
Durham Research Online

Deposited in DRO:

11 August 2016

Version of attached �le:

Accepted Version

Peer-review status of attached �le:

Peer-reviewed

Citation for published item:

Bennett, K. H. and Munro, M. and Xu, J. and Gold, N. E. and Layzell, P. J. and Mehandjiev, N. and Budgen,
D. and Brereton, O. P. (2002) 'Prototype implementations of an architectural model for service-based �exible
software.', in Proceedings of the 35th Annual Hawaii International Conference on System Sciences (HICSS-35)
: abstracts and CD-ROM of full papers : 7-10 January 2002, Big Island, Hawaii. Los Alamitos, CA: IEEE, pp.
1318-1326.

Further information on publisher's website:

http://dx.doi.org/10.1109/hicss.2002.993996

Publisher's copyright statement:

c© 2002 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in
any current or future media, including reprinting/republishing this material for advertising or promotional purposes,
creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of
this work in other works.

Additional information:

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for
personal research or study, educational, or not-for-pro�t purposes provided that:

• a full bibliographic reference is made to the original source

• a link is made to the metadata record in DRO

• the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full DRO policy for further details.

Durham University Library, Stockton Road, Durham DH1 3LY, United Kingdom
Tel : +44 (0)191 334 3042 | Fax : +44 (0)191 334 2971

https://dro.dur.ac.uk

https://www.dur.ac.uk
http://dx.doi.org/10.1109/hicss.2002.993996
http://dro.dur.ac.uk/19494/
https://dro.dur.ac.uk/policies/usepolicy.pdf
https://dro.dur.ac.uk

Prototype Implementations of an Architectural Model for
Service-Based Flexible Software

Keith Bennett,

Malcolm Munro, Jie Xu
Dept. of Computer Science
University of Durham, UK

keith.bennett@durham.ac.uk

Nicolas Gold, Paul Layzell
Nikolay Mehandjiev

Department of Computation
UMIST, UK

n.mehandjiev@umist.ac.uk

David Budgen
Pearl Brereton

Dept. of Computer Science
Keele University, UK

db@cs.keele.ac.uk

Abstract

The need to change software easily to meet evolving
business requirements is urgent, and a radical shift is
required in the development of software, with a more
demand-centric view leading to software which will be
delivered as a service, within the framework of an open
marketplace.

We describe a service architecture and its rationale, in
which components may be bound instantly, just at the
time they are needed and then the binding may be
disengaged. This allows highly flexible software services
to be evolved in “Internet time”. The paper focuses on
early results: some of the aims have been demonstrated
and amplified through two experimental implementations,
enabling us to assess the strengths and weakness of the
approach. It is concluded that some of the key
underpinning concepts – discovery and late binding – are
viable and demonstrate the basic feasibility of the
architecture.

1. Objectives

Contemporary organisations must be in a constant state
of evolution if they are to compete and survive in an
increasingly global and rapidly changing marketplace.
They operate in a time-critical environment, rather than a
safety critical application domain. If a change or
enhancement to software is not brought to market
sufficiently quickly, thus retaining competitive advantage,
the organisation may collapse. This poses significantly
new problems for software development, characterised by
a shift in emphasis from producing ‘a system’ to the need
to produce ‘a family of systems’, with each system being
an evolution from a previous version, developed and

deployed in ever shorter business cycles. It may be that
the released new version is not complete, and still has
errors. If the product succeeds, it can be put on an
“emergency life support” to resolve these. If it misses the
market time slot, it probably will not succeed at all.

It is possible to inspect each activity of the software
evolution process and determine how it may be speeded
up. Certainly, new technology to automate some parts
(e.g. program comprehension, testing) may be expected.
However, it is very difficult to see that such
improvements will lead to a radical reduction in the time
to evolve a large software system. This prompted us to
believe that a new and different way is needed to achieve
ultra rapid evolution; we term this “evolution in Internet
time”. It is important to stress that such ultra rapid
evolution does not imply poor quality, or software which
is simply hacked together without thought. The real
challenge is to achieve very fast change yet provide very
high quality software. Strategically, we plan to achieve
this by bringing the evolution process much closer to the
business process.

