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Proton transfer in solution: Molecular dynamics with quantum transitions 

Sharon Hammes-Schiffer and John C. Tully 
AT&T Bell Laboratories, Murray Hill, New Jersey 07974 

(Received 13 May 1994; accepted 31 May 1994) 

We apply "molecular dynamics with quantum transitions" (MDQT), a surface-hopping method 

previously used only for electronic transitions, to proton transfer in solution, where the quantum 

particle is an atom. We use full classical mechanical molecular dynamics for the heavy atom degrees 

of freedom. including the solvent molecules, and treat the hydrogen motion quantum mechanically. 

We identify new obstacles that arise in this application of MDQT and present methods for 

overcoming them. We implement these new methods to demonstrate that application of MDQT to 

proton transfer in solution is computationally feasible and appears capable of accurately 

incorporating quantum mechanical phenomena such as tunneling and isotope effects. As an initial 

application of the method, we employ a model used previously by Azzouz and Borgis to represent 

the proton transfer reaction AH-B-.=.A - -H+B in liquid methyl chloride, where the AH-B 

complex corresponds to a typical phenol-amine complex. We have chosen this model, in part, 

because it exhibits both adiabatic and diabatic behavior, thereby offering a stringent test of the 

theory. MDQT proves capable of treating both limits, as well as the intermediate regime. Up to four 

quantum states were included in this simulation, and the method can easily be extended to include 

additional excited states, so it can be applied to a wide range of processes, such as photoassisted 

tunneling. In addition, this method is not perturbative, so trajectories can be continued after the 

barrier is crossed to follow the subsequent dynamics. 

I. INTRODUCTION 

Molecular dynamics involves the numerical solution of 

the classical mechanical equations of motion of an ensemble 

of interacting atoms or molecules. This method has been 

shown to be an extremely valuable tool for obtaining insights 

into chemical behavior in many kinds of systems, including 

isolated molecules, 1 biopolymers,2 liquids,3 and surfaces.4 

The greatest virtue of molecular dynamics is that the classi

cal mechanical equations of motion can be solved easily 

enough that the method can be applied to systems containing 

a large number of degrees of freedom. A fundamental limi

tation of molecular dynamics, of course, is that atoms actu

ally obey quantum mechanical as opposed to classical equa

tions of motion. Zero-point motion, quantum interferences, 

quantized energy levels, and tunneling are absent in classical 

mechanics. The importance of quantum mechanical effects 

on chemical rate processes has been documented experimen

tally for a great many systems, particularly for low tempera

ture processes and those involving hydrogen atoms.5 

Unfortunately, a fully quantum mechanical version of 

molecular dynamics for systems of many degrees of freedom 

is not likely to be practical in the near future, so classical 

mechanical molecular dynamics will continue to be the 

workhorse for many years to come. It is important, therefore, 

to develop ways to incorporate quantum mechanical effects, 

at least approximately, into molecular dynamics simulations. 

This may be feasible, for example, in situations for which 

only one or a few degrees of freedom exhibit significant 

quantum effects. In such cases, an improvement to classical 

mechanics alone might be achieved by treating the few se

lected degrees of freedom quantum mechanically, while 

treating the rest of the degrees of freedom by classical me

chanics. To do this realistically, the classical and quantum 

mechanical degrees of freedom must be treated self

consistently, i.e., each should have an effect on the other. 

Moreover, the assumption that the quantum degrees of free

dom are "adiabatic" is inadequate in many cases, so quan

tum transitions must be incorporated into the dynamics. A 

number of methods for doing this have been proposed.6- 13 

With the exception of Ref. 13, which addresses vibrational 

relaxation, all of these so-called "surface-hopping" methods 

have been applied to date to processes for which the quan

tum degrees of freedom are electronic and all atoms move 

classically. Surface hopping in that case refers to quantum 

transitions among different electronic states. In the present 

paper we describe our efforts to apply one of these methods 11 

to a case where the adiabatic approximation is assumed to be 

valid for electrons, but where one of the atoms (a hydrogen 

atom) may display quantum behavior. In this case, surface 

hops will refer to quantum transitions among vibrational-like 

levels of the hydrogen in a potential dictated by the positions 

of the classical atoms. Thus we generalize the name of the 

method, "molecular dynamics with electronic transitions," 

to "molecular dynamics with quantum transitions" (MDQT). 

We apply MDQT to proton transfer in solution, which 

has been studied using various other methods. 14-23 The spe

cific system that we examine here is a model for the intramo

lecular reaction AH -B-.=.A - -H+ B in liquid methyl chlo

ride, constructed and studied by Azzouz and Borgis. 16 We 

use essentially the same parameters as Azzouz and Borgis, 

who chose them to represent a typical OH-N asymmetrical 

hydrogen-bonded complex. This is a stringent test of the 

method because it is a problem that has many degrees of 

freedom and in which both quantum zero-point energy and 

quantum tunneling may play significant roles. Zero-point 

motion is difficult to incorporate accurately into an otherwise 

classical mechanical framework. 24 Tunneling is also a very 

J. Chern. Phys. 101 (6), 15 September 1994 0021-9606194/101 (6)/4657/11/$6.00 © 1994 American Institute of Physics 4657 
 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

130.126.255.226 On: Wed, 10 Sep 2014 17:50:28



4658 S. Hammes-Schiffer and J. C. Tully: Proton transfer in solution 

challenging problem.25 While there exist a host of "tunneling 

corrections" to classical rates,26 they do not provide a way to 

continuously follow a trajectory from one side of the energy 

barrier to the other if it has insufficient energy to surmount it 

classically. (Exceptions to this are the methods of Valone 

et alY and of Makri and Miller?8) 

Following the terminology of Hynes, Borgis, and 

others,17,19 proton transfer can be classified as either adia

batic or nonadiabatic, and different computational proce

dures are used in the different regimes. The MDQT method 

we propose should apply, in principle, to both regimes, as 

well as to cases intermediate between these extremes. To 

clarify the terminology, we assume throughout this paper that 

the dynamics is electronically adiabatic, i.e., the motion of 

the atoms is governed by a single electronic Born

Oppenheimer potential energy hypersurface. Reaction barri

ers or tunneling barriers are frequently associated with a 

change in electronic configuration as the system traverses the 

barrier. In such cases there may exist a complementary low

lying excited electronic state in the vicinity of the top of the 

barrier. In this study we do not consider the possibility of 

electronic transition to such an excited state, although the 

MDQT approach could include this process if it were signifi

cant. Throughout the remainder of this paper, the terms adia

batic, diabatic and nonadiabatic refer to the quantum dynam

ics of the hydrogen atom, used in analogy to the more usual 

electronic situation. 

