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Protoporphyrin IX is a dual inhibitor of p53/
MDM2 and p53/MDM4 interactions and
induces apoptosis in B-cell chronic
lymphocytic leukemia cells
Liren Jiang 1,2,3, Natasha Malik 1, Pilar Acedo 1 and Joanna Zawacka-Pankau1

Abstract

p53 is a tumor suppressor, which belongs to the p53 family of proteins. The family consists of p53, p63 and p73

proteins, which share similar structure and function. Activation of wild-type p53 or TAp73 in tumors leads to tumor

regression, and small molecules restoring the p53 pathway are in clinical development. Protoporphyrin IX (PpIX), a

metabolite of aminolevulinic acid, is a clinically approved drug applied in photodynamic diagnosis and therapy. PpIX

induces p53-dependent and TAp73-dependent apoptosis and inhibits TAp73/MDM2 and TAp73/MDM4 interactions.

Here we demonstrate that PpIX is a dual inhibitor of p53/MDM2 and p53/MDM4 interactions and activates apoptosis

in B-cell chronic lymphocytic leukemia cells without illumination and without affecting normal cells. PpIX stabilizes p53

and TAp73 proteins, induces p53-downstream apoptotic targets and provokes cancer cell death at doses non-toxic to

normal cells. Our findings open up new opportunities for repurposing PpIX for treating lymphoblastic leukemia with

wild-type TP53.

Introduction

B-cell chronic lymphocytic leukemia (CLL) is one of the
most common forms of blood cancers1,2. The incidence of
CLL in the western world is 4.2/100 000 per year. In
patients over the age of 80 years, the incidence increases
to greater than 30/100 000 per year. CLL develops mostly
in patients above the age of 72 years old which is linked to
poor prognosis3.
In Sweden, and worldwide, males show a higher pre-

valence of lymphoid and hematological tissue cancers

than women and leukemia incidence in both genders
increases above the age of 554.
Common chromosomal aberrations in CLL include

deletions of 13q14, trisomy 12, 11q23, and 17p13 dele-
tions or mutations5. Deletions of 17p13 and 11q23 affect
p53 pathway and are linked with poor prognosis and
acclerated disease progression6. Recent studies point to
the positive outcome of the Bcl-2 inhibitor venetoclax in
handling 17p-deleted relapsed/refractory CLL7. The
clinical trial for the treatment of näive CLL in elderly
patients shows a promise for Ibrutinib, a Bruton’s tyrosine
kinase (BTK) inhibitor8. However, the development of
resistance to targeted therapies poses significant ther-
apeutic constraints.
Introduction of new compounds into clinical practice

is both, time constraining and a financial endeavor,
which more often than not is subject to failure.
Drug repurposing brings a selective advantage to the
field of drug discovery as it is easier and more cost-
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effective to authorize the approved drug for a new
indication9.
Protoporphyrin IX (PpIX) is a natural precursor of

heme and a metabolite of aminolevulinic acid, a drug
clinically used in photodynamic therapy and diagnosis10.
In drug repurposing approach PpIX was identified as an
activator of p53 and TAp73α tumor suppressors. Recent
work demonstrates that PpIX inhibits TAp73/MDM2
and TAp73/MDM4 interactions, which leads to stabili-
zation of TAp73 protein and induction of TAp73-
dependent apoptosis in cancers with TP53 gene
mutations11,12.
The tumor suppressor p53 is inactivated in the majority

of tumors by mutations occurring in the TP53 gene
(http://p53.iarc.fr/). In cancers retaining intact TP53 gene,
p53 protein is targeted for degradation by the deregulated
E3 ubiquitin ligase MDM2. In addition, MDM2 homolog,
MDM4 protein binds p53 and inhibits its transcription
activity13–15.
Activation of wild-type (wt) p53 is a promising ther-

