Prog. Theor. Phys. Vol. 50 (1973), Nov.

Proton Superfluidity in Neutron-Star Matter

Tatsuyuki TAKATSUKA

Research Institute for Fundamental Physics Kyoto University, Kyoto

July 28, 1973

The observed long relaxation times after the sudden speed-ups of the Crab and Vela pulsars indicate that there exist the proton superfluid as well as the neutron one in these neutron stars.¹⁾ In this note we study, as a series of investigation, the possible realization of the proton superfluidity in neutron-star matter.

The protons begin to mix for $\rho \ge \rho_2$ $=(0.5\sim2.4)\times10^{14}$ g cm⁻³ (ρ : total density, ρ_2 : proton-drip density)²⁾ in neutron-star matter. But the density of the mixed protons is very low because of the small contamination (several %) compared with neutrons, and hence the proton Fermi energy $E_{\rm F}^{(p)}$ is small. This means that the interaction between proton pairs is the strongly attractive ${}^{1}S_{0}$ interaction. Therefore we can expect that the protons admixed at these higher densities are in the ${}^{1}S_{0}$ -superfluid state just as the neutrons at lower densities $\rho \leq 1.5 \times 10^{14} \text{gcm}^{-3.8}$ However the situation is different: The proton single particle potentials $V_{p}(k)$ which reproduce the potential values calculated by Ikeuchi et al.⁴⁾ and tend to zero as k becomes infinity, are presented in Table I for typical $E_{\rm F}^{(p)}$, where the effective mass

parameters m^* are shown $(\equiv M^*/M)$: the ratio of the proton effective mass to its normal one). It should be noted that the effective mass of a proton is much smaller than that of a neutron, reflecting the strong dispersive effect. For example, m^* for a proton is ~0.6 at $E_{\rm F}^{(p)} \cong 9.4$ MeV whereas the one for a neutron is ~1.0 at the same Fermi energy.³⁾ This important difference in m^* brings much smaller 1S_0 -gap for protons compared with that for neutrons.

Using the OPEG potential⁵) and $V_p(k)$ on Table I, the ${}^{1}S_{0}$ -gap equation is solved by the same method as adopted in Ref. 3). The calculated results are given in Fig. 1 where the density-dependence of m^{*} is indicated by arrows. The proton ${}^{1}S_{0}$ -gap is found to be smaller by a factor $\sim 1/5$ than the neutron ${}^{1}S_{0}$ -gap⁸) and its maximum value is about 0.5 MeV at $E_{\rm F}^{(p)} \cong 10$ MeV. The proton ${}^{1}S_{0}$ -gap exists up to $E_{\rm F}^{(p)} \cong 25$ MeV corresponding to $\rho \cong 8 \times 10^{14} {\rm gcm}^{-8}$. Although the proton-drip density is not

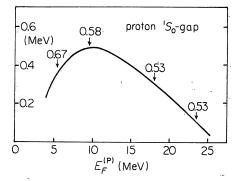


Fig. 1. Proton ${}^{1}S_{0}$ -gap versus $E_{\mathbf{F}}^{(p)}$. The density-dependence of m^{*} is also shown by arrows.

Table I.	The	proton	single	particle	potential	$V_{p}(k)$
paran	neter	m^* for	typical	$E_{\mathbf{F}}^{(p)}$.		-

 $V_{p}(k)$ and the corresponding effective mass

$E_{\mathbf{F}}^{(p)}(\mathrm{MeV})$	$\rho(10^{14} \mathrm{g cm^{-3}})$	$V_p(k)$ (MeV) (k in fm ⁻¹)	$m^*(\equiv M^*/M)$
5.4	2.4	$-82.80 \exp(-0.13k^2)$	0.67
9.4	4.0	$-100.0 \exp(-0.15k^2) - 11.5 \exp(-0.12k^2)$	0.58
18.0	6.5	$-104.0 \exp(-0.15k^2) - 30.0 \exp(-0.20k^2)$	0.53
23.5	7.9	$-125.0 \exp(-0.15k^2) - 17.3 \exp(-0.20k^2)$	0.53

sharply determined, if $\rho_2 \gtrsim 1.0 \times 10^{14} \text{g cm}^{-3}$ is adopted, protons in neutron-star medium can be regarded as in the ${}^{1}S_{0}$ -superfluid state as soon as they drip (nuclei disappear), because the proton ${}^{1}S_{0}$ -gap is still sizeable even for $E_{\rm F}^{(p)} \cong 2 \,{\rm MeV}$ ($\rho \cong 1.0$ $\times 10^{14} \text{gcm}^{-3}$). The proton ${}^{1}S_{0}$ -gap obtained by Chao et al.⁵⁾ using the correlation function of Jastrow type has the maximum value 0.6~0.9 MeV at $E_{\rm F}^{(p)} \cong 7.5$ MeV which is about 1/3 of the neutron one and it exists for $E_{\rm F}^{(p)} \leq 20 {\rm ~MeV} ~ (\rho \leq 7 \times 10^{14} {\rm g cm^{-8}}).$ These results are approximately equal to our results. The small discrepancy reduces to the calculational method, the two-nucleon potential and m^* used. The proton-neutron pairing is neglected although they coexist for $\rho \ge \rho_2$ because of the large difference in proton and neutron Fermi energies. It is of interest that the proton ${}^{1}S_{0}$ - and the neutron ³P₂-superfluids³⁾ coexist in the region $\rho \cong (2 \sim 8) \times 10^{14} \text{gcm}^{-8}$.

The author thanks Professor R. Tamagaki for valuable comments. The work has been reported in a part of the Doctor Thesis of Kyoto University (Pairing Effect in Many-Nucleon System, March, 1973).

- G. Baym, C. Pethick, D. Pines and M. Ruderman, Nature 224 (1969), 872.
- A. G. W. Cameron, Ann. Rev. Astron. Astrophys. 8 (1970), 179.
 H. A. Bethe, G. Börner and K. Sato, Astron. and Astrophys. 7 (1970), 279.
 G. Baym, H. A. Bethe and C. J. Pethick, Nucl. Phys. A175 (1971), 225.
- T. Takatsuka, Prog. Theor. Phys. 48 (1972), 1517.
- S. Ikeuchi, S. Nagata, T. Mizutani and K. Nakazawa, Prog. Theor. Phys. 46 (1971), 95.
- R. Tamagaki, Prog. Theor. Phys. 39 (1968), 91.
- N. C. Chao, J. W. Clark and C. H. Yang, Nucl. Phys. A179 (1972), 320.