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Abstract
Prototype-based languages are currently proposed

as a substitute to class-based languages for a higher
flexibility in manipulating objects.  These languages
are all based on a similar set of basic principles:
object-centered representation, dynamic addition
(deletion) of slots, cloning and message delegation.
But they all differ in the precise interpretation of
these principles and nobody has yet considered the
semantic issues raised by their combination.  In this
paper, we propose a new taxonomy of prototype-
based languages, enhancing the Treaty of Orlando by
now discussing issues associated with the different
semantics of the identified prototype-based
languages.  From this taxonomy, we extract a
constructive proposal for the design of a new
prototype-based language.  This proposal is the chief
result of this paper; it suggests one set of primitives
which is regarded as the best to provide a clean,
useful and coherent prototype-based computational
model.  We finally describe an implementation of
most interesting language alternatives in the form of
a Smalltalk-80 platform.  This platform establishes an
operational semantics for the basic primitives and –
more interesting – validates our previous taxonomy
by implementing it as a class hierarchy.  Obviously,
this platform has been used to relate in the same
formalism the semantics of different languages with
each others.  For instance, the programming models
of existing languages, such as Self, ObjectLisp and
Actra's examplars, are faithfully derived as subclasses
in this hierarchy.

1.  Introduction

In object-oriented programming, a long road lead
from class-based to prototype-based languages.
Experimental work about knowledge representation
in the AI community has shown the usefulness of
frames for their capability to represent different types
of knowledge (values, procedures, predicates,
defaults) as a collection of slots.  On the other hand,
the quest for new computational models for
distributed AI have led to the development of the
actor model emphasizing the cloning and delegation
mechanisms.  In parallel with this evolution, many
users of class-based languages developing
applications in the fields of user-interfaces
[MGDV90] and virtual reality systems [Born81,
Smit86], have tried to escape the traditional abstract
data type model to move towards a less constrained
one.  For such kind of applications, classes have also
been considered as a source of complexity because
they are playing too many roles  [Born86].

The alternative solution is often based on the
concept of prototypes, more amenable to a form of
programming-by-example and providing an
alternative to class instantiation and class inheritance
[Born86, MACL89, UnSm87, MyGV92].  Prototype-
based languages propose a new programming
paradigm that is justified in two fundamental ways
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compared to class-based languages.  First, on the
philosophical side, people's natural way to grasp new
concepts is generally to begin by creating concrete
examples rather than abstract descriptions; class-
based languages force people to work in the opposite
direction by creating abstractions (classes) prior
concrete objects (instances).  Second, on the more
pragmatic side, class-based languages seem to
unnecessarily constrain objects, by disallowing
distinctive behavior for individual objects among
their instances and by forbidding inheritance between
objects to share values of instance variables.

Recently, many languages using prototypes have
been proposed.  Borning derived a small prototype-
based language to compare them to classes [Born86].
Lieberman [Lieb86] gave an informal description of
the delegation system, from which he argued that
prototypes are strictly more powerful than classes.
Self [UnSm87] is a pure prototype-based language
efficiently implemented [ChUL89, ChUn91].
Systems mixing prototypes and classes have also
been proposed [LaTP86, Lalo89].

Nevertheless if we consider this recent evolution
of prototypes, current prototype-based languages
differ in the semantics of object representation, object
creation, object encapsulation, object activation and
object inheritance.  So understanding the exact merits
of each language is not always easy, both in terms of
expressive power and applicability to specific kinds
of problems.  The Treaty of Orlando [StLU88]
proposed a first comparison of class-based and
prototype-based languages; we go further by
addressing more extensively the problem of the
alternative semantics associated to pure prototype-
based languages.

More precisely, this paper has three goals:
1) to build a new taxonomy for prototype-based

languages,
2) to use this taxonomy to propose our model of a

prototype-based language and
3) to validate this taxonomy by implementing it as a

(Smalltalk-80) class hierarchy.

To reach these goals, the methodology we used is
essentially experimental.  We have collected
language proposals from several papers, identified

their primitives and classified their alternative
semantics.  To fully understand the semantics of
primitive principles, we have implemented and
experimented with them; this lead to the
implementation of ProtoTalk.  From this
experimentation, we collected observations that
helped in expanding and building our taxonomy.  So
the structure of our argumentation is the result of a
process of clarification of ideas coming from these
observations.  We have organized mechanisms in
increasing order of complexity; this order is reflected
in the construction of our taxonomy.

The paper is organized as follows.  Section 2
recalls the basic principles of prototype-based
languages and defines shortly their terminology.
Section 3 studies the different semantics associated to
prototype-based languages, introduces our taxonomy
and proposes our model.  Section 4 presents the
platform Prototalk – Prototypes in Smalltalk –
implementing the previous taxonomy as a Smalltalk
class hierarchy.  Then we conclude on future research
work.

2.  Terminology and Basic Issues

This section introduces the main principles of the
prototype-based approach and points out its basic
issues.

2.1 Prototypes
"If Clyde was the elephant most familiar to you, the
prototypical elephant might be an image of Clyde
himself.  If I ask a question as "How many legs
does an elephant have?", a way to answer the
question is to assume that the answer is the same as
how many legs Clyde has, unless there is a good
reason to think otherwise."  [Lieb86]

The most important idea of the prototype-based
approach is that concrete objects are the only mean
to model applications.  There are no classes, as
usual in object-oriented programming.  Prototypes
are not meant to be abstractions, as classes are, and
they are not linked in any way to other objects that
would describe them, as in the class-based approach.
A prototype is a self-sufficient entity with its own
state and behavior, and capable of answering
messages.  This means that the normal way to speak



about a concept in these languages is to provide a
concrete example for this concept.  This has
tremendous importance as we shall see later; but note
here that any reference to a concept must first be
rephrased in terms of its concrete examples, as
pointed out by Lieberman.