apeutic strategy, and the compounds inhibiting oncogenic
MDM2 or modulating p53 post-translational modifica-
tions are currently in the clinical development16. How-
ever, due to systemic toxicity, highly selective inhibitors of
p53/MDM2 interactions including analogs of nutlin, MI,
or RG compounds, have not been approved yet17,18. Even
though the advancement in the field, these compounds
cannot inhibit MDM4 protein and are thus inefficient in
targeting tumors that overexpress MDM4 oncogene such
as cutaneous melanomas19.
p73 is a tumor suppressor and induces apoptosis and

tumor regression in a p53-independent manner20–22.
TP73 gene is rarely mutated in cancers and p73 protein is
often inactivated by binding to oncogenic partners
including MDM2, MDM4, ΔNp73, or mutant p5323.
Strategies aiming at targeted activation of p73 in cancer
are, however, at a very early stage of development.
Here, we applied a fluorescent two-hybrid assay and a

yeast-based reporter assay and showed that PpIX inhibits
p53/MDM2 and p53/MDM4 interactions. Next, analysis
in cancer cells revealed that PpIX induces p53-dependent
apoptosis in CLL cells. We demonstrate that PpIX triggers
accumulation of p53 and TAp73 and activates cell death
at doses not affecting healthy peripheral blood mono-
nuclear cells (PBMCs).

Materials and methods

Reagents and cell lines

PpIX and nutlin were purchased from Sigma-Aldrich
(Munich, Germany) and re-constituted in 100% DMSO
(Sigma-Aldrich, Munich, Germany) to 2 mg/ml or
10mM, respectively. PpIX was stored in amber eppendorf
tubes at room temperature and nutlin was aliquoted and
stored at −20 °C. RITA was purchased from Calbiochem

(Solna, Sweden) reconstituted in 100% DMSO to 0.1M,
aliquoted and stored at −20 °C.
Cisplatin (CDDP) (Sigma-Aldrich, Munich, Germany)

was prepared in 0.9% NaCl solution to 1mM, protected
from light and stored at −20 °C. MG132 was from Sigma-
Aldrich (Munich, Germany) reconstituted in 100% DMSO
to 10mM and stored at −20 °C. IgG and protein A
agarose beads were from Santa Cruz Biotechnology
(Solna, Sweden), protease inhibitors were prepared from
tablets cOmplete® Roche to 100× concentration (Sigma-
Aldrich, Munich, Germany), MTT was from Sigma-
Aldrich (Munich, Germany).
Rabbit polyclonal anti-MDMX was from Imgenex

(Cambridge, UK), rabbit polyclonal anti-TAp73 (A300-
126A) (Bethyl Laboratories, TX, USA), anti-PUMA
(ABC158; Merck, MA, USA), anti-BAX (N-20; Santa
Cruz Biotechnology, Germany), anti-BID (FL-195;
Santa Cruz Biotechnology, TX, USA), anti-PARP
(F-2; Santa Cruz Biotechnology), anti-β-ACTIN
(A2228; Sigma-Aldrich), normal mouse IgG (sc-2025)
were from Santa Cruz Biotechnology. Anti-mouse HRP
and anti-rabbit HRP secondary antibodies were from
(Jackson ImmunoResearch Inc., Ely, UK) Reverse
transcription iScript cDNA synthesis kit and SSo
Advanced Universal SYBR Green kit were from Bio-
Rad (Solna, Sweden)24.

Cell lines

EHEB (wt-p53) chronic B cell leukemia cells were kindly
provided by Dr. Anders Österborg, Karolinska Institutet
(source ATCC). HL-60 (p53-null) acute promyelocytic
leukemia cell lines were provided by Dr. Sören Lehmann,
Karolinska Institutet (source ATCC). PBMCs were pro-
vided by Dr. Noemi Nagy, Karolinska Institutet and
separated as described previously25. HCT 116 cells were a
kind gift from Dr. Bert Vogelstein, The Johns Hopkins
University School of Medicine26.
Leukemic cells and PBMCs were cultured in RPMI-

1640 (Roswell Park Memorial Institute) medium (Sigma-
Aldrich, Munich, Germany) and HCT 116 cells in DMEM
medium with 10% fetal calf serum (Sigma-Aldrich) and
penicillin/streptomycin (10 units/ml) (Sigma-Aldrich) at
37 °C in a humidified 5% CO2/95% air atmosphere.

