a manner similar to the LT code. The structure

of this protograph code resembles a Raptor code, but with

a deterministic (rather than random) encoding rule for com-

bining the precoded symbols. The rate of the precode in this
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Fig. 1. Protograph for a PBRL code with a rate-3/4 precode. Subsequent
lower-rate codes are obtained by transmitting the variable nodes in the LT
code protograph starting from the top node. The matrices shown in (1) and
(2) give the details of the edge connections as described in Section VI .

example is 3/4. As we increase the number of transmitted

degree-one variable nodes in the LT part, the code rate is

reduced gradually.

Consider the decoding of a traditional Raptor code that

collects the precoded symbols and encodes them with an LT

code. In the case of an LDPC precode used with an LT code,

decoding proceeds as follows: The decoder first performs BP

decoding on the LT code. Then the decoder performs BP

decoding on the precode. The two-stage decoding implies

the use of two different BP decoders, each exchanging their

extrinsic information after the iterative decoding.

In [16], the authors comment that the complexity of the

Raptor codes is higher than rate-compatible LDPC codes. In

view of reducing system complexity, it is natural to consider

a joint decoding of the Raptor code. The PBRL code family

always transmits the output symbols of the precode, allowing

joint decoding of the LT code and the LDPC precode. This

property also guarantees that the BP algorithm will always

work for the initial transmission as well as the lower-rate code-

words comprised of the original transmission and additional

incremental redundancy. For traditional Raptor codes that use

randomized encoding, the initial transmission may not contain

enough information for BP decoding to succeed even in a

noiseless setting.

IV. OPTIMIZATION OF PROTOGRAPH-BASED

RAPTOR-LIKE LDPC CODES

This section proposes a design technique for finding good

PBRL LDPC codes. Belief propagation (BP) decoding is

assumed and we begin by designing the protograph. Given

a fixed initial code rate, the design begins by finding a good

protograph code to serve as the precode and then optimize the

protograph of the LT code part. Optimization of the precode



Hp =

[

σ
0
+ σ

1
+ σ

3
+ σ

7
σ
24

σ
14

σ
17

+ σ
0

σ
7

σ
1
+ σ

6
σ
21

σ
21

+ σ
0

σ
4

σ
4
+ σ

9
σ
0
+ σ

1
σ
0

σ
0
+ σ

2
σ
0

σ
0
+ σ

3
σ
2

]

. (1)

HLT =



























σ
29

σ
0

σ
0

σ
1

σ
5

σ
6

σ
10

σ
4

σ
12

σ
0

σ
1

σ
3

σ
4

σ
16

σ
13

0

σ
16

σ
0

σ
2

σ
6

σ
0

0 0 σ
1

σ
26

0 σ
0

0 0 σ
1

σ
6

σ
9

0 σ
1

0 0 σ
0

0 σ
2

σ
3

σ
1

0 0 σ
2

0 σ
9

0 0

0 0 σ
16

0 σ
0

0 σ
4

0

0 σ
21

0 σ
0

0 σ
2

0 0

σ
0

0 0 0 0 0 0 σ
1

0 0 0 σ
12

0 0 σ
0

0



























. (2)

protograph is omitted due to space limitations. See [6] for

an extensive study on finding good protograph codes. The

selection of the precode protograph is based on a greedy

search of low-threshold high-rate protographs with computer

simulations used to make a final selection from the best

candidates.

To construct the protograph of the LT code part, first

add a new check node and a new degree-1 variable node

to the protograph. Connect the new check node and the

new degree-1 variable node with an edge. Additional edges

are added between the new check node and the precoded

variable nodes according to the degree that will optimize the

density evolution threshold. This process continues until the

underlying protograph reaches the lowest rate desired.

For a given precode protograph, the optimization procedure

of the LT code part is summarized as follows:

1) Add a new check and a new variable node that are

connected to the protograph.

2) Perform density evolution on the new protograph to

determine the optimal degree distribution and the con-

nections of the new check node to the precoded symbols.

3) Start over with step 1) if the lowest rate desired is not

yet reached.

4) Select circulant permutations so that small cycles are

avoided when the protograph is lifted. (Based on the

circulant progressive edge growth algorithm [17]).

5) Lift the resulting protograph with selected circulant

permutations to match the desired initial blocklength.

Note that in the optimization process parallel edges in the

LT code part of the protograph are kept to a minimum (at

most one pair of parallel edges in our examples). This prevents

short-cycles in the lifting process. Fig. 1 is an example of an

optimized PBRL code. This code does not have any parallel

edges in the LT code part. Experimental results indicate that

for PBRL codes with short blocklengths, direct lifting of the

protograph with parallel edges yields better codes than a two-

stage lifting such as the one described in [6].

