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ABSTRACT

Context. Theoretical studies of collapsing clouds have found that even a relatively weak magnetic field may prevent the formation of
disks and their fragmentation. However, most previous studies have been limited to cases where the magnetic field and the rotation
axis of the cloud are aligned.
Aims. We study the transport of angular momentum, and its effects on disk formation, for non-aligned initial configurations and a
range of magnetic intensities.
Methods. We perform three-dimensional, adaptive mesh, numerical simulations of magnetically supercritical collapsing dense cores
using the magneto-hydrodynamic code Ramses. We compute the contributions of all the relevant processes transporting angular
momentum, in both the envelope and the region of the disk. We clearly define centrifugally supported disks and thoroughly study
their properties.
Results. At variance with earlier analyses, we show that the transport of angular momentum acts less efficiently in collapsing cores
with non-aligned rotation and magnetic field. Analytically, this result can be understood by taking into account the bending of field
lines occurring during the gravitational collapse. For the transport of angular momentum, we conclude that magnetic braking in the
mean direction of the magnetic field tends to dominate over both the gravitational and outflow transport of angular momentum. We
find that massive disks, containing at least 10% of the initial core mass, can form during the earliest stages of star formation even for
mass-to-flux ratios as small as three to five times the critical value. At higher field intensities, the early formation of massive disks is
prevented.
Conclusions. Given the ubiquity of Class I disks, and because the early formation of massive disks can take place at moderate
magnetic intensities, we speculate that for stronger fields, disks will form later, when most of the envelope will have been accreted.
In addition, we speculate that some observed early massive disks may actually be outflow cavities, mistaken for disks by projection
effects.
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1. Introduction

The formation of protostellar disks plays a central role in the
context of star and planet formation. Protostars probably grow
by accreting material from protostellar accretion disks (Larson
2003), and these disks, at later stages, are the natural progenitors
of planets (Lissauer 1993). While observations of circumstellar
disks around late young stellar objects (YSO), from Class I to
T Tauri stars, are well-established (Watson et al. 2007), it is still
unclear when circumstellar disks form during the early collapse
of prestellar dense cores and the early Class 0 phase, and what
their initial properties are (mass, radius, magnetic flux, and tem-
perature). For these embedded sources, direct observations are
indeed more difficult than for YSOs, since disk emission is diffi-
cult to distinguish from the envelope signature (Belloche et al.
2002), even with a relatively high spatial resolution (50 AU,
Maury et al. 2010). However, other studies observing at lower
resolution (about 250 AU) and without resolving the disks, in-
fer from detailed emission modeling the presence of disks as
massive as one solar mass, corresponding to about 12% of the
envelope mass. Although as stressed by these authors, these

estimates depend on the assumptions made regarding the enve-
lope (Jørgensen et al. 2007, 2009; Enoch et al. 2009, 2011).

From a theoretical point of view, it has been shown that, in
the absence of a magnetic field, disks grow from small radii and
masses by angular momentum conservation during the collapse
of prestellar dense cores (e.g. Terebey et al. 1984).

However, observations infer that cores are magnetized and
typically slightly super-critical (Crutcher 1999), that is to say
the mass-to-flux ratio, M/Φ, is comparable to a few times larger
than its critical value ≃1/(2πG1/2). Theoretically, the presence
of a magnetic field of such intensities has been found to mod-
ify substantially the collapse (Allen et al. 2003; Machida et al.
2005; Fromang et al. 2006) and in particular the formation of
disks. Multidimensional simulations using different numerical
techniques (e.g. grid-based in 2D or 3D (including adaptive
mesh refinement, AMR), smooth particle hydrodynamics, SPH,
codes) have shown that the efficient transport of angular mo-
mentum through magnetic braking may suppress the formation
of a centrifugally supported disk, even at relatively low mag-
netic intensities (µ � 5–10, Mellon & Li 2008; Price & Bate
2007; Hennebelle & Fromang 2008). Similar conclusions were
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reached by Galli et al. (2006), who performed analytical studies
of magnetized collapsing cores.

To illustrate the problem, we can estimate the strength of the
magnetic field, parametrized by µ = (M/Φ)/(1/(2πG1/2)), for
which efficient magnetic braking is expected. We consider the
simple magnetic braking time, τbr, defined as that taken by a tor-
sional Alfvén wave to redistribute angular momentum from the
inner to the outer regions of a cloud. This can be most naturally
expressed as

τbr ∼
Zd

vA
, (1)

where Zd is a characteristic scale-height, vA is the Alfvén speed,
vA = Bz/

√

4πρ, ρ is the characteristic density, and Bz the verti-
cal component of the magnetic field. This magnetic braking time
should be compared to the characteristic rotation time of the cen-
tral region of the cloud, where a disk would form if the braking
were not strong enough. This can be written as

τrot ∼
2πrd

vφ
, (2)

where rd is the disk radius, vφ the Keplerian rotational velocity,
vφ =

√
GM/rd, and the mass M = 2πr2

dZdρ.
The ratio of these two timescales then gives

τbr

τrot
∼
√

2

(

Zd

rd

)1/2 (
Zρ

Bz

G1/2

)

∼ 1
√

2

(

Zd

rd

)1/2
µeff

2π
, (3)

where µeff is an “effective” µ for the dynamically collapsing
structure. In general, µeff is smaller than the initial µ because
only a fraction of the mass contracts along the field line and
should be used in the estimate. We recall that in a disk Zd < rd;
the ratio of times can then be approximated as

τbr

τrot
�
µeff

10
· (4)

This estimate shows that for µeff � 10 magnetic braking should
be sufficiently efficient to remove a significant fraction of an-
gular momentum from the inner region of the cloud, and thus
greatly affect disk formation there.

Recent studies have attempted to avoid this magnetic brak-
ing catastrophe by invoking non-ideal magnetohydrodynamics
(MHD) to effectively remove magnetic flux from the collapsing
core. Ambipolar diffusion appears to be inefficient: by diffusing
the magnetic field out of the central regions, it allows instead
the build up of a strong magnetic field over a small circumstellar
region. In this so-called ambipolar diffusion-induced accretion
shock (Mellon & Li 2009; Li et al. 2011), the magnetic brak-
ing is greatly enhanced and can efficiently prevent the formation
of rotationally supported disks. The effects of Ohmic dissipa-
tion remain uncertain. Krasnopolsky et al. (2010) claim that an
enhanced resistivity of about two to three orders of magnitude
larger than the classical value is required although the physi-
cal origin of such a resistivity remains unclear. However, with
a classical resistivity, Dapp & Basu (2010) and Machida et al.
(2011) find tiny disks of radius the order of a few tens of AU,
which can grow larger at later times. The discrepancies between
these different studies of Ohmic dissipation might be caused by
their different initial conditions. In addition, Santos-Lima et al.
(2011) investigated the effect of turbulence: they argued that an

effective turbulent diffusivity (of the same order of magnitude as
the enhanced resistivity of Krasnopolsky et al. 2010) is sufficient
to remove the magnetic flux excess and decrease the magnetic
braking efficiency.

Most previous simulations have been performed in a some-
what idealized configuration, where the magnetic field and the
rotation axis are initially aligned. As emphasized in Hennebelle
& Ciardi (2009) (see also Price & Bate 2007), the results of
the collapse depend critically on the initial angle α between the
magnetic field B and the rotation axis (which is the direction of
the angular momentum J). In particular, magnetic braking has
been found to be more efficient when the magnetic field is ini-
tially aligned with the rotation axis, rather than when it is not.
This is somewhat at odds with the theoretical conclusions of
Mouschovias & Paleologou (1979), as we discuss in Sect. 3.

Following the previous studies of Hennebelle & Ciardi
(2009) (see also Ciardi & Hennebelle 2010), we investigate in
detail the transport of angular momentum, and the effects of
magnetic braking in collapsing prestellar cores with aligned and
misaligned configurations (α between 0◦ and 90◦).

The plan of the paper is as follows. Section 2 provides a gen-
eral description of a collapsing core. Analytical results describ-
ing magnetic braking are discussed in Sect. 3, where we show
that in a collapsing core where the field lines are strongly bent,
magnetic braking is more efficient when the rotation axis is par-
allel to the direction of the magnetic field, than when it is per-
pendicular. In Sect. 4, we present our numerical setup and initial
conditions. The numerical results are presented in the Sects. 5
and 6, where we focus first on the physical processes transport-
ing angular momentum, and then on the physics and properties
of the disk. Section 7 concludes the paper.