2.2 Delegation

Delegation was introduced [Lieb81] as a message
forwarding mechanism.  The basic idea of delegation
is to forward messages that cannot be handled by an
object to another object called its parent in Self or
proxy in Act1 (we will use the term "parent" in the
rest of the paper).  Indeed, the key-point of delegation
is that the pseudo-variable "self" still points to the
original receiver of the message, even if the method
used to answer the message is found in one of its
parent [Lieb86].  Delegation is proposed as a mean
for an object to retrieve and share knowledge
provided by another object.  Let's use Clyde and the
elephant example again.  Assume an elephant Fred;
delegation means that you can construct an object
representation of Fred that is related to Clyde in such
a way that if I ask a question as "How many legs does
Fred have?", then the way to answer this question is
to assume that the answer is the same as how many
legs Clyde has, unless we know Fred to have a
different number of legs.  Hence, Clyde acts as a
prototypical instance, not only to answer questions
about the concept of elephant but also to answer
questions about specific elephants.  This use of
delegation is proposed as an alternative to class
inheritance.

2.3 The Meaning of Self
“To create an object that shares knowledge with a
prototype, you construct an extension object, which
has a list containing its prototypes, which may be
shared by other objects, and personal behavior
idiosyncratic to the object itself.”  [Lieb86]

More than message forwarding, delegation can
also be interpreted as an extension mechanism.  An
object B that delegates to another object A, can be
viewed as an extension of A.  Hence, delegation
defines objects having a shared part and a private
part.  This interpretation of delegation raises the
important issue of the meaning of "self".  The most

important point here is that sharing is done at the
level of concrete objects and not at the level of
concepts as with class inheritance; this means that
structures, behavior and values are shared.  This fact
also has a tremendous importance in prototype-based
programming models.  With delegation, the notion of
"self" or in other words, what means to be inside or
outside an object, must be reconsidered in the light of
this object extension view.  What does it mean to be
inside or outside of the extension object B?  or to be
inside or outside of the extended object A? How well
do the different prototype models address these
issues?  These are crucial questions we will address
in the next section.

3.  Semantics of Prototype-Based
Languages

This section describes our taxonomy, uses it to
provide a typology of existing languages and
proposes our model of a prototype-based language.

3.1 Taxonomy

Most prototype-based languages provide a
message passing mechanism to activate objects and a
cloning primitive.  But, they differ in the semantics of
other basic mechanisms.  We now classify these
alternatives to get our taxonomy, which is shown in
Figure 1.  Each leaf of this taxonomic tree
corresponds to one basic family of prototype-based
languages built on a self-sufficient set of primitives
and mechanisms.

3.1.1 Object Representation

Two main solutions can be considered for the
representation of objects in prototype-based systems:
(1) to separate the concepts of object variables and
object methods or (2) to amalgamate them using the
concept of slot.  The first alternative mimics objects
in a traditional class-based system.  In the second
alternative, no distinction is made between variables
and methods; instead an object gets a collection of
slots where a variable is represented as a method that
returns a constant value.  The first level of our
taxonomy distinguishes between these two
alternatives in object representation.  The advantages
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Figure 1.  Our taxonomy of prototype-based programming languages
(to ease the understanding of the figure, we hide part of the lowest levels).

of slots are advocated by Self [UnSm87].  But in the
variables&methods approach, encapsulation of
variables is enforced by standard (Smalltalk-like)
visibility rules, whereas new mechanisms must be
provided to restrict the visibility of slots in the other
approach.

3.1.2 Object Creation and Evolution

Two mechanisms are proposed to create new
objects in current languages.  An object can be
created ex nihilo, using an appropriate primitive, or it
can be created from an existing one by using the
cloning primitive.

Let's first look at the creation of objects ex nihilo.
Whether or not a primitive to create new objects ex
nihilo is provided makes up the two alternatives of

the third level in the taxonomy.  If a primitive to
create new objects ex nihilo is provided, two new
alternatives show up.  We can create empty objects
(let us call this primitive newEmpty), or objects with
an initial structure (let us call this one newInitials:).
These alternatives appear at the fourth level of the
taxonomy.

But if we restrict ourselves to the creation of new
empty objects alone, this raises the question of what
to do with these new empty objects?  Some means
must be provided to modify their structure in order to
build the concrete objects in applications.  Indeed,
this introduce two other design alternatives which are
whether or not the structure of objects can be
extended and/or shrunk dynamically, by adding or
deleting slots (let's call these primitives addSlot: and



deleteSlot:) or respectively variables and methods
(let's call them addVar:, deleteVar:, addMethod: and
deleteMethod:).  For a better classification, we made
these alternatives as the second level of our
taxonomy.

Let's now consider cloning.  The simple biological
metaphor of cloning makes it very appealing,
compared to the traditional way to create objects in
class-based models, namely by instantiation.  The
basic idea is that, given an existing object, it is easy
to get a new object similar to the first one by simply
copying it.  Cloning offers two alternatives: shallow
cloning or deep cloning.  However, deep cloning is
usually ruled out as an uninteresting alternative
because it is time consuming and provide little
interesting properties on its own.  Because most
languages provide a primitive for shallow cloning
that we call shallowClone, we introduced it in the
root of the taxonomy.

3.1.3 Alternatives in the Semantics of
Delegation

The two main alternatives of delegation are
implicit or explicit delegation.  In implicit delegation,
when an object cannot answer a message, the
interpreter automatically delegates it to another
object; objects have a parent link to indicate to the
interpreter to which objects messages should be
delegated.  In explicit delegation, on the other hand,
the delegation of messages is done explicitly for each
message to be delegated; the delegating object names
the object to which the message has to be delegated.
Ways to express that in the languages are discussed
in Section 4, but explicitly delegating a message
resembles externally to message passing, except that
the the method invoked by the explicit delegation is
executed in the context of the delegating object.
These two alternatives appear at the fifth level in the
taxonomy.