The initial code rate, or the precode code rate, is 3/4.

The threshold of the precode is 2.196 dB (Eb/N0). Suppose

that the code is lifted 32 times, the initial block length is

then 256. With a step size of 32, subsequent code rates

6/9, 6/10, . . . , 6/18 are obtained by transmitting the output

symbols of the LT code from each successive group of variable

nodes starting from the top.

The corresponding thresholds of each code rate are summa-

rized in Table I. We observe an increase in the gap between the

threshold and the capacity as the code rate decreases. This is

due to the structural restrictions imposed on the protograph

of the LT code part. Each subsequent protograph inherits

the connections of the next-higher-rate protograph; the new

protograph can only optimize over the connections emanating

from the one additional check node. Also, the new check node

must connect with a new degree-one variable node.

TABLE I
THRESHOLDS OF THE PBRL CODES (Eb/N0 IN DECIBELS).

Rate Threshold Capacity Gap

6/8 2.196 1.626 0.570
6/9 1.804 1.059 0.745
6/10 1.600 0.679 0.921
6/11 1.464 0.401 1.063
6/12 1.358 0.187 1.171
6/13 1.250 0.018 1.232
6/14 1.136 -0.122 1.258
6/15 1.016 -0.238 1.254
6/16 0.922 -0.337 1.259
6/17 0.816 -0.422 1.238
6/18 0.720 -0.495 1.215

V. PUNCTURED-NODE PROTOGRAPH-BASED

RAPTOR-LIKE LDPC CODE

This section introduces Punctured-Node Protograph-Based

Raptor-Like (PN-PBRL) LDPC codes that have structure sim-

ilar to PBRL LDPC code, but the protograph of the precode

has at least one punctured (untransmitted) node. We will refer

them as PN-PBRL codes for the rest of the paper.

Fig. 2 shows an example of an optimized PN-PBRL code.

Note that the first variable node of the precode protograph is

punctured, giving a rate-6/7 precode. To obtain an initial code

rate of 3/4, the first variable node of the LT code protograph

is transmitted. The optimization procedure is the same as in

Section IV.
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Fig. 2. Protograph of a PN-PBRL code with a rate-6/7 precode. The first
node in the precode is always punctured. Lower-rate codes are obtained by
transmitting the variable nodes in the LT code protograph starting from the
top node. The matrices shown in (3) and (4) give the details of the edge
connections as described in Section VI .

The subsequent code rates of 6/9, 6/10, . . . , 6/18 are ob-

tained by transmitting the variable nodes of the LT code

protograph from top to bottom. Regardless of the operating

rate, the first variable node of the precode protograph is always

punctured. The PN-PBRL codes yield better thresholds as

shown in Table II.

Adding more parallel edges connected between the punc-

tured variable node in the precode protograph and the check

nodes in the LT code protograph reduces the threshold signif-

icantly, as shown in Table III. The gap between the threshold

and the capacity are all less than 0.34 dB. The lifted codes with

blocklength 256, however, do not manifest the gain obtained

in threshold. This is because the large number of extra parallel

edges is likely to cause undesirable trapping sets or absorbing

sets in the decoding graph, especially when a short blocklength

such as 256 is used.

TABLE II
THRESHOLDS OF THE PN-PBRL LDPC CODES (Eb/N0 IN DECIBELS).

Rate Threshold Capacity Gap

6/8 2.020 1.626 0.394
6/9 1.638 1.059 0.579
6/10 1.468 0.679 0.789
6/11 1.352 0.401 0.951
6/12 1.248 0.187 1.061
6/13 1.186 0.018 1.168
6/14 1.018 -0.122 1.140
6/15 0.930 -0.238 1.168
6/16 0.848 -0.337 1.185
6/17 0.692 -0.422 1.114
6/18 0.602 -0.495 1.097

TABLE III
THRESHOLDS OF THE PN-PBRL LDPC CODES WITH PARALLEL

EDGES(Eb/N0 IN DECIBELS).

Rate Threshold Capacity Gap

6/8 1.965 1.626 0.339
6/9 1.314 1.059 0.255
6/10 0.948 0.679 0.269
6/11 0.678 0.401 0.277
6/12 0.422 0.187 0.235
6/13 0.270 0.0179 0.252
6/14 0.118 -0.122 0.240
6/15 0.005 -0.238 0.243
6/16 -0.102 -0.337 0.235
6/17 -0.172 -0.422 0.250
6/18 -0.266 -0.495 0.229

VI. SIMULATIONS

This section presents the frame error rate (FER) and bit error

rate (BER) simulations of the PBRL and PN-PBRL codes.