Cell viability assay

The viability of EHEB, HL60 and PBMCs after 72-hour
treatment with PpIX was assessed by the 3-(4,5-dime-
thylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT)
assay according to manufacturer’s protocol. Briefly,
5 mg/ml MTT solution was prepared in PBS buffer and
filter-sterilized. Cells were washed once with RPMI-1640
medium and 1 × 105 cells/ml were transferred to eppen-
dorf tubes and treated with 0.5% DMSO or the investi-
gated compounds. Next, cells were seeded onto 96-well
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plates at the density of 1 × 104 cells/well and incubated for
72 h at 37 °C. After this time, MTT reagent was added to
each well to a final concentration of 10% and the
plates were incubated for 3 h at 37 °C in a humidified
5% CO2/95% air atmosphere. The supernatant was
removed and 200 μl DMSO/well was added. The plates
were incubated at 37 °C for 30min and the absorbance of
the formazan was measured at 560 nm in a Perkin-Elmer
(Waltham, MA, USA) microplate reader.
Untreated EHEB cells, RPMI 1640 medium and RPMI

1640 medium with 20 μg/ml PpIX were used as back-
ground controls. The experiments were performed in
triplicates and in at least three independent repeats.

Immunoprecipitation and western blot

Immunoprecipitation was performed using a modified
protocol described previously27. Briefly, HCT 116 cells
were seeded in 10 cm dish at 4 × 106 cells, allowed to
adhere overnight and treated with the compounds for
8 h followed by 3 h with 20 μM MG132. Cells were
washed 2× with ice-cold PBS and solubilized in IP
buffer: 25 mM Tris-HCl, pH 8.0, 150 mM NaCl, and
0.5% Nonidet P-40 supplemented with protease inhi-
bitors and lyzed on ice for 30 min and 1 mg of total
protein in IP buffer was added to 30 μl mouse protein A
agarose beads and 1 μg mouse anti-p53 DO-1 antibody
or 1 μg normal mouse IgG and immunoprecipitated
for 16 h at 4 °C. The beads were washed three times
with buffer 1 (50 mM Tris-HCl, pH 7.5, 5 mM EDTA,
500 mM NaCl, and 0.5% Nonidet P-40) and one time
with buffer 2 (50 mM Tris-HCl pH 7.5, 5 mM EDTA,
150 mM NaCl). The beads were resuspended in 15 μl of
lysis buffer and 5 μl of 5× Laemmli buffer and boiled
prior to western blot analysis.
For western blot, total proteins were transferred to

HyBond membrane (GE healthcare), blocked with 5%
milk in PBS for 20min and incubated with the relevant
antibodies. After washing in PBS membranes were incu-
bated with secondary antibodies (1:3000 in 5% milk) for 2
h at room temperature. The protein signals were
detected using Super Signal West Dura Extended Dura-
tion Substrate (Bio-Rad, Solna, Sweden) and ChemiDoc
(Bio-Rad).
PBMCs were cultured in RPMI 1640 supplemented with

10% fetal calf serum and penicillin/streptomycin
(10 units/ml) without supplementation with growth
factors at 37 °C for three days before treatment with
compounds.