3.1.4 Alternatives in the handling of split
objects

In Section 2.3, we have mentioned that the
extension view of delegation raises very important
issues like the notion of "self" for both extended and
extension objects.  In fact, we will argue in the rest of
the paper that delegation introduces the concept of

split objects composed in this case of both the
extended object and the extension object (we will
defined this concept more precisely in Section 3.2.4).

Therefore, we introduce a distinction between
languages that explicitely deal with split objects and
languages that don't.  These two alternatives make the
sixth level in our taxonomy.  Handling split objects in
a language means that we can create them, refer to
them, clone them and otherwise deal with them as
with other objects.  In other words, handling split
objects means to treat them as first-class entities in
the language.

3.1.5  Classification of Existing Languages

One goal of a taxonomy is to classify existing
entities.  At the moment, we have looked at five
existing prototype-based languages: Self, ObjectLisp,
Act1, Examplars and Garnet.

Self and ObjectLisp are members of the language
families (L8) and (L2) respectively, both extended
with implicit delegation but without support for split
objects.  From the point of view of our taxonomy,
they only differ in the representation of objects; Self
uses slots while ObjectLisp uses variables and
methods.

Examplars is best characterized by the family
illustrated by (L13): prototypes have variables and
methods, the structure of prototypes cannot be
modified dynamically, new objects are created ex-
nihilo or by copying existing ones, the parent link is
named "superExemplar" and delegation is implicit
along this link. However since it is an hybrid
language also providing classes, some of its
characteristics are out of the scope of our taxonomy.

Act1 is an actor-based language and has very
specific characteristics. Objects can have variables
and one method named their script. Messages to
objects are examined by the script in which various
actions can be performed, including explicit
delegation to other objects in the system. When the
script rejects a message, there is an implicit
delegation to the parent of the receiver (here called
the proxy), the script  of which is in turn executed.
These functionalities can be classified in an extension
of  the language  (L5) for which  the  evaluator is also
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able to deal with explicit delegation orders.

As far as we could figure out from [MyGV92],
Garnet is a language in the family of (L8).  However
Garnet, like in [Born86], uses constraints propagation
as primary computation mechanism rather than
message passing and delegation, and this introduces
some distortion when we classify it using our
taxonomy.

3.2 Semantic Issues

Sharing plays a central role in object-oriented
programming as the cornerstone of reusability.  But
what kind of sharing is provided by cloning and by
delegation?  Are they reducible to each other?  What
is the kind of sharing provided by prototypes and
what is its impact on their semantics?

3.2.1 The Kind of Sharing Achieved by
Shallow Cloning

From the sharing and reuse point of view, shallow
cloning essentially means that immediately after
cloning, the corresponding slots of an object and its
clone will point to the same objects.  For example,
consider creating a new point p2 as a clone of a point
p1 owning a method move to change its location (Fig.
2a).  After shallow cloning,  p1 and p2 share the
method move and their position by the virtue of
pointing to the same value objects through their

respective slots move, x and y.  Notice however that,
even if  p1 and p2 get the same structure and the
same values, when p2 is modified, for example, the
two objects become independent (Fig. 2b) and cease
sharing updated values.  Hence, shallow cloning
enforce creation-time sharing, characterized by an
independent evolution of the clone and the copied
object which prevents objects to be unexpectedly
modified by their clone.  The independent evolution
applies to slot individually; here p1 and p2 continue
to share the method move, even after  p2's y  slot has
been modified.

3.2.2 The Kind of Sharing Achieved by
Delegation

Delegation achieves life-time sharing: as long as
an object and its parent exist,  the sharing will
continue.  Here is a good example using this.
Consider an object representing the person Joe with
slots name, age and address.  Delegation allows users
to create an object representing Joe as an employee
as a new object with slots company and salary,
extending the person Joe  through a parent pointer
(Fig. 3a).  The structure of the object Joe is not
modified and the object Joe_as_employee is split in
two parts.  Joe_as_employee shares the knowledge of
Joe, an appropriate kind of sharing since both objects
apply to the same real entity: Joe.

Creating an extension object instead of simply



adding the slots salary and company to Joe also
leaves the door open for other extensions, e.g.  Joe as
a member of an association (Fig. 3a).  Any
modifications to Joe are automatically seen by its
extensions.  Also, changes to the person Joe can be
made through its extension objects.  For example, if
the employee changes its personal address, the
change will be made at the person level and will be
effective for all extensions of this person.

This example is also a good one of what
delegation can do that class inheritance cannot. In
class-based systems, it is possible to define the
concept of employee by extension of the concept of
person, but it is not possible to extend Joe, the
instance of person, with an object like
Joe_as_employee; if Joe already exists in the system,
an instance of employee sharing the information
stored in Joe cannot be created.  Furthermore, it
would be impossible to create an instance
anAssociationMember which would share the
information about the person.

Another interesting use of life-time sharing is
advocated in the pen-turtle example (Fig 3b).
Sharing of values via delegation allows here a row of
turtles to be derived from the same pen object by
sharing the same x-coordinate.

3.2.3 Cloning and Delegation are Basic

Since cloning insures creation-time sharing and
delegation life-time sharing, an interesting question is
whether or not one of the two mechanisms can
achieve both kind of sharing, therefore making the
other one unnecessary as a primitive.

Achieving Life-Time Sharing with Cloning

In cloning, the template and its clone both point to
the same values after the cloning operation
concluded.  Using cloning to do life-time sharing
would try to make this sharing through pointers last
over the whole life of both objects.  Such a life-time
dependence could be enforced, but at the cost of a
more complex addressing model in which an
indirection would be added to access slot values, as
illustrated in this drawing:

 pointer to the valuep1 y y p1 clone

The assignment primitive could modify the value

but p1 and p1’s clone would continue to share the
same pointer to the value.  However two villains
would remain: firstly a new and distinct assignment
primitive would be needed to modify the value of y
of p1’s clone without modifying p1, and secondly, if
modification of the structure of objects is allowed, a
new method or variable created on p1 would not be
known of p1 clone as it would with delegation.  This
last problem could be denoted as the incremental
propagation of newly created slots to clones of an
object requiring the memorization of every clone of
each objects, as described by Borning [Born86].
Hence, simulating delegation with cloning is
impossible without special mechanisms or if we want
to keep both the addressing model and the clone
operation simple.