2. Collapse, magnetized pseudo-disks,

and centrifugally supported disks

The gravitationally driven collapse of a magnetized core pro-
ceeds from an initially spherical cloud that tends to flatten
along the magnetic field lines, leading to the formation of an
oblate overdensity, the pseudo-disk. Pseudo-disks are magne-
tized, disk-like structures (Galli & Shu 1993; Li & Shu 1996)
that are not centrifugally supported. Unlike centrifugally sup-
ported disks, they have no characteristic scale and are in a sense
self-similar. In this paper, we emphasize the role of pseudo-disks
as the place within the prestellar core where magnetic brak-
ing takes place. Figure 1 shows a slice in the equatorial plane
(left panel) and along the rotation axis (right panel) of a dense-
core collapse calculation, for µ = 5, α = 45◦. In the following,
we loosely define a pseudo-disk as the structure with a density
n > 107 cm−3, as can be seen in the right panel in Fig. 1. A more
precise definition is given later.

After the isothermal phase of the protostellar core col-
lapse, an adiabatic core (the first Larson’s core) with a density
�1010 cm−3 and a radius of about 10–20 AU forms in the center
of the pseudo-disk. This is the central object in Fig. 1. We do not
treat the formation of the protostar itself.

The subsequent build-up of a centrifugally supported disk
critically depends on the transport of angular momentum in the
cloud. In contrast to pseudo-disks, which again are only ge-
ometrical overdensities, disks are rotationally supported struc-
tures formed around collapsing adiabatic cores. Unlike pseudo-
disks, centrifugally supported disks possess a characteristic
scale, namely the centrifugal radius. We discuss extensively their
formation and properties in the next few sections. In Fig. 1, the
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Fig. 1. Slice in density in the equatorial plane and a plane aligned with the rotation axis for µ = 5, α = 45◦, at t = 24 290 yr. The contours show
levels of density on a logarithmic scale (n > 106, 107, 108, 109 and 1010 cm−3).

disk corresponds roughly to the gas with a density �109 cm−3,
and a typical radius of 100–200 AU (on the left panel).

At the same time, outflows are launched in the direction of
the rotation axis for all angles α � 80◦ (Ciardi & Hennebelle
2010). In Fig. 1, the bipolar outflows are shown with an extent of
about 2000 AU, and also their associated magnetic cavity (with
a density below 106 cm−3, inside the outflows).

The adiabatic core, the disk, and the pseudo-disk are em-
bedded in an envelope, with a density of between 106 cm−3

and 108 cm−3.

3. Analytical study

Before presenting our numerical results, we develop analytical
estimates of the braking timescales for the two extreme cases
of an aligned rotator, where B and J are initially parallel, and a
perpendicular rotator, where B and J are initially perpendicular.
The main result is that, in a collapsing core, magnetic braking is
more efficient for an aligned rotator, and that disks should then
form more easily in perpendicular rotators.

This result contrasts somewhat with the classical analyses
of Mouschovias & Paleologou (1979, 1980), who showed that
in a simple geometry with straight-parallel field lines, magnetic
braking is more efficient for a perpendicular rotator. However, in
a collapsing core, the gravitational pull strongly bends the mag-
netic field lines, which are frozen in the gas, toward the center
of the cloud. As suggested by Mouschovias (1991), the braking
efficiency should then increase. As we show below, using more
realistic assumptions that are appropriate to a collapsing prestel-
lar core, the braking time for a perpendicular rotator is longer
than for an aligned one.

Here we focus on cores, in contrast to the classical work
of Mouschovias & Paleologou (1979), which was applied to
clouds, although it does not modify the analysis.

3.1. Magnetic braking timescales

3.1.1. Aligned rotator (α = 0)

Before investigating the more complex case of a core with
strongly bent field lines, we first recall the classical analysis per-
formed by Mouschovias & Paleologou (1979). The important
point here is that in their analysis the field lines are straight and
parallel. We first consider an aligned rotator consisting of a core
of mass M, density ρc, radius Rc, and half-height Z, surrounded
by an external medium – the envelope – of density ρext. The core
has an initial angular velocity Ω, and the magnetic field B is

B

r
c

r
ext

W

Rc

Z

R0

Fig. 2. Schematic view of a collapsing core in aligned configuration
with field lines that fan-out. B is the magnetic field, Rc the radius of
the core, R0 the initial radius, Z the half-height of the transition region,
ρc the density of the core, and ρext the density of the external medium.

uniform and parallel to the rotation axis. A magnetic braking
timescale, τ‖, can be defined as the time needed for a torsional
Alfvén wave to transfer the initial angular momentum of the core
to the external medium

ρextvA,extτ‖ ∼ ρcZ. (5)

Using the expression for the Alfvén speed in the external
medium, vA,ext = B/

√

4πρext, together with expressions for
the mass of the core, M ∼ 2πρcR

2
cZ, and the magnetic flux

through it, ΦB ∼ πR2
c B, one obtains (Mouschovias 1985)

τ‖ ∼
(

π

ρext

)1/2
M

ΦB

· (6)

This demonstrates in particular that the magnetic braking
timescale depends only on the initial conditions, namely the den-
sity of the external medium, ρext, and M/ΦB, the mass-to-flux
ratio of the core.

3.1.2. Aligned rotator (α = 0) with fanning-out

We now consider an aligned rotator that is contracting and whose
inner part – the core – has a density ρc and a radius Rc. It is
embedded in a medium of density ρext. The magnetic field is
initially uniform. However, upon contraction the field strength
increases, through a transition region (i.e. its envelope), from its
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original value Bext in the external medium, to the compressed
value in the core, Bc (see Fig. 2). Magnetic braking efficiently
slows down the core rotation if this braking sets into co-rotation
an amount of matter in the envelope with a moment of inertia
equal to that of the core. Since the angular momentum in the
envelope must be approximately equal to the momentum of the
core, and assuming a co-rotation of the field lines, we find that

ΩR2
0 πR

2
0 ρextvA,extτ‖, f o ∼ ΩR2

c πR
2
c ρcZ, (7)

where R0 is the initial radius of the flattened core, Z its half-
height, vA,ext the Alfvén speed in the external medium (vA,ext =

Bext/
√

4πρext), and τ‖, f o the magnetic braking timescale for the
aligned configuration. We thus obtain the magnetic braking time
for the case of fan-out, τ‖, f o, which is given by

τ‖, f o =
ρc

ρext

Z

vA,ext

(

Rc

R0

)4

· (8)

This expression is identical to Eq. (5), apart from the coefficient
(Rc/R0)4, whose origin is twofold. First, because the field lines
fan-out, the volume of the external medium swept by the Alfvén
waves increases more rapidly than when the field lines are paral-
lel. This accounts for a factor (Rc/R0)2. Second, as co-rotation of
the field lines is assumed, fluid elements of the external medium
lying along diverging field lines have higher specific angular mo-
mentum than if they were on straight field lines. This accounts
for another factor (Rc/R0)2.

Using again the mass and the magnetic flux of the core,
M ∼ 2πρcR

2
cZ and ΦB ∼ πR2

0Bext = πR
2
c Bc, and the expression

for vA,ext, we can rewrite Eq. (8) as (Mouschovias 1985)

τ‖, f o =

(

π

ρext

)1/2
M

ΦB

(

Rc

R0

)2

· (9)

Therefore, when the field lines fan-out, the magnetic braking
timescale depends not only on ρext and M/ΦB, but also on
the contraction factor of the core Rc/R0. In a collapsing core
Rc ≪ R0, and this geometrical factor can significantly reduce
the characteristic magnetic braking timescale in an aligned rota-
tor, the ratio of timescale being τ‖/τ‖, f o = (R0/Rc)2.

Although this analysis gives a more realistic estimate of the
braking time in a collapsing prestellar core, it is still greatly sim-
plified. In particular, it is assumed that the field lines are imme-
diately set into co-rotation. Because of the collapse, as the waves
propagate outwards, the radius R0 and the density ρext vary con-
tinuously, before reaching approximately constant values.

3.1.3. Perpendicular rotator (α = 90◦) with radially
decreasing Alfvén speed

In the case of a perpendicular rotator, the analysis of
Mouschovias & Paleologou (1979) considers the braking
timescale corresponding to the time needed for Alfvén waves
to reach R⊥, the radius for which the angular momentum of the
external medium is equal to the initial angular momentum of
the core. In this case, Alfvén waves propagate in the equatorial
plane, rather than along the rotation axis, and sweep a cylinder
of half-height Z and radius R⊥, thus

ρext(R
4
⊥ − R4

c) ∼ ρcR4
c . (10)

Assuming further that the magnetic field has a radial depen-
dence, B(r) ∝ r−1, so that vA(r) = vA(Rc) × Rc/r, the perpen-
dicular rotator magnetic braking time is then given by

τ⊥ =

∫ R⊥

Rc

dr

vA(r)
=

1
2

Rc

vA(Rc)

⎡

⎢

⎢

⎢

⎢

⎢

⎣

(

1 +
ρc

ρext

)1/2

− 1

⎤

⎥

⎥

⎥

⎥

⎥

⎦

. (11)

B

r
c

r
ext

W

Rc

Fig. 3. Schematic view of a collapsing core in perpendicular configura-
tion. B is the magnetic field, Rc the radius of the core, ρc the density of
the core, and ρext the density of the external medium.