Quantitative PCR

Quantitative PCR was performed as described pre-
viously24,28. Briefly, cells were treated with 2.5 μg/ml PpIX
for 8 h. qPCR was performed using following primers
pairs:

Gene Forward primer 5′-3′ Reverse primer 5′-3′

GAPDH TCATTTCCTGGTATGACAACG ATGTGGGCCATGAGGT

PUMA CTCAACGCACAGTACGAG GTCCCATGAGATTGTACAG

HMOX-1 TTCACCTTCCCCAACATTGC TATCACCCTCTGCCTGACTG

BAX GCTGTTGGGCTGGATCCAAG TCAGCCCATCTTCTTCCAGA

Fluorescence activated cell sorting (FACS)

Cells were cultured in 6-well plates with 8 × 105 (K562
and HL60) and 1 × 106 PBMC cells and 2 ml media/well
and treated with the compounds. Propidium iodide (PI)
and FITC-Annexin V (both from BD Biosciences, CA,
USA) staining was performed according to the manu-
facturer’s protocols. For PBMCs, cells were washed and
fixed with 500 μl ice-cold 70% ethanol and stored at 4 °C.
Next, cells were washed and stained in 300 μl PI solution
for 30 min. Cells were then centrifuged at 300g for 5 min
and supernatant was removed and re-suspended in 200 μl
PBS. FACS was carried out using the CELLQuest software
(CELLQuest, NJ, USA) as described previously29.

Yeast-based reporter assay

The yeast-based functional assay was conducted as
previously described30. Briefly, the p53-dependent yeast
reporter strain yLFM-PUMA containing the luciferase
cDNA cloned at the ADE2 locus and expressed under the
control of PUMA promoter31 was transfected with pTSG-
p5332, pRB-MDM2 (generously provided by Dr. R.
Brachmann, University of California, Irvine, CA, USA), or
pTSG-p53 S33/37 mutant and selected on double drop-
out media for TRP1 and HIS3. Luciferase activity was
measured 16 h after the shift to galactose-containing
media31 upon the addition of 2 and 10 μg/ml PpIX or 10
or 50 μM nutlin (Alexis Biochemicals, Sant Diego, CA,
USA), or DMSO. Presented are average relative light units
and the standard errors obtained from three independent
experiments each containing five biological repeats.

F2H®-analysis

The assay was developed and performed as described
previously33,34. Briefly, F2H®-analysis (ChromoTek
GmbH, Planneg-Martinsried, Germany) was carried out
to assess PpIX ability to disrupt p53/MDM2 and p53/
MDM4 interactions in U2OS cells, when MDM2 or
MDM4 was tethered in the nucleus. U2OS cells were co-
transfected with LacI-GFP-MDM2 or MDM4 and RFP-
p53 for 8 h and then incubated with 1 or 10 μM of PpIX or
nutlin for 16 h. Control interaction values in each inde-
pendent experiment are normalized to 100%. Averaged
interaction values for the treated cells were plotted for
p53/MDM2 and p53/MDM4 interactions on the graph.
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Data is presented as mean ± s.e.m., n= 6, PpIX—p < 0.01,
nutlin—p < 0.001, Student’s t-test.

Results

PpIX ablates p53/MDM2 and p53/MDM4 interaction

It has been previously shown that PpIX inhibits p53/
MDM2 interactions, induces p53-dependent reporter and
apoptosis in human cancer cells expressing wild-type
p5335,36. Furthermore, PpIX was described to inhibit
TAp73/MDM2 and TAp73/MDM4 interactions and to
activate the TAp73-dependent apoptosis in cancer cells
harboring mutant TP53 gene12,28. The mechanism of
inhibition of protein-protein interactions (PPIs) is via
binding of PpIX to the N-terminus of TAp7336. Thus,
here, we strived to investigate if PpIX, which unlike nutlin,
binds to the N-terminus of p5336 and not to MDM2, is
also capable of inhibiting the interaction between p53 and
MDM4. We engaged the Fluorescent Two-Hybrid (F2H®)
analysis performed by ChromoTek GmbH in which the
GFP-labeled MDM2 or MDM4 proteins (LacI-GFP-
MDM2 or MDM4) were tethered at the nucleus of U2OS
cells and examined for the localization of the exogenously
expressed RFP-labeled p53 protein before and after drug
treatment for 16 h. The data were analysed using fluor-
escent imaging as described previously34. We observed an
inhibitory effect of 10 μM PpIX on both interactions—
p53/MDM2 and p53/MDM4. Interaction values dropped
from 100% in untreated cells down to 61 ± 8% for p53/
MDM2 (mean ± s.e.m, Student’s t-test, p < 0.01, n= 6)
and 79 ± 5% for p53/MDM4 (p < 0.05, n= 6). For com-
parison, the reference compound, 10 μM nutlin-3,
induced a similar reduction of the p53/MDM2 interaction
(down to 60%), along with reductions of the p53/MDM2
interactions at a lower dose of 1 µM (p < 0.001, Student’s
t-test, n= 6). Nutlin-3 did not disrupt the p53/MDM4
interaction (Fig. 1a).
Next, to determine that the inhibition of p53/MDM2