Achieving Creation-Time Sharing with
Delegation

Conversely, trying to use delegation to enforce
creation-time sharing can lead to design errors.
Consider Clyde, the prototypical example of
elephants [Lieb86].  The elephant Clyde is a grey, 4
legs, normal elephant.  Then comes the white
elephant Fred, since it is exactly like Clyde except
for the colour we create an object with a colour slot
assigned to the value white and with a parent link
towards Clyde as in the following figure:

#grey
4

Clyde

2

color
legs
ears

color #white

Fred
parent

Now if Clyde has an accident and looses one leg,
Fred also looses it!  Fred should then be modified
either to add it the slot legs assigned to its original
value 4 or to change its parent.  But there is no easy
way for Clyde  to tell Fred, and more generally for an
object to tell all the objects that delegates to him, that
he has changed, that he has moved from the status of
prototypical object to the one of exceptional object.
In such a case, cloning is more appropriate.  This
suggests first that prototypical instances should be
immutable, but let us postpone the discussion of this
issue to §3.2.5, and second, that in this case cloning



should have been used.

Our conclusion is that both delegation and
cloning are basic mechanisms, providing different
capabilities that sometimes overlap but all of which
being necessary.

3.2.4 Delegation and the Meaning of Self:
Split Objects

As the person-employee-associationMember
example shows, delegation establishes a very strong
link between an object and its parent.  This has a very
important effect on the notion of object itself.  If we
also consider the graphic turtle object [Lieb86] (Fig.
3b), how could we define the notion of individual
object in a delegation-based programming model?  Is
aPen an object by itself when aTurtle at 10@30  is
created with a parent link towards it?  If I reset the x-
coordinate of aPen to 15,  aTurtle at 10@30 is also
intimately changed and becomes aTurtle at 15@30 .
Conversely, if I reset the x-coordinate of aTurtle at
10@30, aPen is changed but also aTurtle at 10@40 !

So,  aTurtle  is dependent of  aPen  first because it
is incomplete and second because a change to x  in
aPen  also changes aTurtle.  Moreover,  aPen  is also
dependent of aTurtle  because a change to x  in
aTurtle  is also modifying aPen ; any later use of
aPen, such as creating a new turtle reusing the same
pen, that doesn't take that into account may lead to
incoherences.  Should we conclude that this use of
delegation is not useful in practical examples and
should be forbidden?  No!  On the contrary, both
examples illustrate very interesting uses of this
capability.  They are also good examples of what
delegation can do that class inheritance cannot, as we
have said before.

However, as far as delegation allows objects to
share slots, it raises the problem of the semantics of
objects that delegate messages to each others.  In the
example, we can no more consider neither Joe nor
Joe_as_employee nor Joe_as_associationMember as
independent objects.  In fact, all the information
scattered among the different extension objects
applies to the same real entity, here our fellow Joe.
The same is true but in a slightly different way for the
turtle example.  Having many turtles derived from the
same pen object makes the information scattered

among these elementary objects applying to the same
entity, namely the row of turtles.

Hence, we conclude that a useful concept of split
object emerges from delegation and parent links,
and this concept must be treated as such in the
language.

How to manipulate split objects

Since split objects exist as a concept and are useful
in practice, how can they be referenced and
manipulated?  Let us first define what is a split
object:

a split object is an entire set of elementary objects
linked together through parent links.

For example, the elementary objects J o e,
Joe_as_employee and Joe_as_associationMember
together make the split object Joe_as_aWhole.  If we
look at this split object, we can make some
observations.

Handling such objects introduces several
problems.  The main one is how can I refer to it?  If
we consider first the elementary object Joe prior the
creation of its children, there is no problem; I can
refer to Joe simply through the standard object
pointer.  When I add it a child Joe_as_employee, I
can refer to the elementary object Joe_as_employee
through its standard object pointer but how can I refer
to the split object created by the pair Joe and
Joe_as_employee?  One solution could be to promote
the pointer to Joe_as_employee in order to make it
designating the whole split object.  For instance, we
could make the shallowClone primitive aware of this
promotion and, when the shallowClone message
would be sent to Joe_as_employee, it  could copy
both Joe_as_employee  and Joe.  Moreover, if we
promote the pointer to Joe_as_employee  to designate
the pair of objects, we loose the ability to refer to
only the elementary object Joe_as_employee.  This
may not be what we want.  Even worse, what if I add
Joe_as_associationMember ?  How can I refer to
Joe_as_aWhole ?

Notice that we can decompose Joe_as_aWhole
into four interesting sub-objects that we call
constituents.  The first constituent is the elementary
object Joe.  The second constituent is the pair



Joe_as_employee and Joe that describes completely
the employee Joe.  A third constituent is the pair
Joe_as_associationMember and Joe that describes
the member of an association Joe.  The last
constituent is the split objet Joe_as_aWhole  itself.
Each of these constituents is an interesting entity that
we would like to be able to refer to in order to
manipulate them normally.

The whole treatment of split objects as first-class
entities in the language resides in this designation
problem.  For example, should we introduce in our
example new inverse links from the elementary
object Joe  to all its children and use the pointer to
Joe  to designate the split object? Should we
introduce new elementary objects to play the role of
the split objects by having pointers to all its
elementary objects? or to all its constituents?

At present time, we have no satisfactory solution
to this problem.  It is an open research problem on
which we will come back in the conclusion of the
paper.