We start with a Born-Oppenheimer separation of the 

hydrogen atom from that of all other atoms. The coordinates 

of all of the classical atoms are fixed at some position, R, 

and we compute the eigenstates and eigenenergies of the 

hydrogen atom subject to the potential dictated by the fixed 

classical atoms. Figure 1 is a schematic one-dimensional il

lustration of potential curves for hydrogen atom motion at 

three different configurations of the classical coordinates. In 

Fig. I (a), the reactant side exhibits a deeper potential well, so 

the ground state hydrogen atom wave function will be local

ized almost completely on the reactant side, and the first 

excited state on the product side, as illustrated by solid and 

dashed lines. The reverse is true in Fig. l(c); the ground state 

corresponds to products and the first excited state to reac

tants. When the classical coordinates are positioned so that 

they produce nearly symmetrical potential wells, Fig. l(b), 

then the lowest two hydrogen atom eigenstates will have 

almost equal reactant and product character, with the lower 

and upper eigenstates displaying approximately even and 

odd symmetry, respectively. The energy difference between 

the two lowest adiabatic eigenstates when the potential wells 

are approximately symmetrical is called the "tunnel split

ting" and is proportional to the tunneling rate between reac

tants and products. 

The most well-defined way to formulate a dynamical 

method that treats the classic~ particles and the quantum 

hydrogen motion in a self-consistent way is to invoke the 

adiabatic assumption (the Born-Oppenheimer approxima

tion), i.e., to require that the hydrogen atom be restricted to 

its ground vibration-like state at all times. An adiabatic simu

lation will then proceed as follows. At each time increment, 

the eigenenergy and eigenfunction of the lowest hydrogen 

(a) 

0.6 0.8 1.2 1.4 1.6 1 .8 2 
r (Angstroms) 

(b) 
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FIG. 1. Schematic one-dimensional illustration of potential curves for hy

drogen atom motion at three different configurations of the classical coordi

nates. (a) Ground state corresponds to reactants and first excited state to 

products. (b) Two lowest eigenstates have almost equal reactant and product 

character. (c) Ground state corresponds to products and first excited state to 

reactants. 

atom vibrational state and the reSUlting Hellmann-Feynman 

forces on the classical particles are computed. These forces 

are then used to propagate the classical panicles via classical 

mechanics through one time increment. The process is then 

repeated to map out a complete trajectory. This procedure 

has been applied to proton transfer reactions in solution by 

Borgis et al. 17 and Laria et al. 18 In their simulations, the en

ergy separation of the ground and excited hydrogen vibra

tional states was sufficiently large to prevent significant 

population of the excited state, so the adiabatic assumption 

appears valid. This will be the case in proton transfer situa

tions when the potential energy barrier is small or nonexist-
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ent. so that the tunnel splitting is large and the tunneling rate 

essentially instantaneous. This corresponds to the strong cou

pling limit of proton transfer as formulated by Bell,5 and the 

adiabatic approach provides an accurate way to incorporate 

tunneling and zero-point corrections in this limit. 

If the tunneling barrier is relatively large then the tunnel 

splitting will be small, and quantum transitions between the 

lowest two states may become probable. It is this case for 

which MDQT is essential. For example, since the first ex

cited state of Fig. I (c) corresponds to the hydrogen in the 

reactant state, the effect of a quantum transition from the 

ground state to the first excited state as the system evolves 

from Figs. I (a) to I (c) is that proton transfer does not occur. 

Thus nonadiabatic transitions generaIly reduce the proton 

transfer probability. Since the tunneling rate depends on the 

energy splitting between the ground and excited states, in

cluding both states is crucial to properly describe tunneling. 

Only the ground state enters in the adiabatic approximation, 

however, so the adiabatic method contains no information at 

all about the tunneling rate. If the adiabatic method is applied 

to a case where the tunnel splitting is small, then the com

puted rate will be too large. This can be seen from Fig. l. No 

matter how high the barrier, if a solvent fluctuation takes the 

system from a configuration like Fig. I (a) to one like Fig. 

I (c). then the adiabatic assumption will demand that a reac

tion occur, and the ground state wave function suddenly 

switches from reactant to product character. This sudden 

change of character of the wave function is nonphysical 

since the wave function cannot respond instantaneously. 

Nonadiabatic transitions correct this nonphysical behavior by 

allowing for a transition to the excited state, thereby retain

ing reactant character in Fig. I (c). As discussed below, the 

MDQT method introduces transitions with the probabilities 

required to reproduce the correct tunneling rate and does so 

self-consistently with the classical motion. 

In cases where the tunnel splitting is so small that the 

probability of a nonadiabatic transition is nearly unity (the 

diabatic limit), then the probability of proton transfer can be 

computed perturbatively.19-21 An advantage of the MDQT 

method proposed here is that it can be used in both adiabatic 

and diabatic limits, as well as in the intermediate regime. 

This is crucial for proton transfer where the barrier height 

depends sensitively on the separation of donor and acceptor, 

so the same system will generally display both adiabatic and 

nonadiabatic behavior in different regions of configuration 

space. As discussed below, even in cases for which the adia

batic pathway dominates, the adiabatic method may fail be

cause nonadiabatic transitions may be required to tum off 

nonphysical tunneling in nonadiabatic regions. Another ad

vantage of MDQT is that it is not perturbative, so trajectories 

can be continued after the barrier is crossed to evaluate re

crossings or follow the further dynamics. Moreover, MDQT 

can be extended to include additional excited states, allowing 

the method to be applied to exothermic processes where the 

reactant state is nearly resonant with a product excited state. 

Initial excitation of reactant vibration (such as in photoas

sisted tunneling) and vibrational relaxation (either directly or 

via sequential tunneling) can also be addressed. 

The proton transfer model employed for this study is 

intended to be a realistic model, but it was not chosen to 

represent a particular experimental system. Thus we cannot 

make direct comparison of our computed results to experi

ment. The main objective of this study is to evaluate the 

applicability of the MDQT method, previously employed 

only for electronic transitions, to this new regime where the 

quantum particle is an atom. We identify new obstacles that 

arise in this application and present methods for overcoming 

them. We examine questions that bear on the feasibility of 

the approach, such as integration time steps, accuracy, and 

convergence. As shown below, the method is quite tractable 

and appears to accurately incorporate tunneling and quantum 

isotope effects into a full-scale molecular dynamics simula

tion. 