and p53/MDM4 complexes by PpIX is due to the direct
interaction between the compound and p53 and not due
to post-translational modifications in the p53 protein, we
employed a yeast-based reporter assay which allows
measuring the transcription activity of human p53 using
p53-dependent luciferase reporter11,30. Since p53 is not
degraded by the exogenous human MDM2 or MDM4 in
yeast cells, the inhibitory effect of MDM2 in this system
can be ascribed to the direct interaction with p53 and the
interference with the p53-dependent gene transcription37.
Co-transfection of MDM2 inhibited the activity of p53 as
expressed by the drop from 100 relative light units for p53
itself to 34.02 relative light units in the presence of
MDM2 (Fig. 1b). 2 and 10 μg/ml PpIX rescued the wt-
p53-mediated activation of luciferase expression to 53.42
and 67.39 relative light units, respectively. The effect on
the p53/MDM4 interactions was also significant; PpIX

increased the relative light units from 63.48 to 87.79 and
91.42 at 2 and 10 μg/ml, respectively. The reference
compound, nutlin-3 did not rescue the transcription
activity of p53 in the presence of MDM4 indicating that it
does not inhibit p53/MDM4 interactions.
To determine that PpIX inhibits p53/MDM4 interac-

tions also in cancer cells, we treated HCT 116 human
colon cancer cells with PpIX for 16 h. To stabilize MDM4
that is otherwise driven to degradation by MDM2 released
from the complex with p53 by PpIX, cells were treated
with MG132. Immunoprecipitation with monoclonal
anti-p53 DO-1 antibody was performed, and the mem-
brane was blotted with the polyclonal anti-p53 FL-393.
The results demonstrate that PpIX readily inhibited the
interaction between p53 and MDM4 (Fig. 1c). We
detected unspecific binding of MDM4 to mouse IgG,
however, the signal was much weaker than the one
obtained for the untreated cells (Fig. 1c). Thus the back-
ground binding does not affect the conclusion that PpIX
readily inhibits p53/MDM4 interactions in cancer cells.
From the data presented, F2H® yeast-based reporter

assay and pull down demonstrated that the binding of
PpIX to p53 results in the inhibition of both p53/MDM2
and p53/MDM4 interactions.

PpIX inhibits proliferation and induces apoptosis in B-CLL

leukemia cells

PpIX was shown to induce apoptosis38, p53-dependent,
p73-dependent cell death in several cancer cell lines and
to shrink tumors in vivo11,35. To estimate the cytoxicity of
PpIX in CLL cells, we conducted a 72 h cell viability assay
using the wt-p53 EHEB B-CLL cell line and the p53-null
HL60 acute promyelocytic leukemia cells. 1 μM RITA
(Reactivation of p53 and Induction of tumor cell apop-
tosis) was used for comparison between two compounds
known to activate the p53 pathway. Cisplatin (CDDP) was
used as a reference compound. The viability of EHEB and
HL-60 cells was significantly reduced with the increasing
concentrations of PpIX (Fig. 2a, b). Of note, PpIX did not
inhibit the proliferation of PBMCs at the concentrations
effective in cancer cells (Fig. 2c). Based on the above
and the IC50 values, which are 2.5 μg/ml for EHEB and
2.4 μg/ml for HL60, we next investigated the mechanism
of growth inhibition of cancer cells by PpIX and applied
2.5 μg/ml dose in all further experiments.
To assess the induction of cancer cell death, cells were