3.2.5 Class-like Sharing in Prototype-
Based Languages

Cloning and delegation achieve different but
useful kinds of sharing.  Are they providing the kind
of sharing provided by classes in traditional object-
oriented languages?

Prototypical Instances

Reuse from prototypical instances using both
cloning and delegation cannot serve as a mechanism
to provide class-like sharing because it causes
semantics problems, especially when modifications
are made to the prototypical instance.

The problem with cloning is that when modifying
the prototypical instance, there is no way to insure
that the family of objects cloned from this
prototypical instance will be homogeneous; objects
cloned before the modification will not be affected,
thus they will diverge from the new concept
implemented by the updated prototypical instance.

With delegation, the problem is seen the other way
around.  When the prototypical instance is modified,
all objects delegating to it are affected by the

modification; if the prototypical instance looses its
status of being prototypical and instead becomes an
exceptional instance of the concept, the original
concept is lost.

In both cases, a solution may be to make
prototypical instances immutable, but this solution is
contrived in two ways.  First, it introduces a distinct
kind of objects in the prototype-based model, which
then looses part of its elegance and simplicity.
Second, by making prototypical instances immutable,
we loose the capability of normally speaking about
these objects.  For example, I can't use Clyde, and say
that it has lost a leg, because of its status of
prototypical instance.  We conclude that prototypical
instances are not the right device to implement class-
like reuse in prototype-based languages.

Factoring Common Properties

Given the capability of delegating messages to
other objects, an alternative is to factor common
knowledge of a group of similar objects into one
shared repository.  For example, let's use the point
example.  A prototypical instance of point may
contain the x and y coordinates of the point, the
methods  move, to change its coordinates, and print to
print points on the terminal.  Delegation offers the
possibility to create first a shared repository S
containing only the common properties of points,
here the methods move and print, and then to create
individual points containing only x   and y
coordinates, but having S  as parent.  As far as we
know, Self is the only language that explicitly raised
this issue, and it calls shared repositories "traits
objects" [CUCH91].  The comments made here apply
to traits objects in Self, but would also apply to any
language using similar traits objects.

Shared repositories raise some important questions
of semantics.  First, their status as objects receiving
messages is intriguing.  Consider again the shared
repository S ; since the move  and print  methods it
defines and owns presumably access the x and y
coordinates of points,  it is impossible to send it move
and print   messages without raising errors.  Also, we
loose in some sense the capability to speak about S
as a standard object in the system.  For example, how
could we have a print method for S  itself? As soon



as S  redefines the print   method to specify the
behavior of its eventual sub-objects, it masks any
other print   method applying to itself, therefore
rending impossible the application of a message print
to itself.  Although ad hoc solutions to this problem
exist, they do not change the fundamental problem.

In fact, shared repositories are a form of abstract
objects and creating them prior concrete objects
seems to go against one of the raison d’être of
prototypes.  The problem of printing is just a sign that
the abstract shared repository in fact declares
methods for its sub-objects and that the link between
an object and the shared repository is not simply an
inheritance one.  Hence, shared repositories are not a
solution to achieve class-like reuse in prototype-
based languages.

Now, if such abstract objects must be banished
from prototype-based applications (at least at the
programming level), the programmer could be
prevented from creating them by testing at method
creation time that nowhere a method tries to access a
variable or another method within the object which is
not implemented by the object itself or by one of its
parent.  Indeed, this does not banish references to self
and late binding still useful to create extension
objects redefining variables or methods.

How to Provide Class-Like Sharing?

A negative result seems now to emerge: there is no
way within the prototype-based model to achieve
class-like sharing.  Prototypical instances with both
delegation and cloning have been shown not to work
safely in full generality.  Shared repositories are ruled
out because they impair the intended semantics of
prototypes.  No doubts however that this kind of
sharing is mandatory to obtain space-efficient
implementation of prototype-based languages.  We
cannot afford to copy exactly the same information
from objects to objects, for an entire family of similar
objects.

In fact, we have now shown with conclusive
arguments that Borning was right when he said that
this kind of sharing should be regarded as an
implementation technique [Born86].  Trying to
achieve class-like sharing within the prototype-based
programming model leads to incoherences.  The

positive result is that maybe we do not have to bother
about this kind of sharing at the programming model
level.  In the implementation of Self [ChUL89], maps
provide exactly the kind of sharing we need, and
maps are generated and managed automatically at the
implementation level.  Actually, maps are shared
repositories but objects are linked to their map
through a map-of link.  This link is different from the
parent link but this does not hurt the prototype-based
model at all, simply because this new link is hidden
within the implementation.  Hence, a proper way to
achieve sharing and reuse among a set of similar
objects is to do it at the implementation level using
devices such as maps.

3.3 Our Model

Our taxonomic tree leads to a number of different
languages.  Let's now look at them and propose one
model as the best in the light of the above discussion.

3.3.1 Feasible Languages in the Taxonomy

Families of prototype-based language are
represented by the leaves of our taxonomy (Fig. 1)
each of which having different impacts on sharing
and encapsulation.

Languages (L1) to (L12) are the most basic since
they don't provide delegation.  Let us cope first with
those that are uninteresting for the sake of this
discussion.
- Languages (L4) and (L10) only allow to create

empty objects, the structure of which cannot be
modified.

- Languages (L2) and (L8) are reducible to
languages (L1) and (L7) respectively; both
provide primitives to create non-empty objects the
structure of which can be dynamically modified.
Hence, similar results can be achieved by first
creating a new empty object and by modifying its
structure.  Creation of non-empty objects in this
case is just syntactic sugar.

- Even if they are supplemented with delegation
lower in the taxonomy, languages (L6) and (L12)
are useless because no objects can be created ex-
nihilo and no new properties can be added to
objects.