II. METHODS AND RESULTS 

In this section we discuss the methods we have devel

oped for applying MDQT to proton transfer. In subsection A, 

we present the model system and the associated interaction 

potentials. In subsection B, we discuss the adiabatic molecu

lar dynamics method, and in subsection C, we present the 

method by which we include quantum mechanical transitions 

(MDQT). Subsection D is an outline of the specific nonadia

batic molecular dynamics scheme we have applied here. We 

discuss the calculation of the rate constants for proton trans

fer and present our results in subsections E and F. 

A. Azzouz-Borgis model 

The model system we are using to study proton transfer 

is essentially the same as that used by Azzouz and Borgis. 16 

The proton transfer reaction is AH-B-.=.A - -H+ B in liquid 

methyl chloride, where AH-B is a linear complex with pa

rameters chosen to model a phenol-amine complex (i.e., A 

and B represent <PO and NR3 , respectively). 

We represent the Cartesian coordinates of all of the sol

vent molecules as Rs and the Cartesian coordinates of the A 

and B groups of the complex as RA and R8 , respectively. We 

are treating all of these coordinates classically and for sim

plicity often represent them as R={Rs ,RA ,RB}. Since the 

model constrains the complex AH-B to be linear, the posi

tion of H can be represented by a one-dimensional variable 

r, which is the distance between A and H in the complex. We 

are treating the proton coordinate quantum mechanically, as 

will be discussed in the next subsection. In this subsection 

we discuss the interaction potentials for the system. 

The solvent-solvent interaction Vss(Rs) is in the form 

of intermolecular site-site Lennard-Jones and Coulomb po

tentials. We use the TIPS (transferable intermolecular poten

tial functions) format, where the interaction €mn between sol

vent molecules m and n is a sum of interactions between 

sites i and j on m and n, respectively:29 

on m on n 

€mn= 2: 2: [q;qje
2
/rij+A;A/r}/- C;C/r~j]. (1) 

j 

For methyl chloride, the methyl group is reduced to a single 

atomic site, and the distance between the methyl and chlo

ride groups is fixed at 1.781 A. The TIPS parameters were 
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4660 S. Hammes-Schiffer and J. C. Tully: Proton transfer in solution 

TABLE 1. TIPS parameters for methyl chloride; used for solvent-solvent 

interaction. 

Site 

q 

(e) 

+0.25 

-0.25 

7.95X 106 

5.25X106 

2750 

2950 

obtained from Bigot et at. 30 and are given here in Table L 

These parameters have recently been used for extensive stud

ies of liquid methyl chloride.31 

The hydrogen-bonding interaction (and repulsion be

tween A and B) within the A H - B complex is given by 

VHB(R AB ;r)=be-aRAB+DA[ 1-exp( -n
A
(;;d

A
)2)] 

+CDA[ 1-exp( -nB~~~::~~dB)2)], 

(2) 

where RAB==IRA - RBI. This gas-phase H-bonding potential is 

discussed in detail by Azzouz and Borgis. 16 The parameters 

we have used are given in Table II and correspond closely to 

Model II in Ref. 16. The potential is shown for RAB =2.7 A 
in Fig. 2. The masses of A and B are rnA =93 and rn8=59, 

which correspond to the masses of phenol and trimethy

lamine, respectively. 

The interaction of the solvent with the complex, 

Vcs(R;r), is the same as that used in Ref. 16 and consists of 

both a Lennard-Jones and a Coulomb part. The Lennard

Jones part V u(R) involves the interaction of the A and B 

groups of the complex with the methyl and chloride groups 

of each solvent molecule. The Lennard-Jones parameters are 

chosen to be identical for all of these site-site interactions: 

0"=3.5 A and €=200 K. The Coulombic part V c(R;r) in

volves the interaction between the charges on the solvent 

molecules (given in Table I) and the r-dependent point 

charges e a( r) assigned to A, H, and B of the complex 

e a(r) =:: [l-f(r)]e~ + f(r)e~, a=A,H,B, 

(3) 

TABLE II. Parameters used in gas-phase H-bonding potential, V HB(R AB ;r), 

within the AH-8 complex. 

Parameter Value 

a (A-I) 11.2 

b (kcaUmol) 7.IXIOI3 

dA (A) 0.95 

dB (A) 0.97 

D A (kcaUmol) 110 
n

A 
(A-I) 9.26 

nB(A-I) 11.42 

c 0.776 

-10 

0.6 0.8 1 1.2 1.4 1.6 1.8 
r (Angstroms) 

FIG. 2. Gas-phase H-bonding potential, VHB(R AB ;r), within AH-8 com

plex for RAB =2.7 A. 

where ro= 1.43 A and 1=0.125 A. The reactant, covalent 

state is defined by e~ = -0.5e, e'H= +0.5e, es=O, and the 

product, ionic state is defined by e~=-e, ek=+0.5e, 

ek= +0.5e. 
As in Ref. 16, the simulations described in this paper 

were performed using periodic boundary conditions3 for a 

system of 255 solvent molecules and one AH - B complex in 

a cube with sides oflength 28 A (i.e., density p=0.012 A -3). 

Our simulations were run at a temperature of 247 K, which is 

essentially the same as the temperature of 249 K used in Ref. 

16. The Lennard-Jones potential for the solvent-solvent and 

the solvent-complex interactions was spherically truncated 

at Rc= 13.8 A and shifted accordingly. The Coulombic po

tential for the solvent-solvent and solvent-complex interac

tions was smoothly truncated to zero at Rc= 13.8 A using a 

function T(Rij) given by Steinhauser:32 

T(Rij) = 1, Rij,.;;,RT, 

T(Rij) = 1- (Re - RT)-3(Rij- RT)2(3Re - RT- 2Rij), 

(4) 

T(Rij)=O, Rij~Re' 

where Rij is the distance between the centers of two inter

acting neutral molecules and R T=0.95Re . 