treated with PpIX and stained with propidium iodide (PI)
or Annexin V. Compared with untreated control cells,
PpIX-treated EHEB cells showed a significant increase in
the PI positive population (late apoptosis), from 20.73 to
94.45% and in the Annexin V positive population (early
apoptosis), from 21.74 to 39.59% (Fig. 2d) after 24 h. After
48 h treatment with PpIX, the increase in the PI positive
population was from 22.98 to 94.94% and in the Annexin
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V positive population from 32.28 to 52.13% (Fig. 2e). We
did not detect any increase of PBMCs in subG1 phase
after treatment with 5 or 10 μg/ml PpIX, corroborating
the lack of toxicity induction by PpIX in normal cells
(Supplementary Fig. 1a, b). The results in PBMCs corre-
lated with the lack of induction of growth inhibition when
treated with PpIX as assessed by MTT assay suggesting a
redundant role of PpIX in healthy PBMCs (Fig. 2c).

PpIX induces p53- and TAp73-dependent apoptosis in wt-

p53 CLL cells but not in PBMCs

To determine the mechanism of induction of apoptosis
by PpIX in CLL cells, EHEB cells were treated with
2.5 μg/ml PpIX for 8 h and analysed for the expression of
p53 and TAp73 apoptotic target genes BAX and PUMA by
quantitative PCR (qPCR). Induction of BAX and PUMA on
mRNA levels was detected (Fig. 3a) and this corresponded
to the accumulation of BAX and PUMA protein levels as
assessed by western blots (Fig. 3b, c). As reported pre-
viously, consistently with the induction of BAX and
PUMA, PpIX induced p53 and TAp73 levels in EHEB
cells in a time-dependent and dose-dependent manner
(Fig. 3b, c). Interestingly, p53 accumulated more rapidly
comparing to TAp73, suggesting preferential binding of
PpIX to p53 in EHEB cells (Fig. 3c). Induction of p53
preceded the accumulation of the apoptotic protein BID
and cleaved PARP. In healthy PMBCs, 2.5 μg/ml PpIX
induced p53 levels. However, it did not correlate with the
induction of apoptotic p53 targets PUMA and BID
(Fig. 3d). In cancer cells, in addition to PUMA and BAX,
PpIX induced the expression of heme oxygenase HMOX-1

(Fig. 3a), a stress response gene. This is in agreement with
the previous studies showing that PpIX induces anti-
oxidant response in cancer cells12. PpIX is an inhibitor of
thioredoxin reductase (TrxR), a selenoprotein that plays a
critical role in the oxidoreductase system and is often
overexpressed in cancers. Inhibition of TrxR by PpIX
induces reactive oxygen species (ROS) in cancer cells,
triggers antioxidant response and contributes to cancer
cell death12,39. Thus, we speculate that PpIX induces p53-
and TAp73- dependent apoptosis and ROS in B-CLL cells
without affecting non-transformed cells. The putative
mechanism of leukemia cell death is via stabilization of
p53 and TAp73 resulting from the inhibition of their
interactions with oncogenic MDM2 and MDM4, the
parallel accumulation of ROS resulting from inhibition of
TrxR and induction of potent apoptosis (Fig. 3e).