Using the expressions for the mass, M = 2πρcR
2
cZ, magnetic

flux, ΦB = 4πRcZB(Rc), and Alfvén speed vA(Rc), together with
the approximation ρc ≫ ρext, Eq. (11) becomes

τ⊥ ∼ 2

(

π

ρc

)1/2
M

ΦB

· (12)

3.1.4. Perpendicular rotator (α = 90◦) with constant Alfvén
speed

The expression in Eq. (12) was derived assuming a magnetic
field B(r) ∝ r−1, and consequently an Alfvén speed that de-
creases with radius. However, the field lines are twisted because
of the rotation of the core and are not purely radial. It can easily
be inferred from the divergence-free constraint on the magnetic
field, and from the simulations, that the structure of the magnetic
field is more complex, and is not radial, as shown schematically
in Fig. 3. It is therefore unlikely that the Alfvén speed drops
with radius as 1/r, and collapse calculations indeed show that
the Alfvén speed remains roughly constant in the dense cores
(e.g. Hennebelle et al. 2011). In this case, the braking time is
given by

τ⊥,cvA =

∫ R⊥

Rc

dr

vA
=

R⊥ − Rc

vA

=
Rc

vA

⎡

⎢

⎢

⎢

⎢

⎢

⎣

(

1 +
ρc

ρext

)1/4

− 1

⎤

⎥

⎥

⎥

⎥

⎥

⎦

. (13)

Since ρc/ρext ≫ 1, the braking time then becomes

τ⊥,cvA ∼ 4
√
π
ρ

1/4
ext

ρ
3/4
c

M

ΦB

· (14)

This braking time is shorter than that obtained for a radially de-
creasing Alfvén speed (cf. Eq. (12)), their ratio being

τ⊥

τ⊥,cvA
∼ 1

2

(

ρc

ρext

)1/4

· (15)

3.1.5. Comparison of timescales

In the preceding sections, we have derived four characteristic
magnetic-braking timescales: two for aligned rotators consisting
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of one with straight field lines, τ‖, and one with field lines that
are fanning-out, τ‖, f o, and two for perpendicular rotators, namely
one for a radially decreasing Alfvén speed, τ⊥, and one for a
constant Alfvén speed, τ⊥,cvA . Comparing the braking timescales
given in Eqs. (6) and (12) gives

τ‖

τ⊥
=

1
2

(

ρc

ρext

)1/2

(16)

and since ρc ≫ ρext, this leads to the conclusion that the mag-
netic braking is more efficient in the perpendicular case than the
aligned one (Mouschovias & Paleologou 1979)1. This conclu-
sion may apply to prestellar cores whose density is not centrally
condensed, and for which the fanning-out is weak. It probably
applies to the outer part of the cores, making it quite possible
that during the prestellar phase, before the collapse occurs, mag-
netic field and angular momentum may become, to some extent,
aligned. Owing to the turbulent motions in the ISM, it is not
unlikely however that the cores have a misalignment between
the rotation axis and the magnetic field. But this conclusion that
the magnetic braking is more efficient in the perpendicular con-
figuration does not apply to the internal part of the collapsing
cores where magnetic field lines are strongly squeezed toward
the center.

To be more quantitative, we consider the external medium to
be the core’s envelope, and estimate the average ρext to be a few
times the density of the singular isothermal sphere, ρext(R0) ∝
R−2

0 , and similarly for the core density ρc(Rc) ∝ R−2
c . Using

Eqs. (9) and (12), gives for the ratio of timescales

τ‖, f o

τ⊥
=

Rc

R0
· (17)

Since Rc/R0 ≪ 1, the angular momentum is more efficiently
transferred to the envelope in an aligned rotator than in a per-
pendicular one. This is still so when considering the more realis-
tic case of a perpendicular rotator with a constant Alfvén speed.
Using Eqs. (9) and (14), the ratio of the timescales is

τ‖, f o

τ⊥,cvA
=

(

Rc

R0

)1/2

· (18)

Evidently, the previous conclusion still holds in this case; mag-
netic braking is more efficient in an aligned configuration than in
a perpendicular one, although the difference is smaller. As both
configurations somehow represent extreme cases, we expect our
simulations to have properties that are in-between.

To conclude, there are four magnetic-braking timescales of
interest, which have the following ordering τ‖ > τ⊥ > τ⊥,cvA >
τ‖, f o. The first two inequalities hold in (non-collapsing) prestel-
lar cores, whose density is not centrally condensed and fanning-
out is weak. However, for conditions that are more appropriate
to collapsing prestellar cores, it is the last inequality that is ap-
propriate, and aligned rotators are more efficiently braked than
perpendicular ones.

4. Numerical setup and initial conditions

4.1. Numerical setup

We perform three-dimensional (3D) numerical simulations with
the AMR code Ramses (Teyssier 2002; Fromang et al. 2006).

1 Although R and Z do not appear explicitly in this expression, we
recall that the definitions of the magnetic flux are not the same in both
cases. A more correct expression should include a factor Φ‖/Φ⊥.

Table 1. List of performed calculations.

µ α µ α

17 0 3 0
45 20
90 45

90
5 0 2 0

20 20
45 45
70 80
80 90
90

Ramses can treat ideal MHD problems with self-gravity and
cooling. The magnetic field evolves using the constrained trans-
port method, preserving the nullity of the divergence of the mag-
netic field. The high resolution needed to investigate the problem
is provided by the AMR scheme. Our simulations are performed
using the HLLD solver (Miyoshi & Kusano 2005).

The calculations start with 1283 grid cells. As the collapse
proceeds, new cells are introduced to ensure the Jeans length
with at least ten cells. Altogether, we typically use 8 AMR levels
during the calculation, providing a maximum spatial resolution
of ∼0.5 AU.

4.2. Initial conditions

We consider simple initial conditions consisting of a spherical
cloud of 1 M⊙. The density profile of the initial cloud

ρ =
ρ0

1 + (r/r0)2
,

where ρ0 is the central density and r0 the initial radius of the
spherical cloud is in accordance with observations (André et al.
2000; Belloche et al. 2002). The ratio of the thermal to gravi-
tational energy is about 0.25, whereas the ratio of the rotational
to gravitational energy β is about 0.03. We run 17 simulations.
Various magnetization cases are studied: µ = 2, 3, and 5 (mag-
netized super-critical cloud, in agreement with observations,
as pointed out in the introduction) and 17 (very super-critical
cloud). The angle between the initial magnetic field and the ini-
tial rotation axis α is taken to be between 0 and 90◦. Table 1 lists
all the simulation parameters.

To avoid the formation of a singularity and mimic that at high
density the gas becomes opaque i.e. nearly adiabatic, we use a
barotropic equation of state

P

ρ
= c2

s = c2
s,0

⎡

⎢

⎢

⎢

⎢

⎢

⎣

1 +

(

ρ

ρad

)2/3⎤
⎥

⎥

⎥

⎥

⎥

⎦

,

where ρad is the critical density over which the gas becomes adi-
abatic; we assume that ρad = 10−13 g cm−3. When ρ > ρad, the
adiabatic index γ is therefore equal to 5/3, which corresponds to
an adiabatic mono-atomic gas. At lower density, when the gas is
isothermal, P/ρ is constant, with cs,0 ∼ 0.2 km s−1. The corre-
sponding free-fall time is tff ∼ 12 kyr (for an initial density peak
of about 3 × 10−17 g cm−3).

5. Transport of angular momentum

We analyze in detail the transport of angular momentum in our
numerical simulations.
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(a)

(b)

(c)

(d)

Fig. 4. Evolution of the specific angular momentum 1
M

(∫

ρ>ρc
r × ρu dV

)

for µ = 17 (a)), µ = 5 (b)), µ = 3 (c)), and µ = 2 (d)), for three different

density thresholds ρcr that correspond to: n > 1010 cm−3, n > 109 cm−3, and n > 108 cm−3.

5.1. Temporal evolution

We begin by describing the temporal dependence of the angular
momentum, in particular the specific angular momentum, which
is defined by

J =
1
M

∫

V

r × ρu dV, (19)

where M is the mass contained within the volume V , r the posi-
tion (with respect to the center of mass), ρ the mass density, and u
the velocity. In general, we compute three values of J using three
density thresholds corresponding roughly to the adiabatic core

(n > 1010 cm−3), the disk (n > 109 cm−3), and the densest parts
of the envelope (n > 108 cm−3). These are nested structures:
the adiabatic core is embedded in the structure described by
n > 108 cm−3. Figure 4 displays the norm of the specific angu-
lar momentum |J | for all considered orientations, magnetizations
(µ = 17, 5, 3) and density thresholds (n > 108, 109, 1010 cm−3).
Figure 5 displays |J | for all the density thresholds for µ = 5 and
three different orientations (α = 0, 45, 90◦).