Note that in the gas-phase H-bonding potential shown in 

Fig. 2, the well with minimum at r""" 1.0 represents the reac

tant, covalent state A H - B, and the weB with minimum at 

r= 1.6 represents the product, ionic state A - - H+ B. The 

Coulomb part of the interaction of the solvent with the com

plex V cCR;r) stabilizes the ionic form of the complex much 

more than the covalent form, so the product well in Fig. 2 is 

lowered more than the reactant well in the presence of the 

solvent. Thus for some configurations of the classical coor

dinates, the potential energy of the system as a function of 

the quantum coordinate r qualitatively resembles the curves 

in Fig. 1, where the reactant and product wells are nearly 

symmetric. These are the situations where tunneling may oc

cur. 

B. General simulation scheme for adiabatic treatment 

As mentioned above, we treat the proton coordinate r 

quantum mechanically and the other coordinates R classi

cally, and we separate the protonic motion from the slower 
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classical motions in the system. In this subsection, we dis

cuss the simulation scheme for an adiabatic treatment, where 

we assume that the Born-Oppenheimer approximation is 

valid so the proton always remains in a single state. In other 

words, we assume that the proton can instantaneously adapt 

to the classical coordinates. In the next two subsections, we 

extend this scheme for a nonadiabatic treatment, where we 

allow the proton to make transitions among quantum me

chanical states, i.e., where we no longer invoke the Bom

Oppenheimer approximation. 

The Schrodinger equation for the proton at a given con

figuration R of the classical coordinates is 

Hp(R;r)'I'n(R;r) = ( -2~p V;+Vcs(R;r) 

+ V HB(RAB ;r) ) 'qt n(R;r) 

= En(R)'qt n(R;r), (5) 

where H p is the proton Hamiltonian and m p is the mass of 

the proton. Then the Hamiltonian for the classical particles is 

(6) 

where T is the kinetic energy of all of the classical particles. 

Thus the equations of motion for the classical particles with 

masses m i are 

m,R,= - VRVss(Rs)- VREn(R) , , 

= - V R,vss(Rs) - V Rj('qt nlHpl'qt n) 

= - V R Vss(Rs) - ('qt nlV RHpl'qt n), 
I I 

(7) 

where the brackets denote integration over only the quantum 

mechanical coordinate r. We have used the Hellmann

Feynman theorem33 for the last equality, which involves the 

Hellmann-Feynman forces 

('I'nl VR,Hpl'qtn) = f dr 'I':(R;r)VRjHp(R;r)'qtn(R;r). 

(8) 

Note that the subscript n denotes the quantum mechanical 

state of the proton, which in this subsection we will take to 

be the ground state, n =0. 

The general simulation scheme for the adiabatic treat

ment is as follows. First, the Schrodinger Eq. (5) is solved 

for the ground state for a given classical configuration. Then, 

using the ground state wave function to calculate the 

Hellmann-Feynman forces given in Eq. (8), the classical 

equations of motion [Eqs. (7)] are integrated to obtain a new 

classical configuration. This procedure is repeated until the 

simulation is terminated according to a criterion discussed 

below. In the remainder of this subsection, we discuss the 

details of our implementation of this procedure. 

The Schrodinger Eq. (5) was solved by expanding the 

wave function in a set of normalized basis functions 

(9) 

The basis functions were of the form of the solutions for a 

quantum mechanical simple harmonic oscillator
34 

cPi(r) = 2 -m/21T1/4(m!) - 1I2 a 1l2 H m[ a(r- ro)] 

Xexp[-a2(r-ro)2/2], (10) 

where m is an integer, Hm(x) is a Hermite polynomial, and 

the index i on the basis function represents a pair of values 

for m and roo We used a total of 12 basis functions, consist

ing of two sets of 6 basis functions (m =0-5). One set of six 

basis functions was centered at ro= 1.0 A, and the other set 

was centered at ro= 1.6 A, so there were six basis functions 

approximately centered at the minimum of each well in the 

gas phase potential shown in Fig. 2. All 12 basis functions 

had a= 7.732 A -\, which corresponds to a proton oscillating 

harmonically with a frequency of w=2000 cm -1. 

If we substitute the expansion in Eq. (9) into Eq. (5), 

then we get the standard eigenvalue problem 

HC=ESC, (11) 

where H is a Hamiltonian matrix with elements 

Hij=, f dr cPi(r)Hp(R;r)cP/ r ) (12) 

and S is an overlap matrix with elements 

(13) 

We calculated Hij and Sij numerically using Simpson's 

method35 with 33 points evenly spaced over a region from 

r=0.6 A to r=2.0 A. We solved the eigenvalue problem by 

symmetrically orthogonalizing the basis set to obtain a trans

formed eigenvalue equation 

H'C'=EC', (14) 

solving for c' and E by diagonaJizing H', and then back 

transforming c' to get c. 36 We used the EISPACK
37 software 

package for the diagonalization of the matrix H'. 

After solving the Schrodinger equation, we calculated 

the Hellmann-Feynman forces in Eq. (8) using the same 

numerical integration method as we used to calculate Hij and 

Sij. Given these forces, we used the RATILE
38 

algorithm, 

which is based on the velocity Verlet algorithm, to integrate 

the equations of motion [Eqs. (7)] while constraining the 

intramolecular bond lengths of the solvent molecules. 

c. Nonadiabatic methods 

In this subsection we discuss the MDQT method by 

which we incorporated quantum mechanical transitions into 

the molecular dynamics scheme discussed in the previous 

subsection. We used the method introduced in Ref. I 1. With 

this method, the proton remains in a single state, except for 

the possibility of sudden switches from one state to another 

that occur in infinitesimal time. We first outline the algorithm 

used to determine when such a switch will occur, and then 

we present the details of our implementation of this algo

rithm. 

We assume that the classical coordinates follow some 

(not necessarily classical) trajectory R(t), where t is time. 
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4662 S. Hammes-Schiffer and J. C. Tully: Proton transfer in solution 

Then the Hamiltonian H p (R;r) is a time-dependent operator, 

depending on time through R(t). We now define a wave 

function <I>(R,r, t) that describes the quantum mechanical 

state at time t, and we expand this wave function in terms of 

the orthonormal Born-Oppenheimer wave functions 

'l'n(R;r) described in Sec. II B 

(15) 
n 

where Cn(t) are complex-valued expansion coefficients. If 

we substitute Eq. (15) into the time-dependent Schrodinger 

equation and perform some algebraic manipulations, we get 

(16) 

where 

(17) 

and the nonadiabatic coupling vector dk/R) is defined as 

dk/R) == ('It k(R;r)1 V R 'It/R;r». (18) 

Again the brackets denote integration over only the quantum 

mechanical coordinate r. Equations (16) are integrated nu

merically, simultaneously with integration of the trajectory 

R(t), to obtain the amplitudes Cj of each quantum mechani

cal state at a given time t. We use the information contained 

in these amplitudes in order to determine whether or not the 

proton should switch from one state to another at a given 

time t. 