All the other languages of this first set can be



extended with the different alternatives in cloning
and delegation.  (L1), (L3), (L5), (L7), (L9) and
(L11) are usable and interesting.  To our knowledge
and except in our platfom (see section 4), these have
not been implemented yet.  This is certainly due to
their impoverished capabilities, but they could be
used as assembler languages to implement other more
powerful prototype-based languages.

To extend these six languages with delegation and
eventually with a support for split objects yield a
second set of higher-level languages. In this paper we
will focus on those ((L13) to (L18)) derived from
(L5) and (L11) because, as we will explain in the
next section, they are, from our point of view, the
most interesting. Languages (L13) to (L18) are
workable; instead of assessing them one by one, we
prefer to look at the best choice at each level in the
taxonomic tree in order to derive the proposals for
new prototype-based languages.

3.3.2 The Proposal

Let us take the taxonomic tree and identify the best
path among all these alternatives.  Both alternatives
in the representation of prototypes have advantages
and disadvantages.  Slots are more flexible but they
force to implement an encapsulation mechanism,
which comes for free to some extent in the
variables&methods approach.  At the moment, we
still need to experiment before inclining to favour
one or the other, so we see both as justifiable
choices.

Dynamic modification of the structure of objects
can be very dangerous.  No encapsulation
mechanism, either by making variables inaccessible
from the outside of an object or by marking some
slots as private, can be implemented (properly) in
languages with dynamic modification of structures.
If the user of an object can add it a new method, he
can also break the encapsulation by adding reading or
writing accessor methods for any slot.  Therefore,
languages without dynamic modification of
structure enforce a robust and more disciplined view
of prototype-based programming while other
languages provide some flexibility which can hurt
more than it may help.

Given our choice of languages without dynamic

modification of structure, we must choose to have
primitive to create objects ex nihilo.  The other
alternative leads to use cloning to create new objects
and we have seen above that languages using cloning
without dynamic modification of structure are
impossible to use.  For the very same reason, we
choose to create objects ex nihilo using the primitive
newInitials: instead of newEmpty because the latter
would need dynamic modification of structure in
order to create useful objects.

Delegation gives us the choice between implicit
and explicit delegation.  Obviously, explicit
delegation is more tedious to use than implicit
delegation.  But it is more flexible since it gives the
possibility to choose the object where to delegate on
a message per message basis.  In implicit delegation,
an object identifies its parents through parent links
and messages are delegated to these objects only.
The reason why we favour implicit delegation comes
from the fact that delegation introduces split objects.
The chief difference between implicit and explicit
delegation is that when delegation is made implicit in
the language, the link between an object and its
parent must be explicit but when delegation is
explicit, this link is blurred into the code of methods
where the explicit delegation messages appear.
Because the link between an object and its parent
appears to be so important in the structure of objects,
we also conclude that implicit delegation is highly
preferable since this link is made explicit.

Because of our previous discussion on the
emergence of split objects, we prefer languages
which make them first-class entities.  Hence, (L14)
and (L17) provide the kind a prototype-based
programming models we advocate.

To summarize, our proposal is the model
characterized by the following statements:
- Prototypes should be represented either with

variables and methods or with slots, the most
important point being to implement an
encapsulation mechanism.  The structure of
prototypes should be immutable, to enforce
encapsulation by preventing malicious users to
dynamically add public accessors to private
information.

- The first primitive to create new objects should be



newInitials:, a primitive which create an object
with an initial set of slots and slot values.  This
avoids the need of dynamic modification of the
structure of objects.

- Delegation should be implicit rather than explicit,
using a parent link to implement the delegation.
Delegation should be used in the language to
extend existing objects thus creating split objects.
The chief advantage of implicit delegation is to
make the relationship between objects explicit to
ease the understanding of their behavior.

- The primitive newInitials: should prevent users
from creating abstract objects by forcing each
message send to self in all objects to have a
binding, either by a slot in the object itself or by a
slot in one of its parent; this avoids the semantic
problems associated to abstract objects, but still
preserves the ability to redefine slots.

- Split objects should be treated as first class entities
and, in particular, it must be possible to create
them, refer to them, shallow clone them, and
otherwise deal with them as with any object in the
language.

- Neither delegation nor cloning should be used to
achieve class-like sharing among a family of
similar objects.  We have shown that this kind of
sharing causes semantic incoherences in the
prototype-based model.  Since this kind of sharing
is mandatory to get space-eff icient
implementations of prototype-based languages,
implementation devices such as maps proposed by
Self should be used to achieve it at the
implementation level.

4.  Prototalk

We now discuss some implementation issues
through an overview of the Prototalk platform.1  The
snapshot in Appendix A illustrates the use of this
platform to experiment with various prototype-based
languages.

1Note that we do not implement prototype-based languages using
Smalltalk-80 constructs.  Lieberman [Lieb86] has shown that
delegation cannot be implemented in a class-inheritance oriented
language using message passing unless the specific properties of
Smalltalk class variables are used [Stei87].  We choose Smalltalk
as the implementation language mainly for its programming
environment and its reflective capabilities.

4.1 The architecture of the platform

The platform is built on the following principles:
each "interesting" language (L) in our taxonomy is
represented by a class (CL).  The classes are
organized into an inheritance hierarchy reflecting the
taxonomy.  More precisely:
- The object of the language L are implemented by

instances of the class CL.
- The internal representation chosen for the objects

of the language L is implemented by the instance
variables of the class CL.  For example the class
VMProto (prototypes having variables and
methods) has an instance variable named
“methods”; the method dictionary of each object
of the languages implemented by subclasses of
VMProto will be stored in the related field.

- The primitives of the language L are represented
by methods defined on the class CL, for example
the primitive “clone” of the language (L13) is
implemented by a method clone defined on the
class L13.