Figure 5 illustrates that, as expected, the angular momen-
tum increases with decreasing densities, which correspond to the
outer regions of the collapsing prestellar core.
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Fig. 5. Evolution of the specific angular momentum 1
M

(∫

ρ>ρcr
r × ρu dV

)

for µ = 5, three orientations (α = 0, 45 and 90◦; respectively left, central

and right panel), and three density thresholds ρcr corresponding to n > 1010 cm−3, n > 109 cm−3, and n > 108 cm−3.

Figure 4 shows that, as matter is continuously accreted, the
angular momentum increases with time, and it is smaller for
larger magnetizations, an indication that magnetic braking is
more efficient in transporting angular momentum from the in-
ner to the outer parts of the prestellar core.

As for the dependence on the angle α, there are several
interesting aspects worth discussing. First of all, for the disk
(n > 109 cm−3) and adiabatic core (n > 1010 cm−3) the angular
momentum increases with α (see Fig. 4). Conversely, magnetic
braking rapidly decreases with α, which is consistent with the
prediction that the magnetic braking timescale for a perpendicu-
lar rotator is longer than for an aligned one (see Sect. 3). For the
disk region, the angular momentum in the perpendicular case is
indeed almost three times larger than in the aligned one (µ = 5).
This proportion decreases with the magnetization: it is a factor of
two when µ = 3, and for µ = 2 the values are comparable, albeit
the angular momentum still increases slightly with the angle α.
Therefore, in misaligned rotators and for intermediate magne-
tizations, more angular momentum will be available to “build”
centrifugally supported disks.

Interestingly for µ = 5 and 3, the angular momentum below
a density of 108 cm−3 is independent of α, which suggests that
its efficient transport only occurs in the highest density regions
(n � 108 cm−3). This corresponds therefore to a “braking re-
gion”. This is no longer true for µ = 2: magnetic braking occurs
earlier, simply because the magnetic field is stronger.

5.2. General considerations

The azimuthal component of the conservation of angular mo-
mentum, in cylindrical coordinates, is the starting point of our
analysis. In conservative form, it is given by

∂t

(

ρrvφ
)

+ ∇ · r
[

ρvφu +

(

P +
B2

8π
− g

2

8πG

)

eφ

−
Bφ

4π
B +

gφ

4πG
g

]

= 0, (20)

where ρ is the density, u the velocity, P the gas pressure, B the
magnetic field, and the gravitational acceleration g = ∇Φ,
where Φ is the gravitational potential. For the sake of complete-
ness, its derivation is detailed in the appendix.

The corresponding fluxes of angular momentum in this equa-
tion are rρvφu for the mass flow, rBφB/4π for the magnetic field,
and rgφg/4π for the gravitational field; they represent the con-
tribution of each of those processes to the transport of angular
momentum. In general, magnetic braking can be efficient in both

the vertical and radial directions. However, the outflows remove
angular momentum mainly in the vertical direction (mass accre-
tion occurs instead in the radial direction, carrying in angular
momentum). The gravitational transport of angular momentum
is most efficient in the radial direction, because of the spiral arms
that develop around the first core.

The pressure terms (P + B2/8π − g2/8πG) do not contribute
significantly to the transport of angular momentum. In the fol-
lowing, to quantify the contribution of each of these processes,
these fluxes are considered and compared one by one. One
should obviously add all these terms to obtain the total angular
momentum transport.

To calculate the fluxes defined above, one needs to define
the main axis of a cylindrical frame of reference. Two different
choices have been made below: we use either the inertia matrix
or simply the rotation axis of the system.

The pseudo-disk is defined as all matter with a particle num-
ber density n > 107 cm−3. We then calculate the inertia matrix
over the volume V of the pseudo-disk as

Ii j =

∫

V

ρrir j dV, (21)

where ρ is the density, and ri the coordinates (with i, j ∈ {1, 2, 3},
so {r1, r2, r3} = {x, y, z}) of a fluid element with respect to the
center of mass. The eigenvectors of this matrix are the axis of
the frame of the pseudo-disk, which we call Rp in what follows.
The z-axis of the frame Rp is defined as the eigenvector associ-
ated with the minimum eigenvalue of the matrix. It corresponds
to the z-axis of the cylindrical coordinates in the following anal-
ysis. As the pseudo-disk is essentially perpendicular to the mag-
netic field, the z-axis of this frame is close to the direction of the
actual B.

The fluxes defined above are then computed on surfaces at
the edge of the pseudo-disk. Annuli are then defined to fit its
surface: we consider a set of one hundred annuli of radius r,
between 0 and R0, height h(r) = r/4, and thickness R0/100,
where R0 is about 1000 AU. The fluxes are computed on the
cells belonging to these annuli.

We note that we also tried to estimate the actual value of h(r),
as a function of radius, although we found that the surface inte-
grated fluxes did not change significantly. In addition, we also
considered a frame whose main axis is the rotation axis of the
pseudo-disk instead of the main axis of the inertia matrix, and
our conclusions remain again qualitatively unchanged.

For the disk, we simply choose for the cylinder axis, the ro-
tation axis of gas denser than 1010 cm−3, which corresponds to
the rotation axis of the core itself. We refer later to this frame
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Fig. 6. Magnetic transport of angular momentum in logarithmic scale, for µ = 5, α = 0◦ (a)), α = 45◦ (b)), and α = 90◦ (c)). a) represents
log(FB

r /M) (left panel) and log(FB
v /M) (right panel) for four time-steps. b) and c) display log((FB

v /M)/(FB
v,0/M0)) and log((FB

r /M)/(FB
r,0/M0))

where FB
v,0/M0 and FB

r,0/M0 correspond to the aligned case, at corresponding timesteps.

as Rd. We define annuli as previously, but restrict the analysis to
a maximum radius of 400 AU since disks are not larger.

The integrated vertical and radial fluxes of angular momen-
tum transported by the magnetic field are then defined as

FB
v (R) =

∣

∣

∣

∣

∣

∣

∫ 2π

0

∫ R

0
r

Bφ(r, φ,±h(r)/2)Bz(r, φ,±h(r)/2)

4π
rdrdφ

∣

∣

∣

∣

∣

∣

,

and

FB
r (R) =

∣

∣

∣

∣

∣

∣

∫ 2π

0

∫ h(R)/2

−h(R)/2
R

Bφ(R, φ, z)Br(R, φ, z)

4π
Rdzdφ

∣

∣

∣

∣

∣

,

where Bi(R, φ, z) ≡ Bi(r = R, φ, z). We note that FB
v is the sum of

the fluxes through the faces defined by h(r)/2 and −h(r)/2. To
compare the various cases and time-steps, it seems appropriate
to consider specific quantities. In the following, we study FB

r /M
and FB

v /M, where M is the mass enclosed in the volume of in-
terest. We do the same for the outflows and the gravity terms.

5.3. Transport of angular momentum in the envelope

We first investigate the transport of angular momentum in the
envelope (see Sect. 2), focusing on the magnetic braking. As
we show below, this is the most efficient means of transport-
ing angular momentum, in particular in the strongly magnetized
clouds. We work here in the frame Rp.

Figure 6(a) shows the evolution of specific radial flux
(FB

r /M) in the left panel, and specific vertical flux (FB
v /M) in

the right panel, at four different time-steps, for µ = 5, α = 0◦.
The two panels of Fig. 6(a) show that the magnetic braking

depends on the radius: it is more efficient in the inner region of
the envelope than in the outer region. In the outer part of the
cloud, both components decrease with the radius r. In particular,
Br and Bφ drastically decrease outside the cavity of the outflows
(see Sect. 2) since the twisting of the magnetic field lines – which
generates both the radial and azimuthal components of the mag-
netic field – occurs essentially inside the cavity of the outflows.
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Figure 6(a) shows that the vertical component of the mag-
netic braking is larger than the radial component (by about one
order of magnitude in the inner part of the envelope). The ratio of
those two components increases with the radius, since the radial
component of the magnetic field is almost zero at large radius.

Figures 6(b) and c display a comparison of the radial (left
panel) and vertical (right panel) components of the magnetic
braking for α = 45◦ and 90◦ with the components in the aligned
case. The left panels of Figs. 6(b) and c show that the magnetic
braking in the radial direction is less efficient in the tilted cases
than in the aligned case in the inner part of the envelope by a
factor ∼2–10 (especially for α = 90◦). The limit of the cavity is
shown by the sharp increase in the ratio (around ≃200 AU for
the first time-step, and ≃500 AU for the later time-step). Outside
the cavity, the ratio increases because Br decreases more dra-
matically in the aligned case than in the misaligned cases; this
is because the radial component vanishes initially in the aligned
case whereas there is an initial Br in the misaligned cases.

The right panels of Figs. 6(b) and c show that magnetic brak-
ing is less efficient in the vertical direction in the tilted cases than
in the aligned case. This is true everywhere by a factor of ∼2–5.
As we see later, the vertical component dominates the transport
of angular momentum by the magnetic field, it clearly shows
that the magnetic braking is more efficient in the aligned case
than in the misaligned cases; this is consistent with our previous
analytical analysis.