Discussion

Genetic or pharmacological restoration of wt-p53
activity leads to regression of tumors in vivo40–42. Sev-
eral therapeutic strategies have been developed to activate
the p53 protein in tumors depending on the TP53 gene
status. Thus, in cancers, harboring missense TP53 gene

mutations, small molecules belonging to the group of
Michael acceptors that target reactive cysteine groups in
the p53 core domain were found to be highly effective.
These compounds refold mutant p53 protein to wild-type
like conformation and induce p53-dependent apoptosis
both in cancer cells in vitro and in vivo43–46. The most
promising compound, a small molecule APR-246, a pro-
drug converted to methylene quinuclidinone (MQ) is
currently tested in Phase II trial in TP53-mutated high-
grade serous ovarian cancer in combination with carbo-
platin and pegylated liposomal doxorubicin hydrochloride
(PLD) (Clinical trial identifier: NCT02098343).
In cancers expressing wt-p53 protein, p53 pathway is

often inhibited by the protein–protein interactions.
MDM2 protein is a major E3 ubiquitin ligase of p53,
which binds to p53 in the absence of cellular stress. The
binding is via the N-terminal transactivation domain of
p53 and the central domain of MDM2, inhibits p53
transcription activity and drives p53 to ubiquitin-
dependent degradation. In addition, MDM2 promotes
its self-degradation as well as of its homolog, MDM4
protein. MDM4, unlike MDM2, does not degrade p53 but
binds to p53 N-terminus and inhibits its transcription
activity. MDM2 and MDM4 are often overexpressed in
cancers and therefore serve as promising therapeutic
targets19,42,47. A large data of evidence shows that small-
molecule antagonists of MDM2 restore the activity of wt-
p53 in cells and thus are promising candidates for
improved therapy of wt-TP53 cancers.
Several compounds that bind to MDM2 and inhibit

p53/MDM2 interactions are in pre-clinical and clinical
development48–50. However, the high-affinity inhibitors of
MDM2 might not be applicable in the clinical practice
due to the development of resistant mutations. A recent
study showed that prolonged exposure of wt-p53 har-
boring cancer cells to RG7388 (idasanutlin) leads to
the development of resistant mutations in the TP53

gene51. Several clinical studies with a small molecule
MDM2 inhibitor, AMG-232, which binds with picomolar
affinity to MDM252 are on-going; however, the
compound is not approved yet and targets only MDM2
oncoprotein, without displaying an inhibitory effect
towards MDM4.
Studies have shown that PpIX, induces apoptosis in

cancer cells, binds to p53 and TAp73 and induces p53-
downstream apoptotic genes11,35,36. Cancer cells harbor-
ing wt-TP53 gene, undergo cell death via a p53-dependent
mechanism as PpIX inhibits p53/MDM2 complexes
which leads to p53 stabilization and a subsequent
induction of apoptosis35. Next, PpIX inhibits TAp73/
MDM2 and TAp73/MDM4 interactions, which induces
TAp73 accumulation and TAp73-dependent apoptosis in
cancers with TP53 gene deletions or mutations12,28. This
is in agreement with previous studies showing that colon
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cancer cells harboring wt-TP53 gene are more sensitive to
photodynamic therapy with Photofrin®, a derivative of
hematoporphyrin and, a close structural analog of PpIX53.
Based on the above and our observations, we speculated
that the pre-treatment of cancer cells with porphyrin-like
photosensitizers activates the p53 pathway via
p53 stabilization which sensitizes cancer cells to photo-
dynamic reaction induced by light matching the

absorption spectrum of the compound. Here we show,
using fluorescent two-hybrid technology, yeast-based p53
reporter assay and pull-down, that PpIX inhibits p53/
MDM2 and p53/MDM4 interactions. Thus, PpIX, which
unlike nutlin binds to p53 and not to MDM2, is a novel
dual inhibitor of p53/MDM2 and p53/MDM4 interac-
tions. It is particularly interesting since it has been
demonstrated that the combined inhibition of MDM2 and
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MDM4 led to the enhanced p53 response and tumor
regression in virus-positive Merkel cell carcinoma54.
Previous studies showed that PpIX induces apoptosis in