- The mechanisms associated to the language L are
implemented in the evaluator  (EL) associated to
the class CL, i.e.  the evaluator for the language L.
For example the delegation mechanism is
implemented in the evaluator associated to the
class Impl ic i tDelegat ion.  To each class
implementing a prototype-based language are
associated a set of program nodes classes
representing the various instructions of L.  In the
tradition of Lisp interpreter, the evaluator for L is
made of a set of methods eval: and apply: defined
on the various program node classes [Lieb87],
each one being tailored to the interpretation of a
particular instruction of the language.  For
example when the parser for a language providing
implicit delegation encounters a message sending
instruction, it generates in the parse tree an
i n s t a n c e  o f  o u r  n e w  c l a s s
ImplicitDelegationMessageNode.  This class has
three instance variables: receiver  which is a
program node, selector  which is a symbol and
arguments which is an array of program nodes.

- Finally, a workspace is associated to each class
CL in the hierarchy, where character strings typed
in by the user are considered as expressions of the
corresponding language L.



eval: context      “defined on the class ImplicitDelegationMessageNode”
"The argument “context” is a dictionary containing the current values of “self” and of the arguments and temporaries of the
method in which the message sending is performed.  The variables “receiver”, “selector” and “arguments” are instance
variables of the receiver of the “eval:” message."

| client server args newContext |
    1 client := receiver eval: context.   “ receiver is evaluated”
    2 server := rec serverFor: selector.  “ I search the method in the receiver”
    3 if (server equals nil)
    4 then the exception doesNotUnderstand is raised
    5 else args := arguments evlis: context.   “the arguments are evaluated”
    6 newContext := Dictionary new.   “ I create a new context”
    7 newContext at: #self put: client.   “ In which I bind self to the new receiver”
    8 newContext at: #super put: (server parent)
    9 I return: ((server methodNamed: selector) applyWith: args in: newContext)

Figure 4: Evaluation of a message sending instruction for a language with implicit delegation.

7 newContext at: #self put: (context at: #self)

Figure 5 : Modification of fig. 4 to implement eval: on MessageToSuperMessageNode

An interesting property of the platform lies in its
use of the class hierarchy to inherit evaluators of the
different languages from one another.  Each new
evaluator inherits its implementation from a previous
one, except for those constructions that are given a
different semantics in the new language.

4.2 The organization of classes.
The classes of the platform reflect the taxonomy
described in Section 3.  AbstractProto is an abstract
class owning common behavior.  VMProto stands for
prototypes having variables and methods, it owns two
instance variables to store them.  Sproto stands for
prototypes having slots.  VMModifiable stands for
prototypes having variables and methods (it derives
from VMProto) in which the structure of objects can
be modified after their creation.  It owns two
methods: addMethod: to add methods and
addVar:value: to add variables to objets.  It is also
are are abstract classes since it do not provide
methods to create objects.  The class L1 implements
the language (L1) of the taxonomy, it owns the
method newEmpty  to create empty objects.  The
classes implementing the other languages of the
taxonomy are integrated in the inheritance hierarchy
by following the same principles.

4.3 Implementation of delegation.

To describe our implementation of delegation will
give an idea of how the evaluators work, especially
for explicit delegation since no precise description of

its implementation is given in the literature.
Delegation requires that when applying a method, the
pseudo-variable “self” be bound to the receiver of the
message (the client) rather than to the object in which
the method was found (the server).

4.3.1 Implicit delegation.

The class L7AndImplicitDelegation extends the
class L7 with an internal representation for prototypes
having parents, with methods to creates such objects
and with an evaluator knowing how to delegate
messages

A choice has to be made when representing the
parent link: are parents accessible in the language? In
other words, should the parent slot be stored in the
objects or at the implementation level? Parents are
not a priori supposed to be visible within objects
since they are only used by the evaluator to achieve
delegation.  We thus have defined “parent” as an
instance variable, and “son” as a method creating
new empty objects (e.g.  o1 and o2 in Appendix A,
L7AndImplicitDelegation workspace), having the
receiver as parent.  Future extensions of the class
L7AndImplicitDelegation will be free to provide
reading or writing accesses to object’s parents.  The
internal representation of these prototypes thus have
two fields, one pointing to the parent and one,
inherited from SProto, pointing to the slots.

The method eval: defined on the class
ImplicitDelegationMessageNode evaluates message
sending instruct ion in the language



L7AndImplicitDelegation.  This amounts to evaluate
the receiver (line 1), to search a server for the selector
M in the receiver (line 2), if a server is found (line 5)
to evaluate the arguments, to create a new context
(line 6), to bind in this context the pseudo-variable
“self” to the receiver (line 7)  and to apply the
method M to its arguments in the new context (line
9).  The method serverFor:, defined on the class
L7AndmplicitDelegation finds which object owns the
method to be applied, if the method is not owned by
the receiver, it performs a lookup through the parent
hierarchy.

The resend of messages via a pseudo-variable
"super" (as in Smalltalk) is a fundamental mechanism
in an implicit delegation language whereas it is not
needed with explicit delegation.  For example,
considering the implementation of Lieberman's
dashed turtle example [Lieb86] using implicit
delegation shows that resend of messages is
mandatory.

The line 8 in Figure 4 partly implements the
resend of messages: if "super" is used in the method
to be applied, the search will start at the right place.
But this is not enough: indeed, while interpreting
“super m”, the original client will be lost; "super m"
does not means “send the message m to the object
which is the value of the variable super” but
“delegates the message m to the appropriate server
while preserving the current client”.  We thus have
modified our parser so that it creates a different king
of message node (instance of the class
MessageToSuperMessageNode) when encountering a
message to "super" in a method.  The eval: method
defined on that new class is similar to the above one
(Fig 4) except for the line 7 (Fig. 5).

We will see that the same solution will be used for
the implementation of explicit delegation.

4.3.2 Explicit delegation.

Explicit delegation requires (1) the ability for an
object to intercept the messages he wants to delegate
and (2) a way to express delegation without
confusing it with message sending.