5.4. Transport of angular momentum in the disk

In the region of the disk, magnetic braking, outflows, and gravi-
tational torques all contribute to the transport of angular momen-
tum. We here work in the frame Rd.

5.4.1. Comparison between magnetic braking and extraction
by the outflows

Outflows are one of the most important tracers of star formation.
From the very beginning of protostar evolution to the T Tauri
stage, they are thought to be launched by magneto-centrifugal
means (Blandford & Payne 1982; Pudritz & Norman 1983;
Uchida & Shibata 1985), and may play an important role in the
efficient transport of angular momentum (Bacciotti et al. 2002).
The early formation of outflows during the collapse of dense
cores was investigated recently by 2D and 3D MHD simula-
tions (Mellon & Li 2008; Hennebelle & Fromang 2008), and
where the second collapse was included (e.g. Banerjee et al.
2006; Machida et al. 2008).

To study the impact of the outflows on the transport of an-
gular momentum, we begin by comparing the integrated flux of
angular momentum transported by the magnetic field, Fmag, with
that of the outflows, Fout, as a function of time. The respective
integrals are given by

Fmag =

∣

∣

∣

∣

∣

∫

S

r
Bφ

4π
B · dS

∣

∣

∣

∣

∣

, (22)

for the magnetic braking,

Fout =

∣

∣

∣

∣

∣

∫

S

ρrvφu · dS

∣

∣

∣

∣

∣

, u · dS > 0 (23)

for the outflows, and

Fin =

∣

∣

∣

∣

∣

∫

S

ρrvφu · dS

∣

∣

∣

∣

∣

, u · dS < 0 (24)

for the accretion flow.
The integrals are taken over the surface S of a cylinder, cor-

responding approximately to the disk, of radius R ≃ 300 AU and
height h ≃ 150 AU, whose axis is taken to be that of rotation.
As previously, we study the specific quantities Fmag/M, Fout/M,
and Fin/M in the following.

Figure 7 displays the evolution of angular momentum car-
ried away by magnetic braking (left panel), and the outflows
(right panel) for µ = 5, 3, and 2, respectively. More precisely,
the ratio of these quantities to the total mass enclosed in S
is computed. The left panel of Fig. 7 shows that more an-
gular momentum is carried away from the central region of
the collapsing core for relatively small α (below 70◦) than for
larger α (above 70◦). This is the case for all the magnetiza-
tions but is particularly evident for lower µ (Figs. 7(b) and
c). In the right panel of Fig. 7(a), we can see that the angu-
lar momentum carried away by the outflows is comparable to
that transported by the magnetic braking in the aligned case.
When the angle α increases, the amount of angular momen-
tum carried away decreases and in the perpendicular case, the
total angular momentum transported by the flow is about ten
times smaller than in the aligned case. The suppression of the
outflows with increasing α is clearly responsible for this de-
crease. Figures 7(b) and c show that this effect is even stronger,
since the increasing magnetic intensity (i.e. decreasing µ) re-
duces the strength of the outflows. Less and less momentum is
therefore carried away by the outflows with increasing α and
decreasing µ.

Figure 8 displays the ratio of the flux of angular momen-
tum transported outward (by the magnetic field, Fmag, and the
ouflows, Fout) to that transported inward (by the accretion flow,
Fin) for µ = 5. While accretion dominates for α > 45◦, the angu-
lar momentum both accreted and expelled are comparable in the
other cases. This can be understood by recalling that, in steady-
state, Eq. (20) reduces to

∇ · r
[

ρvφu −
Bφ

4π
B

]

= 0, (25)

where the other terms, in particular the gravitional torques, have
been neglected (see discussion in Sect. 5.4.2). The steady-state
condition therefore reduces to Fmag + Fout ∼ Fin, which is ap-
proximately the case for α ≤ 45◦.

To get a deeper understanding of the impact of the flows
on the transport of angular momentum, we look at the spatial
distribution of the fluxes and compute the total flux of angu-
lar momentum transported by outflows and magnetic braking
in concentric cylinders of constant height H. Those cylinders
are oriented along the rotation axis of the core, since the out-
flows are approximately aligned with it. We consider only the
mass expelled from the core (i.e. with a positive vertical veloc-
ity) hence only the vertical component of the flux, since mass is
accreted mostly along the radial direction. Figure 9 displays the
vertical flux of angular momentum transported by the magnetic
field (left panel) and the outflows (right panel), for µ = 5 and
three different angles (0◦, 45◦, and 90◦). The integrated flux of
the angular momentum carried by the magnetic field (left panel
of Figs. 9(a)−c) increases with the radius, until the limit of the
cavity of the outflows (its radius is from about 150 to 200 AU).
There, a local reversal of the magnetic field usually happens,
which provokes a local variation in the integrated flux. Outside
the cavity, Bφ is close to 0, which means that braking no longer
occurs and the integrated flux remains almost constant (the dif-
ferential flux δFmag being close to zero).
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(a)

(b)

(c)

Fig. 7. Evolution of angular momentum transported by the magnetic field and by the outflows within a cylinder of radius 300 AU and height
150 AU, for µ = 5 (a)), µ = 3 (b)), and µ = 2 (c)).

The integrated flux of angular momentum carried by the out-
flows (right panel of Figs. 9(a)–c) similarly increases with the ra-
dius inside the cavity. Outside the cavity, no outflow occurs and
the integrated flux therefore remains almost constant. As pointed
out in Ciardi & Hennebelle (2010), there is almost no outflow
in the perpendicular case (Fig. 9(c)). Thus, almost no angular
momentum (or more precisely one order of magnitude less than
in the aligned case, Fig. 9(a)) is transported by the outflows in
this configuration. A comparison of the two previous integrated
fluxes confirms that magnetic braking is globally more efficient
than the outflows in removing angular momentum from the cen-
tral part of the cloud (within a radius of 100–150 AU, where the
ratio is meaningful).

In the misaligned cases (Figs. 9(b) and c), it is also clear that
magnetic braking dominates in the central part of the cloud.

Fig. 8. Ratio of the flux of angular momentum transported outward
(Fmag +Fout) to the flux of angular momentum transported inward (Fin),
within a cylinder of radius 300 AU and height 150 AU, for µ = 5. The
straight line corresponds to (Fmag + Fout)/Fin = 1.
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(a)

(b)

(c)

Fig. 9. Magnetic transport 1
M

∫

rBφB/4π · dS and transport by the outflows 1
M

∫

rρvφu · dS, µ = 5, α = 0◦ (a)), α = 45◦ (b)), and α = 90◦ (c)).

5.4.2. Gravitational transport of angular momentum

The integrated gravitational flux of angular momentum is
given by

Fr
g =

∣

∣

∣

∣

∣

∣

∫ h/2

−h/2

∫ 2π

0
R
gφ(r = R, z)gr(r = R, z)

4πG
2πRdφdz

∣

∣

∣

∣

∣

∣

. (26)

As for the other fluxes, we compute the specific quantity Fr
g/M.

We focus on the radial component of these angular momen-
tum transport processes because the gravitational transport acts
mostly in the radial direction.

Figures 10 and 11 show a comparison of the magnetic and
gravitational braking in the region of the disk for µ = 2 and
µ = 5. It represents the evolution of the logarithm of the ratio
of their radial components on the surface of cylinders of fixed
height (h = 46 AU) and a radius between 0 and 400 AU. The
height of the cylinder is defined to take into account the whole
gravitational transport in the disk. There is no (or negligible)
gravitational transport above and below the disk and the typical
height of an hydrostatic disk is about 30 AU (see Sect. 6.4); inte-
grating over these cylinders gives the whole gravitational trans-
port in the disk.

The µ = 17 case (Fig. 10) corresponds to a quasi-
hydrodynamic case, where the magnetic field strength is low.

The magnetic braking is less efficient than in higher magnetiza-
tion cases, and in every configuration, a centrifugally supported
disk forms. Therefore, the gravitational transport of angular mo-
mentum is always larger (up to ten times larger) than the mag-
netic transport of angular momentum in the disk (within a ra-
dius of 150 AU). Outside the disk, the gravitational transport is
weaker (10 to 100 times weaker than the magnetic transport).

Since there is no disk in the aligned case for µ = 5,
(Fig. 11(a)), the radial component of the gravitational trans-
port of angular momentum is about 10 to 30 times weaker than
the radial component of the magnetic braking under 150 AU
and around 500 times weaker for larger radii. In the misaligned
cases, for µ = 5 (Figs. 11(b) and c), the gravitational contribu-
tion to the transport of angular momentum gradually increases:
it is 10 times weaker than the magnetic transport for α = 45◦

and of the same order of magnitude to 3 times weaker in the
perpendicular case, for radius r < 100 AU. For r > 100 AU,
for all the misaligned cases the gravitational contribution is be-
tween 10 and 100 weaker than the magnetic one. On the one
hand, the magnetic transport becomes weaker as α increases
and on the other hand, gravity transports momentum more ef-
ficiently in the presence of a disk, owing to density waves (the
spiral arms) that propagate in the radial direction. The grav-
itational transport is nonetheless less efficient because of the
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Fig. 10. Gravitational transport of angular momentum for µ = 17 and
α = 0, 45, and 90◦, at h = 46 AU. It represents the ratio (in logarith-
mic scale) of the radial component of gravitational (Fr

g/M) to magnetic
(Fr

B/M) transports of angular momentum.

symmetry of the disk, which is stabilized by the magnetic field,
as emphasized in Hennebelle & Teyssier (2008); less symmet-
ric disks would transport more momentum by means of grav-
itational torques. The gravitational transport is stronger in the
perpendicular case than in the other misaligned cases because
disks are more massive.