The "fewest switches" algorithm presented in Ref. 11 

correctly apportions trajectories among states according to 

the quantum probabilities 1 C j(t) 12 with the minimum re

quired number of quantum transitions. According to this al

gorithm, the probability of switching from the current state k 

to all other states j during the time interval between t and 

t+A is 

bjk(t+A)A 

gkj= akk(t+A) , 

where 

and 

(19) 

(20) 

(21) 

If gkj is negative, it is set equal to zero. Note that akk is the 

population in state k. We also point out that Eq. (19) is valid 

only for A small enough to satisfy the following conditions: 

akk(t)=akk(t+ A), 

akk(t+ A) -akk(t)=akk(t+ A)A. 

(22) 

(23) 

Later in this subsection we will discuss methods for calcu

lating g kj when A is so large that these conditions are not 

satisfied. 

In order to determine whether a switch to any state j will 

occur, a uniform random number, g, 0< g< 1, is selected at 

each time step in the trajectory. For example, if k = 1, a 

switch to state 2 will occur if g<g 12' a switch to state 3 will 

occur if g12<g<g12+g13' etc. If a switch to a different 

state k I does occur and if €k(R) * €k' (R), then the velocities 

must be adjusted in order to conserve total energy. According 

to Ref. 11, the adjustment should be made to the component 

of velocity in the direction of the nonadiabatic coupling vec

tor dkk,(R) at the position of the transition R. Later in this 

subsection we will discuss methods for making this velocity 

adjustment. If €k'(R»€k(R) and the velocity reduction re

quired is greater than the component of velocity to be ad

justed, then the switch does not occur (the transition is clas

sically forbidden), and the component of velocity in the 

direction of the nonadiabatic coupling vector is reversed.39 

This switching procedure ensures that, for a large en

semble of trajectories, and ignoring the difficulties with clas

sically forbidden states, the fraction of trajectories assigned 

to any state k at any time t will equal the quantum probabil

ity 1 C k( t) 12. In the remainder of this subsection, we discuss 

the details of our implementation of this algorithm. 

First we discuss the integration of Eqs. (16) to obtain the 

amplitudes Cj of each state. Note that in the adiabatic 

(Born-Oppenheimer) representation, 

(24) 

where 0kj is the Kronecker delta function and €k(R) has al

ready been obtained from the solution of the Schrodinger Eq. 

(5). For numerical convenience, we introduce the following 

new variables: 

(25) 

Then we can rewrite Eqs. (16) in terms of these new coeffi

cients 

ifiCk=Ck(Vkk-Voo)-ifi~ CjR-dkj . 

j 

(26) 

We used the fourth-order Runge-Kutta numerical integration 

method40 to integrate Eqs. (26) from t to t + A, where A is the 

step size for the integration of the classical equations of mo

tion [Eqs. (7)] discussed in the previous subsection. We point 

out that the new coefficients Cj contain all of the information 

necessary for the switching algorithm, so we do not ever 

have to calculate the original coefficients Cj • 

Moreover, use of the chain rule gives 

(27) 

so the nonadiabatic coupling R.dkj can be evaluated numeri

cally using a finite difference method to evaluate the deriva

tive of the wave function with respect to time. Hence, we do 

not need to calculate the nonadiabatic coupling vector ex

plicitly to compute the coefficients Cj . Using this method, it 

is straightforward to derive the following: 

[R.dkj](t+ A/2) 

1 
= 2A [('It k(t) 1'1' /t+ A» - ('It k(t+ A) 1 'It /t)]. (28) 
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Thus we can calculate Vkk "", €k at each classical. time 

step, and we can calculate the nonadiabatic coupling R·dkj 

halfway between each classical time step. The fourth-order 

Runge-Kutta numerical integration method, however, re

quires that we obtain values for Va and for the nonadiabatic 

coupling at other times. Moreover, it is often necessary to 

use a smaller time step for integration of Eqs. (26) than is 

required to integrate the classical equations of motion [Eqs. 

(7)]. Since the most computationally expensive part of the 

simulation is the calculation of the classical forces, i.e., 

evaluation of - V R V ss(Rs), it is important for A to be as 

large as possible. Thus we used a smaller time step ~A for 

the integration of Eqs. (26), which required us to obtain val

ues for Va and for the nonadiabatic coupling at many inter

mediate times between t and t+A. We used a simple linear 

interpolation and extrapolation scheme to obtain these values 

at intermediate times. For example, we interpolated between 

(in (t) and (in (t + ~) to determine the necessary intermediate 

values of (in"'" Vnn . Similarly, we interpolated and extrapo

lated from [R.dkj](t-A/2) to [R.dkj ](t+A/2) in order to get 

the necessary values of the nonadiabatic coupling vector be

tween t and t + A. 

Next we discuss the calculation of the switching prob

abilities gkj' Recall that Eq. (19) is only valid if the condi

tions in Eqs. (22) and (23) are satisfied. In general, we found 

that the largest time step ~ capable of integrating the classi

cal equations was often too large to satisfy these conditions. 

As mentioned above, however, for computational efficiency 

~ should be as large as possible, so we used the following 

alternative method to calculate gkj' Maintaining the "fewest 

switches" criterion, it is straightforward to derive the follow

ing: 

f:+.l dt bjk(t) 

gkj= akk(t) 
(29) 

where, in our case, 

(30) 

The numerator of Eq. (29) can be numerically integrated 

simultaneously with the integration of Eqs. (26) using the 

time step Ii. This requires very little extra computation since 

the quantities in Eq. (30) must be calculated at all relevant 

intermediate times during the integration of Eqs. (26). 

We emphasize that if we were forced to decrease the 

classical time step A in order to calculate the amplitudes of 

the states [Eqs. (26)] or to calculate the switching probabili

ties [Eq. (29)], the computational expense of the simulations 

would increase substantially. Using the methods described 

above, however, we typically used values of o=O.OOlA with

out significantly increasing the computational expense. 