Lifting of the protograph is accomplished by circulant permu-

tation of each edge, which allows efficient implementation of

the decoder. The design of the circulant permutation uses a

greedy algorithm to avoids all length-4 cycles and minimizes

the number of length-6 cycles.

The PBRL and PN-PBRL codes that are considered in this

section can be described as follows: let Hp be the parity check

matrix of the precode and HLT be the parity check matrix of

the LT code excluding the degree-one variable nodes. Let σ



be a 32× 32 identity matrix shifted to the left by 1. The full

parity check matrix is given by

H =

[

Hp O
HLT I

]

where Hp and HLT are given in equations (1) and (2) for

the PBRL code and equations (3) and (4) for the PN-PBRL

code, respectively. I is the identity matrix and O is the all-zero

matrix with proper dimensions. Entries with multiple terms of

σ indicate parallel edges in the protograph.

Figs. 3 and 4 show the simulations of the PBRL and PN-

PBRL code family with rates 6/8, 6/9, . . . , 6/18. Layered

belief propagation is used for the decoder simulations shown in

Figs. 3 and 4. We observe a saturation of the performance, as

expected from Table I and Table II. Consistent with the thresh-

old results, the PN-PBRL code family out-performs PBRL

code family with a slight increase of encoding complexity.

Consider Raptor codes with the same precode as the PBRL

code and the output distributions drawn from [9] and [16].

Simulation results show that these Raptor codes with informa-

tion block of 192 bits have frame error rates much higher than

both PBRL and PN-PBRL codes. This result is not surprising

because a relatively short block of information is considered:

since the degrees of each output node are drawn at random

according to the optimal degree distribution, a few hundreds

of samples might not be enough to exhibit the optimal degree

distribution. The performance plots are omitted due to space

limitations.

Fig. 5 shows the simulations of 3GPP RCPT codes with the

same range of code rates and blocklengths. Different code rates

of the RCPT codes are obtained by pseudo-random puncturing,

or circular buffer rate matching (CBRM), described in [18].

Although the RCPT code family performs better at low SNR

regime, it also suffers from an error floor as soon as the FER

reaches 10−3 for rate 3/4 and 10−5 for rate 1/3, respectively.

For easier comparison, the FER and BER with rate 3/4
and 1/3 of the PBRL, PN-PBRL and RCPT codes are plotted

separately in Fig. 6 and 7. Note that in Figs. 6 and 7, flooding

is used for decoder simulations, which gives slightly worse

performance than the layered belief propagation decoding used

in Figs. 3 and 4. At rate 3/4, the PN-PBRL code performs

similarly to RCPT code and outperforms RCPT code when

SNR is higher than 3 dB in terms of FER. At rate 1/3, the

PN-PBRL code starts to gain an advantage at SNR higher than

3.5 dB in terms of FER.

VII. CONCLUSION AND FUTURE WORK

This paper proposes a class of Raptor-like rateless codes

and provides a systematic procedure of constructing practical

codes. Optimization of the code is based on asymptotic results

of LDPC codes, i.e., density evolution. The simulation results

show that although we are operating in a short blocklength

regime, optimization using density evolution still enhances the

performance of the PBRL code.

The proposed PBRL codes have several beneficial structures

in terms of complexity. First, it is based on a protograph
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structure and hence allows simple encoder and decoder struc-

tures. Second, the systematic structure allows joint decoding
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of the precode and LT code with the same decoder. Finally,

the code is rate-compatible and can be readily applied to any

incremental redundancy scheme that requires rate-compatible

channel codes.

The PN-PBRL code has the same structure as the PBRL

code, but one of the variable nodes in the precode protograph is

punctured and one variable node in the LT code protograph is

transmitted. The PN-PBRL code has better performance but a

slightly more complicated encoder for the initial transmission.

The main contribution of this paper is to introduce a new

class of rate-compatible LDPC codes with simple encoding

and decoding structures. Motivated by [10]–[12], we focus on

the short blocklength regime. These short blocklength codes

perform well and do not have error floors up to the highest

SNRs studied. In the short blocklength regime, the asymptotic

analysis of the PBRL code might not be as accurate as for the

long blocklength code. Finding a better criterion for designing

a good short blocklength PBRL code is an interesting direction

for future research.

A threshold saturation is observed as the rates decrease.

Adding parallel edges in the LT code part of the PN-PBRL

protograph alleviates the saturation issue. The lifted code with

blocklength 256, however, does not have performance better

than the codes considered in Section VI. These low thresholds

indicate a promising research area for extending the PN-PBRL

code structure to the design of good LDPC codes with long

blocklengths. Indeed, we have found that longer-blocklength

PBRL codes do perform very close to capacity, as we will

show in a future publication.
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