For other magnetizations, these conclusions hold, since with-
out a disk the magnetic braking is the most efficient process of
angular momentum transport, whereas in the presence of a disk,
a significant – although not predominant – fraction of the mo-
mentum can be transported by gravity. In the low magnetized
cases (µ = 17), gravity can transport even more momentum in
the radial direction than the magnetic field.

6. Disk properties

When enough angular momentum is left in the envelope, a disk
can form around the adiabatic core. Here, we first discuss in de-
tail how to define disks, then study some of their properties.

24384 yr

26057 yr

5 0 46

(a)

24348 yr

25975 yr

5 45 4

(b)

24214 yr

26349 yr

9 46

(c)

Fig. 11. Same as Fig. 10 but for µ = 5.

6.1. Disk formation

We work in the frame of the disk Rd (see Sect. 5.2), where the
main axis of the frame is defined by the angular momentum.
Several criteria must be used to define disks. As we show below,
a simple rotation criterion is insufficient to define a disk because
several parts of the envelope are rotating but do not belong to the
disk. For example, defining the disk as all material whose rota-
tion velocity is larger than a few times the infall velocity would
also pick up the walls of the cavity of the outflows, which are
rapidly rotating. A single geometric criterion is also insufficient;
disks are not well-approximated by cylinders. We define disks
by employing a combination of five different criteria. As disks
are expected to be reasonably axisymmetric, these criteria are
defined for concentric and superposed rings in which density,
velocity, pressure, and magnetic field are averaged.

1. As disks are expected to be Keplerian, we first use a velocity
criterion. A ring of matter should not collapse too rapidly
along the radial direction, which implies that the azimuthal
velocity must be larger than the radial velocity (vφ > fthresvr).

2. As disks are expected to be near the hydrostatic equilib-
rium, the azimuthal velocity is larger than the vertical ve-
locity (vφ > fthresvz).

3. The central adiabatic core is also rotating but is not in the
disk; another criterion is therefore added, to take into account
only areas of the simulation that are rotationally supported.
We thus check whether the rotational support (the rotational
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Fig. 12. Density map on a logarithmic scale in the disk for µ = 5, α =
90◦, for three different time-steps. The disk grows with time as the cen-
tral part becomes denser; the maximum radius corresponds to the edge
of the spiral arms of the disk structure.

energy, ρv2φ/2) is larger than the thermal support (the thermal
pressure, Pth) by a factor fthres.

4. A connectivity criterion is also used: a ring area belongs to
the disk if it is linked to the equatorial plane.

5. As discussed in Sect. 6.4, we add a density criterion (n >
109 cm−3) to avoid the large spiral arms and obtain more
realistic estimates of the shape of the disk.

For the three first criteria, a value fthres = 2 is chosen below.
Figure 12 shows the azimuthally averaged shape of the disk

using these criteria, for µ = 5, α = 90◦, and three different
time-steps.

6.2. Mass

The mass of the disk as a function of time, for different magne-
tizations and angles, is presented in Fig. 13. The general trend
shows an increase in the disk mass with the angle α. This agrees
with our previous discussions, which indicated that the braking
time in the parallel case is shorter, leading to a more rapid re-
moval of angular momentum in the infalling envelope, thus lim-
iting the effective mass of disks. At the same time, it is clear that
for increasing magnetic field strength, thus increasing magnetic
braking, disks with masses greater than 0.05 M⊙ are only found
in misaligned configurations. The limiting case corresponds to a
magnetization of µ = 2, where the removal of angular momen-
tum by the magnetic field is so efficient that the mass of rotating

(a)

(b)

(c)

(d)

Fig. 13. Mass of the disk as a function of time for µ = 17 (a)), µ =
5 (b)), µ = 3 (c)), and µ = 2 (d)).

gas does not exceed 0.05 M⊙, even in the perpendicular case. We
note that higher resolution simulations tend to indicate masses
that are even smaller than this value (see Fig. B.2b).

At the other end for low magnetization (µ = 17), disks al-
ways form with masses that increase to about 0.3 M⊙. We note
that in the aligned case, the disk fragments, leading to a decrease
in its mass after a time t ≃ 24 kyrs.

In the intermediate regime of magnetizations (µ = 5), the
mass of the disk starts to increase significantly even for small α.
For the intermediate angles (20 and 45◦), disk masses increase
within the range 0.15–0.2 M⊙. For the more tilted cases (70, 80◦,
and the perpendicular case), disks grow to 0.25–0.4 M⊙.
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Fig. 14. Disk formation in the parameter space investigated by the
simulations (inclination angle α versus magnetization µ). The red di-
amonds are configurations in which approximately Keplerian disks
form, the grey squares denote configurations in which disks form with
flat rotation curve (cf. Fig. 15 and the related discussion for more
details); the white circles are configurations with no significant disk
(Mdisk < 5 × 10−2 M⊙).

(a)

(b)

(c)

Fig. 15. Radial profile of rotational velocity in the disk, for µ = 5, α =
45 and 90◦ and µ = 3, α = 90◦. The straight lines are the rotational
velocity for different time-steps; the dotted lines are the Keplerian
velocity.

(a)

(b)

(c)

Fig. 16. Ratio of magnetic pressure to rotational kinetic energy in the
disk, for µ = 5, α = 45 and 90◦ and µ = 3, α = 90◦.

For µ = 3, disks do not form for angles �20◦. In the 45◦

case and the perpendicular case, the masses of the disk increase
to 0.1 M⊙.

Figure 14 summarizes our results and shows the parameters
(orientation and magnetization) for which disks can form.

6.3. Velocity

To estimate the rotational velocity in the disk, we average
vφ(r, φ, z) azimuthally and axially over the thickness of the disk.
We can compare it to the Keplerian velocity vK(r) =

√
GM(r)/r,

with M(r) the mass within a sphere of radius r. We find that the
rotational velocity in the disk is nearly Keplerian, as shown in
Fig. 15 for µ = 5, α = 45 and 90◦, and µ = 3, α = 90◦. In the
perpendicular case, for both magnetizations, the rotation veloc-
ity is nonetheless slightly sub-Keplerian; for α = 45◦, the disk
has a flat rotation curve.

To understand the presence of sub-Keplerian rotation veloc-
ity profiles, we plot in Fig. 16 the ratio of the magnetic pressure
to the rotational kinetic energy log10(PB/Ek) = log10(B2/4πρv2φ)
for the same magnetizations and angles. This shows that these
velocities are sub-Keplerian because of the magnetic support in
the disk: the more tilted the axis of rotation, the lower the ratio
of the magnetic pressure to the rotational kinetic energy. In par-
ticular, in the perpendicular case, the vertical component of the

A128, page 14 of 22

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201118730&pdf_id=14
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201118730&pdf_id=15
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201118730&pdf_id=16


M. Joos et al.: Protostellar disk formation

(a)

(b)

Fig. 17. Density slice in the region of the disk for µ = 5, α = 90◦ at
t = 20 000 and 25 000 yr.

magnetic field is smaller, whereas the density is higher since the
disk is more massive.

6.4. Disk shape

To estimate the radius and height of the disks, we use the first
four criteria defined in Sect. 6.1 (cf. Fig. 12). However, as shown
below, using only these criteria to infer the disk radius and height
leads to an overestimate of their values, because of the large size
of the spiral arms as evidently seen in Fig. 17. We thus consider
them as upper limits for the disk radius and height. For a more
realistic estimate, we constrain the disk to the central, denser
rotating object and therefore consider the region of the disk with
a density above 109 cm−3, which is our last criterion.

When the disk forms, its radius generally evolves with time,
reaching values between 200 and 400 AU (for the minimum es-
timate of the radius, Rmin) from 500 to 800 AU (for the max-
imum estimate, Rmax). However, much smaller values are ob-
tained when the braking is strong. The minimum height Hmin
is about from 20 to 40 AU, while the maximum height Hmax
reaches 140 AU. These values can be compared to analyti-
cal estimates of the characteristic height of a hydrostatic disk,
Hth =

√

c2
s/4πGρ, taking for cs and ρ their mean values in the

disk. The lower height estimates are in good agreement with the
theoretical values. All results are summarized in Table 2. Finally,
Fig. 17 shows two density slices (at the beginning and the end
of the simulation) in the perpendicular case for µ = 5. A central

(a)

(b)

Fig. 18. Density slice in the equatorial plane for µ = 5, α = 0◦ at t =
20 000 and 25 000 yr.

well-shaped disk and two large spiral arms are clearly visible.
We note that in our estimates, the maximum estimated radius
corresponds to the maximum radius of the spiral arms. In con-
trast, the minimum radius accuratly describes the central denser
object.