human lung and pancreatic cancer cells by activating
TAp73. However, the potency of the compound against
hematological tissue cancers has not been tested. We
applied B-CLL cell line EHEB, harboring wt-TP53 gene
and showed the induction of apoptosis by PpIX at con-
centrations that have no effect on healthy PBMCs. The
p53-null HL60 cells were also sensitive at the tested doses;
however, the induction of apoptosis has not been
unequivocally studied. Real-time PCR and western blot
analysis revealed that PpIX induces expression of p53-
downstream apoptotic PUMA and BAX. This was in
agreement with simultaneous induction of p53 and
TAp73 levels and accumulation of cleaved PARP. Thus,
we conclude that PpIX stabilizes both p53 and TAp73 by
targeting their interaction with oncogenic MDM2 and
MDM4. In addition, induction of HMOX-1 stress
response gene, suggests induction of ROS in EHEB cells.
We, alongside others, showed that PpIX is an inhibitor of
thioredoxin reductase, a key enzyme of the thioredoxin
antioxidant defense system12,39,55. Inhibition of TrxR
leads to induction of ROS, thus we speculate that PpIX
induces HMOX-1 in EHEB cells by activating stress
response pathway due to inhibition of TrxR. Of note,
several p53 targeting compounds have already been
shown to inhibit TrxR which resulted in potent cancer
cells eradication56,57. Thus, simultaneous targeting of
cancer cell vulnerabilities by PpIX; namely, inactive tumor
suppressors and oncogenic TrxR might bring a selective
advantage over compounds already in clinical develop-
ment. This is due to the fact that targeting several
apoptosis-promoting pathways by PpIX might drastically
reduce the risk of development of treatment resistance, as
evidenced for the approved targeted therapies. Next, it has
become apparent from our study that PpIX does not
induce apoptosis in healthy PBMCs. Even though p53 was
upregulated after 24 h, we did not detect accumulation of
apoptotic proteins PUMA and BID. This was in agree-
ment with the lack of growth inhibition of PBMCs by
PpIX as assessed by the MTT assay. Taken together,
PpIX, unlike approved modalities, might have very little
effect on healthy bone marrow cells, making the com-
pound particularly attractive for the management of
pediatric and elderly blood cancers. The best clinical
outcome in the management of leukemia is achieved in
patients undergoing haematopoietic stem cell transplan-
tation (HSCT). However, conditioning with busulfan
alone or in combination with other myeloablative drugs is
aggressive58, has a low therapeutic window and despite
good protective effects of N-acetyl-l-cysteine (NAC)59 the
side effects, particularly in older patients, result in low
survival rates. In addition, busulfan has been

demonstrated to affect fertility in female survivors of
childhood cancers60. Infants and very young children
undergoing haematopoietic stem cells transplantation
(HSCT) are a vulnerable group of patients and are parti-
cularly sensitive to HSCT-related morbidities61. More-
over, late cardio-toxicities of anthracycline and
anthraquinone frequently used in HSCT is often a sig-
nificant health burden in childhood cancer survivors62.
Thus, new treatment strategies are needed to treat
pediatric leukemia patients.
PM2, a stapled peptide that binds to MDM2 and

MDM4 and stabilizes p53 has been recently described63

and a small molecule, LEM2, inhibiting both TAp73/
MDM2 and TAp73/MDM4 interactions has been dis-
covered in a yeast-based reporter assay64. However, in
comparison to PpIX, the capacity of these compounds
to activate both p53 and TAp73 has not been unequi-
vocally tested.
The exact mechanism of how PpIX inhibits p53 and p73

interactions with MDM2 and MDM4 remains to be elu-
cidated. We speculate that by binding to p53 or p73 N-
terminus, PpIX might alter the conformation of the α-
helix spanning the MDM2 binding residues F19, W23,
and L26, which might in turn prevent the interaction
between p53/MDM2 and p53/MDM4.
Summing up, our study demonstrates that PpIX is a

potent activator of p53 and TAp73 in B-CLL. Our find-
ings might speed up repurposing of PpIX in treating
cancers containing wt-p53 and TAp73 and with high
expression of MDM2 and MDM4 oncogenes.
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