Now we discuss the method of adjusting the velocities to 

maintain energy conservation if a switch occurs. Recall that 

for a switch from state k to k', the adjustment should be 

made to the component of velocity in the direction of the 

nonadiabatic coupling vector dkk,(R), which is defined in Eq. 

(18). We can calculate this vector using the off-diagonal 

Hellmann-Feynman expression 

V R[ ('I' k(R;r)IHp(R;r) 1'1' k,(R;r)] 

= 0 = ('I' k(R;r)IV RHp(R;r)I'I' k,(R;r) 

- [€k'(R) - (ik(R) ]('1' k(R;r) IV R'I' k,(R;r), (31) 

which leads to 

('I' k(R;r)1 V RHp(R;r) 1'1' k,(R;r» 
dkk,(R)= €k,(R)-€k(R) (32) 

for k '* k'. Note that dkk =0 for orthonormal wave functions 

qrn(R;r). 

The velocities should be adjusted as if they were sub

jected to a force in the direction of the nonadiabatic coupling 

vector.41 Recall, however, that for the classical molecular 

dynamics [integration of Eqs. (7)], we are using Cartesian 

coordinates with constraints on the intramolecular solvent 

bonds. Thus in addition to the nonadiabatic coupling force, a 

constraint force must be applied to the velocities to ensure 

that the adjusted velocities satisfy the derivatives of the con

straints, i.e., that the adjusted velocities do not have any 

components in the direction of the solvent intramolecular 

bonds. We applied this constraint force using a method 

equivalent to the velocity part of the RATILE
38 algorithm. 

Using this method, the new velocities R' can be calcu

lated as follows: 

(33) 

where i indicates a site on a molecule and m i is the mass of 

the group at site i. 

In order to account properly for the constraint forces on 

the solvent molecules of our model system, we define 

(34) 

where i and j indicate the two groups on a particular solvent 

molecule, 

and 

(35) 

(36) 

(37) 

Note that d~k'(R) "'" d~k'(R) if i represents a site on the 

AH - B complex since no constraints are imposed on the 

complex. 

In order to maintain energy conservation, we define 

ru' 

rkk' 

where 

bkk , + ..jb;k' +4au'[ €k(R) - €k'(R)] 

bkk' - ..jbZk , +4akk'[ €k(R) - €k'(R)] 

2akk' 

(38) 

(39) 

(40) 
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and 

Note that a switch can occur only if 

b;k' +4akk'[ Ek(R) - Ek'(R)];;':O. 

(41) 

(42) 

Otherwise, there is not enough velocity in the direction of the 

nonadiabatic coupling vector to maintain energy conserva

tion. In this case, the system remains in the initial quantum 

state, and we just reverse the component of velocity in the 

direction of the nonadiabatic coupling vector,39 Le., we 

change the velocities according to Eq. (33) with 

'Ykk,=bkk'lakk" 

D. Outline of method for nonadiabatic dynamics 

In this subsection we outline the method we used to 

perform the nonadiabatic dynamics. 

Step I. Initialize coefficients C j and choose state k. [We 

always started with the total population in the ground state 

(k=O), so we set Co= 1.0 and set all other coefficients to 

zero.] Initialize nonadiabatic coupling. (We took two adia

batic steps to obtain the nonadiabatic coupling necessary for 

the extrapolation scheme discussed above.) Solve the Schro

dinger equation for the current configuration R(t 0) to obtain 

'I' n(tO) and En(tO)' In the following steps, to=O, and s is an 

integer representing the current time step. 

Step 2. Using 'l'k[(s-l)6.] to evaluate the Hellmann

Feynman forces [Eq. (8)], integrate the equations of motion 

[Eqs. (7)] from t = (s - 1) 6. to t = s 6. using a time step of 6. 

to obtain a new configuration R( s 6.) .. 

Step 3. Solve the Schrodinger Eq. (5) for this configura

tion to obtain 'I' n(s6.) and En(s6.) for all states n included in 

the calculation. (We report results below for simulations in

cluding 2 states and 4 states.) 

Step 4. Use Eq. 28 to calculate [R.dkj ](s6.-b.l2) for all 

included states j. 

Step 5. Integrate the coefficient equations [Eqs. (26)] 

from C}(s-l)6.] to C)s6.] for all included states j using 

a time step of 0$;6.. Simultaneously, numerically integrate 

J (~-l)~ dt bjk(t), where bjk(t) is defined in Eq. (30), for all 
included states j using a time step of o. 

Step 6. Use Eq. (29) to calculate the switching probabili

ties g kj for all included states j. 

Step 7. Generate a random number and determine 

whether a switch to any state j should be invoked according 

to the switching probabilities g kj . 

Step 8. If no switch should occur, go back to Step 2. If a 

switch from k to k' should occur, calculate the nonadiabatic 

coupling vector using Eq. (32) and use this to calculate the 

velocity adjustment necessary to conserve energy [Eqs. 

(38)-(41)]. If the required velocity reduction is greater than 

the component of velocity to be adjusted [Le., Eq. (42) is not 

satisfied], no switch occurs, so reverse the velocity compo

nent along the nonadiabatic coupling vector and go back to 

Step 2. Otherwise, adjust the velocities using Eq. (33), 

switch states (set k = k '), and go back to Step 2. 

E. Calculating rate constants 

In this subsection, we discuss how we calculated rate 

constants for the reaction AH-B-+A - -H+ B in liquid me

thyl chloride. The system is defined to be a reactant if the 

classical coordinates are reactant stabilizing and the hydro

gen atom is in its ground state. Similarly, it is defined to be a 

product if the classical coordinates are product stabilizing 

and the hydrogen atom is in its ground state. We determine 

whether the classical coordinates are reactant or product sta

bilizing by the value of (r}o=('I'olrl'l'o). For the purposes 
of defining a reactive event, the system is reactant stabilizing 

if (r}0<1.05 and product stabilizing if (r}o> 1.62. Then a 

reactive event is defined to occur if the system starts as a 

reactant and becomes a product. We found that the rate con

stant is insensitive to the exact numbers used to define reac

tant and product stabilizing. 

We used a classical time step of 6.=0.01 ps except for in 

the crossing region, where we used a smaller time step of 

6.=0.001 ps to obtain more accurate values for the nonadia

batic coupling and the energy splittings between states. Thus 

when the trajectory entered the crossing region from the re

actant stabilizing region at a time t, defined to be when 

('I'0(t-6.)lrl'l'0(t-6.»<1.2 A«'I'o(t)lrl'l'o(t», we re

turned to the previous classical step, R(t - 6.), and decreased 

the time step so that 6.=0.001 ps. If, after no fewer than ten 

steps, the trajectory returned to the reactant region and no 

switches to higher states had occurred yet for this trajectory, 

the time step was increased so that 6.=0.01 ps again. At all 

times, the coefficient time step o remained the same: 0= 10-5 

ps. 