Figures 18–20 show, in contrast to Fig. 17, density slices in
the equatorial plane when no massive disk forms. In Figs. 18(a)
and 19(a), the pseudo-disk can be clearly distinguished around
the protostellar core. In Fig. 20, the two arms correspond to mat-
ter collapsing along the magnetic field lines.

6.5. Discussions

6.5.1. Impact of the criteria

Estimates of the disk mass generally depend on the working def-
inition of the disk, and may lead to large overestimates. One ex-
ample is to calculate the disk mass using a simple criterion based
on a comparison between rotation and infall velocity (i.e. vφ > vr,
which is the one used for example in Machida & Matsumoto
2011). The panels in Fig. 21 display the mass of the “disk”
found with this criterion, which range from 0.3 to 0.5 M⊙ in all
cases. They are more massive in the more tilted cases than in the
aligned one, and for higher magnetizations, they are less mas-
sive, even if their formation is not prevented. Thus, while the
trends are similar to those that we found previously, the mass of
the disk can be greatly overestimated by using such a criterion.
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Table 2. Disks characteristics (maximum mass of the protostellar core (which corresponds to M(n > 1010 cm−3)), maximum disk mass, disk radius
(Rmin − Rmax), and disk height (Hmin − Hmax)).

µ α M∗(M⊙) Mdisk(M⊙) Rdisk (AU) Hdisk (AU) Hth (AU)
17 0 0.43 0.15 250 30–140 33

45 0.43 0.25 250 30–70 13
90 0.66 0.25 400–800 20–130 33

5 0 0.26 0.05 140 30–140 23
20 0.26 0.20 200–700 40–140 35
45 0.23 0.15 200–500 40–140 28
70 0.33 0.27 150–500 40–150 24
80 0.43 0.40 200–800 30–140 33
90 0.46 0.28 200–450 20–90 23

3 0 0.19 <0.01 <50 <25 0
20 0.20 <0.01 <50 <10 12
45 0.29 0.11 200–800 30–120 31
90 0.37 0.10 200–800 30 17

2 0 0.24 0 0 0 0
20 0.24 0.03 80 30–70 14
45 0.29 0.05 100 10 15
80 0.28 <0.01 <60 <10 6
90 0.25 0.02 50 10 5

(a)

(b)

Fig. 19. Same as Fig. 18 for µ = 2, α = 0◦ at t = 25 000 and 29 000 yr.

6.5.2. Comparison with observations

Several studies have tried to infer disk masses from low reso-
lution observations (with spatial resolutions of about 250 AU),
without resolving the disk itself (Enoch et al. 2009, 2011). For

(a)

(b)

Fig. 20. Same as Fig. 18 for µ = 2, α = 90◦ at t = 25 000 and 29 000 yr.

this purpose, they used a detailed emission model, coupled with
an analytical model for the envelope, the cavity, and the disk.
The envelope model is that of a rotating, collapsing sphere de-
veloped by Ulrich (1976), with a cavity in which the density is
set to zero to mimic the outflows. The disk density is given by
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(a)

(b)

(c)

(d)

Fig. 21. Mass of the “disk” evolution for µ = 17 (a)), µ = 5 (b)), µ =
3 (c)), and µ = 2 (d)), obtained with a very simple rotation criteria
(vφ > vr). The masses are significantly overestimated.

a power-law dependence in radius and a Gaussian dependence
in height (see Enoch et al. (2009) for more details). Using these
profiles, they ran a grid of models to find the parameters that
most closely fit their observations, by computing detailed radia-
tive transfer. Their most important parameters are the disk mass
and radius.

Following the same idea, we attempt to deduce the disk mass
from our simulations using their method, but without the radia-
tive transfer. At several time-steps, we compute column-density
maps of our simulations, with an angle between the axis of rota-
tion of the core and the line of sight of 15◦ (which corresponds

(a)

(b)

(c)

Fig. 22. Observational estimate of the mass of the “disk” for µ = 5 (a)),
µ = 3 (b)), and µ = 2 (c)). These masses are inferred using a comparison
between our simulations and analytical density profiles for the envelope,
the outflows, and the disk (see text).

to the angle of the line of sight in their best-fit model). We con-
sider the total mass of our simulation, 1 M⊙, to be the mass of the
envelope, and adopt the same power-laws for the density profiles
of the envelope and the disk, namely (Ulrich 1976; Enoch et al.
2009)

ρenv ∝ r−1.5 (27)

ρdisk ∝ r−1e−(r/H(r))2
, (28)

with H(r) = r(H0/Rdisk)(r/Rdisk)2/7 the height of the disk. We
take an outflow opening angle of 20◦ (which is the one that
most closely fits their observations). As in Enoch et al. (2009),
we infer a centrifugal radius Rc from column-density profile
corresponding to the radius where the slope of the column-
density profile changes. The disk radius is another parameter
that is varied; for simplicity, we only consider two different disk
radii, Rdisk = Rc and Rc/2. The disk vertical scale-height H0
is equal to 0.2Rdisk. With these parameters, we run the models
with Mdisk = 0.01, 0.1, 0.2, 0.3, 0.4, and 0.5 M⊙. The model
grid, which is a grid of column-density maps, is compared to
snapshots of our simulations by means of a mean squared error
analysis to find the best-fit model.
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Fig. 23. Column-density map for µ = 5, α = 0◦ at t = 24 000 yr with and without the cavity of the outflow (left and right panel respectively).

Using this method, we find that the best fit to our simulations
is characterized by a disk radius Rdisk = Rc/2 and masses be-
tween 0.4 and 0.5 M⊙ for µ = 5, masses between 0.1 and 0.5 M⊙
for µ = 3, and masses between 0.2 and 0.5 M⊙ for µ = 2 (see
Fig. 22).

When massive disks actually form, which is not the case for
the stronger magnetizations, this method provides results that are
in relatively good agreement with the disk masses inferred from
our simulations (with an overestimate of 30 to 40%). However,
this comparison shows that in most cases density structures are
detected that are mistaken for disks, particularly in either the
aligned case or for the higher magnetizations when no disks
form, leading to a large overestimate of disk masses. Those den-
sity structures, which also include the cavity of the outflows, ac-
tually correspond to a selection effect resulting from the use of a
simple velocity criterion (vφ > vr).

To verify this assumption, we remove the cavity of the out-
flows in the µ = 5, α = 0◦ case and repeat the analysis. Figure 23
shows column-density maps after taking into account all the gas
(left panel) and removing the gas that belongs to the cavity (right
panel). In the central region, within 500 AU, there is a discrep-
ancy in the column-density of a factor three between those two
maps: the cavity is a massive structure, which can be mistaken
for a disk by projection effects. The best-fit model for a snap-
shot of this simulation without the cavity is Mdisk = 0.01 M⊙,
where it was Mdisk = 0.5 M⊙ for the simulation with the cav-
ity. Therefore, observed massive disks may actually be outflow
cavities.

6.5.3. Time formation of disks

Our study shows that in very magnetized cases (µ ∼ 1–3)
disks beginning to form at the earliest time of star formation
(in Class 0 stage) will not eventually form or remain small. This
may appear to contradict the ubiquity of disks at the Class I and
later phases (e.g. Haisch et al. 2001). However, it is worth stress-
ing that the magnetic braking represents an exchange of angular
momentum between the inner and outer parts of the prestellar
core. In particular, the envelope should then operate as a reser-
voir able to accept the excess of angular momentum present in
the densest regions of the prestellar core. As accretion proceeds,
the mass is the envelope diminishes and it is unlikely that mag-
netic braking remains efficient. We therefore speculate that disks
will always form but that their formation time and size will de-
pend strongly on the magnetization and the angle between the

rotation axis and the magnetic field; later on, we may be able to
reduce the formation time and increase the size.

Our conclusion – that both the formation time and disk size
depend strongly on the magnetization – is qualitatively similar
to that of Dapp & Basu (2010), although the underlying reason
is different.

7. Conclusions

We have presented an analytical analysis of a collapsing mag-
netic cloud that demonstrates that the magnetic field can remove
angular momentum less efficiently when the rotation axis is per-
pendicular to the magnetic field than when they are both aligned.

We have then presented simulations of the collapse of
prestellar dense cores with different magnetizationsµ and in both
aligned and various misaligned configurations. The orientation
of the rotation axis with respect to the magnetic field, α, has a
strong effect on the formation of the adiabatic first core and the
disk formation. In particular, we have performed a detailed anal-
ysis of the transport of the angular momentum in the simulations,
and characterized the disks when they formed. Our main results
are the following:

– Magnetic braking decreases with α, but increases with µ.
– Misalignment has a strong impact on the outflows and can

suppress them; consequently, the angular momentum trans-
port by the outflows decreases with α.