Before delegating a message, an object first has to
intercept it.  The obvious and simplest solution is to

redefine, for each message to be delegated, a method
on the delegating object, the body of which simply
delegating the message.  Putting simplicity aside, this
solution has several drawbacks [Lieb86]: expressing
delegation becomes tedious, grouping delegation
orders is impossible, clients have to redefine methods
each time new ones are added in their server, etc.
More sophisticated solutions to this problem exist
(see e.g.  the objects scripts of Act1).  Currently, only
the first solution is implemented: if an object A wants
to delegates a message M to B, he has to define a
method named M in which it delegates the message
using the appropriate construct.  (cf. fig 6).

Here is an example of code in the language
associated to the class L7AndExplicitDelegation (Fig.
6).

The expression “o1 delegates: #m1 withArgs: nil”
in Figure 6 stands for “delegate the message m1 to o1
and apply the related method in my environment”.
The question now is: how to interpret the expression
“o1 delegates: #m1 withArgs: nil” located in the
method m1 of o2?

o1 := Root newEmpty.
o1 addSlot: 'x 10'.
o1 addSlot: 'm1 self x + self x'.
o2 := Root newEmpty.
o2 addSlot: 'x 20'.
o2 addSlot: 'm1 o1 delegates: #m1 withArgs: nil'.
o2 m1 --> 40.

Figure 6 : L7AndExplicitDelegation workspace (see
also appendix A)

Should that expression be a standard message
sending, “self” would change [Lieb86] and the
reference to the actual client would be lost.  A
solution could be, for the client, to explicitly pass
itself as argument when delegating a message, for
example by writing: "server delegates: aMessage
withArgs: arguments forClient: self".  Unfortunately
this would also allow programmers to write things
like "server delegates: aMessage withArgs:
arguments for: any_object_out_there", leading to
interesting semantic questions.

In our solution, the expression “o1 delegates: #m1
withArgs: nil”, although having the syntax of a
message sending, will not be interpreted as such by
the system.  The selector delegates:WithArgs: is
tracked at parsing time to generate an instance of the



class : ExplicitDelegationNode.  For example,
parsing the expression “o1 delegates: #m1 withArgs:
nil ” creates an instance of ExplicitDelegationNode
with receiver o1 and selector #m1.  Then, the new
method eval: defined on ExplicitDelegationNode is
exact ly the same that e v a l : f o r
MessageToSuperMessageNode (Fig. 5).

4.4 Integration of existing Systems

The purpose of the platform is to easily implement
simulations of various prototype-based languages and
to write comparative programs.  Up to now, we have
implemented in the platform all the languages
described in Figure 1 except (L14) and (L17) on
which we are still working and we have integrated
simulations of Self, Examplars, Object-Lisp and Act1
(cf. Appendix A).  The position in the hierarchy of a
class has been discussed in §3.1.5, it indicates the
kind of instructions that can be written, the kind of
mechanisms that are available in the language and the
operational semantics of these mechanisms.  The
platform faithfully simulates these languages, but of
course it gives no information on the real internal
representation of objects nor on how the mechanisms
are really implemented in the actual language.

5.  Conclusion

Prototypes provide a serious alternative to the
class-based approach but current languages have
been designed using very different semantics.  In this
paper, we have proposed a new taxonomy of
prototype-based languages validated by its
implementation as a Smalltalk-80 class hierarchy.
From this taxonomy, we have extracted a set of
design choices providing, in our view, the most
elegant and the most useful prototype-based
programming model.  This model is characterized by
the following statements:
- Prototypes should be represented either with

methods and variables or with slots, the most
important point being to implement an
encapsulation mechanism.

- The first primitive to create new objects should be
newInitials:, a primitive which creates an object
with an initial structure.

- Delegation should be implicit, using a parent link

to implement the delegation.  Delegation should
be used in the language to extend existing objects
thus creating split objects.

- The primitive newInitials: must prevent the users
from creating abstract objects i.e objects having
methods in which are referenced other slots not
defined in the object or in one of its parents.

- Split objects should be treated as first class
entities.

- Neither delegation nor cloning should be used to
achieve the class-like sharing among a family of
similar objects, which should instead be achieved
at the implementation level.

Many avenues are now awaiting a more complete
exploration.  First and most important, we have shed
the light on the central concept of split objects.  A
deeper understanding of this concept is mandatory for
the correct use of delegation but it raises several
crucial issues.  How can we treat split objects as full
first-class entities in the language, i.e. create them,
refer to them, clone them and otherwise deal with
them as with any other object?  Is the parent link
enough to deal with them or will another link be
necessary (e.g. the inverse of the parent link)?  How
can we refer to the constituents of a split object but
still enforce the encapsulation of the split object?
Can we define more precisely what is a split object?
Are there many different kinds of split objects, as the
person-employee-associationMember e x a m p l e
compared to the pen-turtles example seems to
suggest?  Is is possible to design a programming
methodology for prototypes which would insure that
only such legitimate split objects are created?

As a second avenue, new programming models are
challenging our taxonomy.  For example, some
prototype-based languages use a constraint
propagation computing model which subsumes
message passing and achieve similar effects on
objects as the sharing provided by delegation do in
more traditional languages.  The taxonomy should be
adapted to take these new trends into account.

Finally, as a third avenue, some interesting but less
basic issues have still to be addressed: dynamic
modification of parents links, multiple delegation (the
prototype's interpretation of multiple inheritance), the
questions of whether or not there should be an initial



object in the system and what it should look like, and
also the questions of how to access primitives in the
language and how they could be redefined by
prototypes.

Our future work is to look more attentively at
these issues and to experiment the design of
representative applications using our language
proposal.
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Appendix A

Overview of the Smalltalk-802 platform for prototype-based languages simulation.

2The platform has been programmed with Objectworks\Smalltalk, releases 2.5 and 4.0; Objectworks\Smalltalk is a trademark of
ParcPlace System, Inc.