Moreover, in order to eliminate nonphysical coherence 

in the coefficients, we set the magnitude of the coefficient of 

the current state k equal to one and the magnitude of all other 

coefficients equal to zero (i.e., C k = 1 and C j = 0, j =f. k) when

ever ('I'k(t- 6.) I rl'l' k(t - 6.»< 1.62 A «'I'k(t) I rl 'I' k(t» or 

('I' k( t) I rl 'I' k(t»< 1.05 A «'I' k( t - 6.) I rl 'I' k( t - 6.» for 

k=f.O. 

To obtain initial conditions, we generated ten different 

ground state configurations (consisting of Rand R) in the 

reactant stabilizing region that were equilibrated to 247 K. 

From these configurations we could generate different trajec

tories by producing a random Gaussian distribution of ve

locities with an approximate temperature of 247 K, and then 

scaling the velocities to have the same kinetic energy as that 

associated with the original velocities. 

In order to facilitate comparison between rate constants 

calculated by the adiabatic and the nonadiabatic methods, we 

started the adiabatic and nonadiabatic trajectories from the 

same configurations. We then calculated the adiabatic and 

nonadiabatic trajectories simultaneously until a switch from 

the ground state to an excited state or a velocity reversal 

occurred in the nonadiabatic trajectory, or a reactive event 

occurred. If a switch or velocity reversal occurred, then we 

continued both trajectories separately until for each one ei

ther a reactive event occurred or the system returned to re

actants. This procedure was repeated until at least 100 reac

tive events were achieved for both the adiabatic and the 

nonadiabatic trajectories. We calculated the adiabatic (nona

diabatic) rate constant by adding up the number of reactive 
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TABLE III. Rate constants obtained from simulations using adiabatic and 

nonadiabatic methods including the lowest two and the lowest four quantum 

states for the transfer of hydrogen (H) and deuterium (D). 

Simulation method No. states k (S-I) for H k (S-I) for D 

Adiabatic 2 J.8X 1011 J.7X 1011 

Nonadiabatic 2 O.77XIOII 0.20XIOII 

Adiabatic 4 1.9 X 1011 1.7X 1011 

Nonadiabatic 4 0.78XIOII 0.20XIOII 

events for the adiabatic (nonadiabatic) trajectories and divid

ing this number by the total time for all adiabatic (nonadia

batic) trajectories. We repeated this procedure replacing the 

hydrogen with deuterium to calculate the kinetic isotope ef

fect. 

F. Results 

The results we obtained by following the procedure pre

sented in this section and including only the two lowest 

quantum states are presented in the first two rows of Table 

III. Note that the nonadiabatic proton transfer rate constant is 

2.3 times smaller than the adiabatic proton transfer rate con

stant. This number is small but statistically significant. More

over, the result that including quantum transitions decreases 

the rate constant agrees with the physical discussion in Sec. 

I. Note also that, within our statistical uncertainties, there is 

no kinetic isotope effect for the adiabatic method. A kinetic 

isotope effect of 3.9 was found for the nonadiabatic method. 

In the adiabatic case, proton transfer occurs whenever the 

solvent stabilizes the product side so that it is lower in en

ergy than the reactant side, as shown in Fig. l(c). Thus deu

terium and hydrogen behave virtually identically. (The dif

ference in zero-point energies does not appear to 

significantly affect the dynamics in this case.) When quan

tum transitions are included, the rate constant is smaller for 

deuterium than for hydrogen since tunneling is slower for 

deuterium, i.e., the deuterium energy levels are closer to

gether so the probability of a quantum transition is greater 

for deuterium than for hydrogen. Thus all of these results 

appear to be qualitatively correct. 

Azzouz and Borgis l6 studied essentially the same proton 

transfer reaction using both a Landau-Zener curve-crossing 

approach, with which they obtained a value of 7.8X 109 s-1 

for the rate constant with a kinetic isotope effect of 46, and a 

path-integral centroid approach, with which they obtained a 

value of 10.5 X 109 s -1 for the rate constant with a kinetic 

isotope effect of 40. Our results do not agree well with these 

results, but since we used very different methods, further 

study is necessary to find the source of the discrepancy. 

In order to shed some light on this discrepancy, we de

termined an approximate lower limit for the nonadiabatic 

rate constant that would be obtained using any surface

hopping approach. We simulated 50 adiabatic reactive 

events, where Eqs. (26) were integrated throughout the tra

jectories but no switches were allowed. We found that the 

average final ground state population, which is the probabil

ity of an adiabatic reactive event, was 0.26 for hydrogen and 

0.05 for deuterium. Thus, even if every non adiabatic branch 

were nonreactive, including nonadiabatic transitions can re

duce the adiabatic rate constant by at most a factor of 3.8 and 

20 for hydrogen and deuterium, respectively. Using our re

sults for the adiabatic proton transfer rate constants given in 

the first row of Table III, we calculated that the lower limits 

of the nonadiabatic rate constants are 0.47 X lOIl s-1 and 

0.09X 1011 S-1 for hydrogen and deuterium, respectively, 

which are considerably higher than the results of Azzouz and 

Borgis 16 but lower than our results. We point out that in our 

case this lower limit was not obtained because even after a 

non adiabatic transition, a reactive event could occur before 

the system returned to reactants. This suggests that the major 

source of the discrepancy between the results of Azzouz and 

Borgis and our results is not due to our treatment of nona

diabatic transitions. 

We also performed the procedure presented in this paper 

including the four lowest quantum states, which is very 

straightforward and not significantly more computationally 

expensive than including only two states. As shown in Table 

III, the results were the same within the statistical error as 

those where we included only the two lowest states. We ob

served only one transition to the third state and no transitions 

to the fourth state during these simulations. We also ob

served, however, that the quantum probabilities of the third 

and fourth excited states quite often became as large as 0.09 

and 0.04, respectively, and in a few rare instances became as 

large as 0.25. Thus, there is a non-negligible probability of a 

transition to the third or fourth state, although the effect on 

the final reaction rate is insignificant. 