– Angular momentum transport by gravity increases with α,
owing to the presence of the disks, particularly their asym-
metric structures.

– The mass in the disks increases with α.
– For increasing magnetic fields, the disk masses decrease,

with a limiting case being that of µ = 2, where disk for-
mation is prevented.

– disks have typical mass up to 0.3 M⊙ and typical radii of
from about 200 to 400 AU.

– In general, magnetic braking is the most important mecha-
nism for transporting angular momentum. It always domi-
nates the transport of angular momentum by the flow and,
except for low magnetization (µ � 17), also dominates the
transport by means of gravitational torques.

We have shown that our conclusions depends on the criterion we
use to define disks. We conclude that a simple rotation criteria
is insufficient and leads to estimates of disk masses that are far
too high.
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We also analyzed our simulations following the method de-
scribed in Enoch et al. (2009), demonstrating that low resolution
observations can mistake density structures for disks.
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Appendix A: Euler’s equation and angular

momentum transports

The Euler’s equation for a magnetized fluid can be written as

ρ∂tu + ρ (u · ∇) u = −∇
(

P +
B2

4π

)

− ρg +
(

B

4π
· ∇
)

B, (A.1)

with ρ the density, u the velocity, P the gas pressure, B the mag-
netic field, and g the gravitational acceleration where g = ∇Φ
and Φ is the gravitational potential.

In cylindrical coordinates, the azimuthal component of the
left hand side of A.1 can be written

ρ∂tuφ + ρ

(

vr∂rvφ +
vrvφ

r
+
vφ

r
∂φvφ + vz∂zvφ

)

. (A.2)

Using the continuity equation

∇ · (ρu) + ∂tρ = 0 (A.3)
1
r
∂r(rρvr) +

1
r
∂φ(ρvφ) + ∂z(ρvz) + ∂tρ = 0, (A.4)

it can be written as

ρ∂tvφ + vφ∂tρ + ρ
vr

r
∂r(rvφ) +

vφ

r
∂r(rρvr)

+ ρ
vφ

r
∂φ(vφ) +

vφ

r
∂φ(ρvφ)

+ ρ∂zvφ + vφ∂z(ρvz)

= ∂t(ρvφ) +
1
r
∂r(rρvrvφ) + ρ

vrvφ

r

+
1
r
∂φ(ρvφvφ) + ∂z(ρvzvφ)

= ∂t(ρvφ) + ∇ · (ρvφu) + ρ
vrvφ

r
· (A.5)

We can do the same for the magnetic tension component of the
equation

1
4π

(

Br∂rBφ +
BrBφ

r
+

Bφ

r
∂φBφ + Bz∂zBφ

)

, (A.6)

using the solenoidal constraint (∇ · B = 0); it comes

1
4π

(

∇ · (BφB) +
BrBφ

r

)

· (A.7)

The density ρ can be expressed as a function of the gravitational
acceleration, using the Poisson’s equation

ρ =
1

4πG
∇ · g. (A.8)

The azimuthal component of the gravitational term of Euler’s
equation thus becomes

ρgφ =
gφ

4πG
∇ · g

=
gφ

4πG

(

1
r
∂r(rgr) +

1
r
∂φgφ + ∂zgz

)

=
1

4πG

[

grgφ

r
+ ∂r(grgφ) +

1
r
∂φgφgφ + ∂zgzgφ

−
(

gr∂rgφ +
1
r
gφ∂φgφ + gz∂zgφ

)]

, (A.9)

and using Schwarz’ theorem

ρgφ =
1

4πG

[

grgφ

r
+

1
r
∂r(rgrgφ) +

1
r
∂φgφgφ + ∂zgzgφ

− 1
2r
∂φ
(

g2
r + g

2
φ + g

2
z

)

]

ρgφ =
1

4πG

(

grgφ

r
+ ∇ · (gφg) −

1
2

(

eφ · ∇
)

g
2

)

, (A.10)

we can identify a curvature term (grgφ/r), a tension term (∇ ·
(gφg)), and a pressure term (

(

eφ · ∇
)

g
2/8πG).

Therefore, the azimuthal component of the Euler’s equation
can eventually be written as

∂t(ρvφ) + ∇ · (ρvφu) + ρ
vrvφ

r

= −(eφ · ∇)

(

P +
B2

8π
− g

2

8πG

)

+
1

4π

(

∇ · (BφB) +
BrBφ

r

)

− 1
4πG

(

∇ · (gφg) +
grgφ

r

)

· (A.11)

If we multiply this equation by r, it becomes

∂t

(

ρrvφ
)

+ ∇ · r
[

ρvφu +

(

P +
B2

8π
− g

2

8πG

)

eφ

−
Bφ

4π
B +

gφ

4πG
g

]

= 0, (A.12)

since r is time-invariant. This equation expresses the angular
momentum conservation; we can identify the magnetic and the
gravitational torques ∇ · (rBφB/4π) and ∇ · (rgφg/4πG) with
i ∈ {r, z}, which are responsible for the angular momentum trans-
port by means of a magnetic field and gravitation, respectively.

Appendix B: Convergence

Additional sets of simulations were run to test the numerical
convergence. These sets of simulations show that the numeri-
cal dissipation does not significantly change our results, which
are qualitatively invariant.

In the first set of simulations, we change the Jeans refine-
ment strategy to increase the spatial resolution. A cell was pre-
viously refined if its size exceeded one-tenth of a Jeans’ length
(cs(π/Gρ)1/2). We run simulations with 15 cells per Jeans’ length
(HR1) and another one with 20 cells per Jeans’ length (HR2).

In the last set of simulations, we change the Courant number
(from 0.8 to 0.4) to increase the temporal resolution.
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(a)

(b)

Fig. B.1. Specific angular momentum for µ = 5 (upper panels) and µ = 2 (lower panels), n > 109 cm−3, for α = 0, 45, and 90◦, with 10, 15, and
20 resolved points per Jeans’ length.

All sets were run with µ = 5 and 2, and α = 0, 45, and 90◦

for increasing spatial resolution, and with µ = 5, and α = 0, 45,
and 90◦ for increasing temporal resolution.

Our results remain qualitatively similar even if convergence
is not achieved. These convergence runs show that the mass of
the disk is slightly overestimated in our previous analysis.

B.1. High spatial resolution simulations

B.1.1. Angular momentum

Figures B.1 show the evolution of specific angular momentum
for n > 109 cm−3 for, respectively, µ = 5 and µ = 2. The left
panels display its evolution for 10 points, the central panels for
15 points, and the right panels for 20 points resolved per Jeans’
length. For all angles (α = 0, 45 and 90◦), the specific angular
momentum decreases with the resolution.

With increasing resolution, more momentum is transported
by the magnetic field and outflows, and the steady state is
reached at a later stage.

It is clear that numerical convergence has not yet been
reached and that treating magnetic braking requires a very high
spatial resolution (Commerçon et al. 2010; Hennebelle et al.
2011).

Even though these results are quantitatively different from
the simulations presented in this paper, they are qualitatively
similar: magnetic braking still decreases significantly when the
angle between the rotation axis and the magnetic field increases,
and a comparable amount of angular momentum is carried away
by magnetic braking and outflows.

B.1.2. Disk mass

The mass of the disk stays roughly the same or decreases with
increasing resolution, as shown in Fig. B.2. The mass of the disk
can decrease with increasing resolution because of the more ef-
ficient transport of angular momentum in the higher resolution
cases. For example for µ = 5, α = 90◦, the mass of the disk at
t = 25 500 yr is 0.18 M⊙ (LR) compared to 0.15 M⊙ (HR1) and
0.13 M⊙ (HR2).

However, our previous conclusions still hold: when mag-
netization is relatively strong (µ = 5), disks form only when
the rotation axis is misaligned with the magnetic field, and for
lower µ (meaning stronger magnetization), magnetic braking
acts so strongly it prevents disk formation.

B.2. High temporal resolution simulations

B.2.1. Angular momentum

Figure B.3 displays the evolution of the specific angular mo-
mentum for n > 109 cm−3, µ = 5, for a Courant number of 0.8
(left panel) and 0.4 (right panel), which corresponds to a smaller
time-step. As the resolution increases, more momentum is trans-
ported outward.

B.2.2. Disk mass

Figure B.4 shows the evolution of the mass of the disk for
Courant number of 0.4.
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(a)

(b)

Fig. B.2. Mass of the disk as a function of time for µ = 5 (upper panels) and µ = 2 (lower panels), for α = 0, 45, and 90◦, with 10, 15, and
20 resolved points per Jeans’ length.

Fig. B.3. Specific angular momentum for µ = 5, n > 109 cm−3, with a Courant number of 0.8 and 0.4.

Fig. B.4. Disk mass for µ = 5 and a Courant number of 0.4.
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