The results discussed in this subsection show that for 

this proton transfer model, inclusion of nonadiabatic transi

tions reduced the calculated rate constant by factors of 2.3 

and 8.5 for hydrogen and deuterium, respectively. While 

these are not major corrections, they are significant and 

dominate the isotope effect. At lower temperatures for this 

system, nonadiabatic corrections will become much more 

important as the rate becomes increasingly controlled by tun

neling. Even for the conditions of the present simulation, 

however, the inclusion of nonadiabatic transitions may be 

crucial for properly portraying the reaction pathway. As dis

cussed above, the adiabatic approximation can produce non

physical passage across a tunneling barrier irrespective of the 

height of the barrier. In situations such as the present one in 

which the barrier height depends significantly on the other 

(classical) coordinates, the adiabatic approximation may al

low reaction to occur for high-barrier configurations that 

should be unimportant. Inclusion of nonadiabatic transitions 

corrects this deficiency in a consistent way, even in situations 

such as the present one that exhibit regions of both adiabatic 

and nonadiabatic behavior. 

III. DISCUSSION 

This paper presents an initial demonstration of the feasi

bility of the application of MDQT to proton transfer reac

tions in solution. In order to implement this approach, we 

developed several new numerical methods, which were dis

cussed in the previous section. For example, we developed a 

method for using multiple time steps so that the complex 

coefficients (which determine the populations of the states) 
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can be integrated with a smaller time step than the classical 

equations of motion. This allows a larger time step to be used 

for integration of the classical equations of motion through

out the simulation, which is important in order for these 

simulations to be computationally feasible. We also devel

oped efficient numerical methods for calculation of the nona

diabatic coupling, the probability of hopping from one state 

to another, the nonadiabatic coupling vector, and the appro

priate adjustment to the velocities after a hop to conserve 

energy. 

We applied all of these new methods to a particular 

model of proton transfer in solution. The results of our simu

lations appear reasonable in that including quantum transi

tions decreases the rate constant, as expected when tunneling 

is not instantaneous. Moreover, when quantum transitions are 

included, replacing hydrogen with deuterium decreases the 

rate constant, as expected since tunneling of deuterium is 

slower, i.e., the deuterium energy levels are closer together 

so the probability of quantum transitions is larger. We per

formed the simulations including both two and four quantum 

states in order to emphasize the computational ease with 

which more than two states can be included. For this model, 

however, we found that two states were adequate to describe 

the dynamics. Furthermore, our results show that nonadia

batic effects are not very important for this model at this 

temperature, although the effects are more significant for 

deuterium than for hydrogen. Nonadiabatic effects will typi

cally be more important for problems with large barriers (and 

thus smaller splittings) and low temperatures. In these cases, 

the rates of proton transfer will be much slower, so our direct 

method of calculating the rate constants will be computation

ally infeasible. Instead, methods for infrequent events, such 

as umbrella sampling3 or constrained reaction coordinate 

'dynamics,42 must be used in conjunction with MDQT to 

study such systems. 

There are two main limitations of the method presented 

in this paper. The first is that the time step must be large 

enough so that simulations of the proton transfer process are 

computationally feasible. In general, the time step for mo

lecular dynamics simulations must be chosen small enough 

to accommodate the fastest degree of freedom. For a classi

cal simulation of proton transfer, this degree of freedom is 

the vibration of the proton, and a very small time step must 

be chosen. For an adiabatic quantum mechanical simulation, 

a larger time step can be chosen. For a nonadiabatic quantum 

mechanical simulation, however, the complex coefficients 

must be integrated in parallel with the classical equations of 

motion, and the phase factor of the complex coefficients os

cillates with a frequency similar to that of the classical vi

bration of the proton. Thus this requires a time step as small 

as that required for classical simulations of proton transfer. 

Since the complex coefficients need to be integrated only in 

the regions of strong non adiabatic coupling, however, the 

time step can be as large as that for adiabatic quantum me

chanical simulations during the majority of the simulation, as 

long as the time step is decreased in the regions of strong 

nonadiabatic coupling. Moreover, for the simulations pre

sented in this paper, we implemented a mUltiple time step 

scheme that allowed us to use a large time step throughout 

the simulations. The second limitation of this method is that 

the number of states (and the associated number of basis 

functions) included must be small enough so that the calcu

lation of the quantum mechanical energies and wave func

tions is computationally feasible. For the model studied in 

this paper, we showed that including only the two lowest 

states was adequate, and we found that the quantum me

chanical part of the simulation was much faster than the cal

culation of the classical forces. Overall, the MDQT calcula

tion proved far less time consuming in this case than a full 

classical mechanical simulation of the same system in which 

the time step was dictated by the hydrogen vibration. 

The Azzouz-Borgis model we employed for this study 

was chosen, in part, because the quantum mechanics is 

simple; the hydrogen atom moves only in one dimension 

along the line of centers of the A and B groups. In other 

applications it may be necessary to treat all three hydrogen 

degrees of freedom quantum mechanically. This will signifi

cantly increase the computational effort for calculating the 

quantum mechanical energies and wave functions. As shown 

by Laria et aI., 18 however, this may still be computationally 

quite feasible. It is also likely that a three-dimensional quan

tum particle will require inclusion of many quantum states in 

the MDQT simulation, but this is straightforward and com

putationally tractable. 

The method presented in this paper has a combination of 

attributes that makes it advantageous over existing methods. 

It enables proton transfer in solution to be simulated using 

full molecular dynamics for a large number of classical de

grees of freedom while treating a small number of degrees of 

freedom (i.e., the hydrogen motion) quantum mechanically. 

The quantum mechanical and classical degrees of freedom 

are treated self-consistently, with no ad hoc tunneling correc

tions imposed. Quantum mechanical phenomena such as 

zero-point motion, tunneling, and isotope effects are incor

porated into the full-scale molecular dynamics simulations. 

Since this method is not perturbative, trajectories can be con

tinued after the barrier is crossed. Moreover, this method can 

be used in both adiabatic and diabatic limits, as well as in the 

intermediate regime, with no prior assumptions about which 

regime is applicable. This is particularly important for proton 

transfer, since the barrier height depends on the separation of 

the donor and acceptor so a single system can display both 

adiabatic and nonadiabatic behavior in different regions of 

configuration space. Finally, this method can easily be ex

tended to include more than two states, so it can be applied 

to a wide range of processes, such as photoassisted tunneling 

and vibrational relaxation. 
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