In 1995, British Telecommunications plc (BT)
recognised the need to undertake long-term research
leading to different, and possibly radical, ways in which
to develop software for the future. Senior academics
from UMIST, Keele University and the University of
Durham came together with staff at BT to form DiCE
(The Distributed Centre of Excellence in Software
Engineering). This work established the foundations for
the research described here, and its main outcomes are
summarised in Section 2 of the paper.

From 1998, the core group of researchers switched to
developing a new overall paradigm for software
engineering: a service-based approach to structuring,
developing and deploying software. This new approach
is described in the second half of this paper.

In Section 3, we express the objectives of the current
phase of research in terms of the vision for software -

mailto:keith.bennett@durham.ac.uk
mailto:n.mehandjiev@umist.ac.uk
mailto:db@cs.keele.ac.uk

how it will behave, be structured and developed in the
future. In Section 4, we describe two prototype
implementations of the service architecture,
demonstrating its feasibility and enabling us to elucidate
research priorities. In addition, we are exploring
technologies in order to create a distributed laboratory for
software service experiments.

2. Developing a future vision

The method by which the DiCE group undertook its
research is described in [2]. Basically, the group
formulated three questions about the future of software:
How will software be used? How will software behave?
How will software be developed? In answering these
questions, a number of key issues emerged.

K1. Software will need to be developed to meet
necessary and sufficient requirements, i.e. for the
majority of users whilst there will be a minimum set of
requirements software must meet, over-engineered
systems with redundant functionality are not required.

K2. Software will be personalised. Software will be
capable of personalisation, providing users with their own
tailored, unique working environment which is best suited
to their personal needs and working styles, thus meeting
the goal of software which will meet necessary and
sufficient requirements.

K3. Software will be self-adapting. Software will
contain reflective processes which monitor and
understand how it is being used and will identify and
implement ways in which it can change in order to better
meet user requirements, interface styles and patterns of
working.

K4. Software will be fine-grained. Future software
will be structured in small simple units which co-operate
through rich communication structures and information
gathering. This will provide a high degree of resilience
against failure in part of the software network and allow
software to re-negotiate use of alternatives in order to
facilitate self-adaptation and personalisation.

K5. Software will operate in a transparent manner.
Software may continue to be seen as a single abstract
object even when distributed across different platforms
and geographical locations. This is an essential property if
software is to be able to reconfigure itself and substitute
one component or network of components for another
without user or professional intervention.

Although rapid evolution is just one of these five
needs, it clearly interacts strongly with the other demands,
and hence a solution which had the potential to address all
the above factors was sought.

3. Service-based software

3.1. The problem

Most software engineering techniques, including those
of software maintenance, are conventional supply-side
methods, driven by technological advance. This works
well for systems with rigid boundaries of concern such as
embedded systems. It breaks down for applications
where system boundaries are not fixed and are subject to
constant urgent change. These applications are typically
found in emergent organisations - “organisations in a
state of continual process change, never arriving, always
in transition” [4]. Examples are e-businesses or more
traditional companies which continually need to reinvent
themselves to gain competitive advantage [5]. These
applications are, in Lehman’s terms, “E-type” [7]; the
introduction of software into an organisation changes the
work practices of that organisation, so the original
requirements of the software change. It is not viable to
identify a closed set of requirements; these will be forever
changing and many will be tacit.

We concluded that a “silver bullet”, which would
somehow transform software into something which could
be changed far more quickly than at present, was not
viable. Instead, we took the view that software is actually
hard to change, and this takes time to accomplish. We
needed to look for other solutions.

Subsequent research by DiCE has taken a demand-led
approach to the provision of software services, addressing
delivery mechanisms and processes which, when
embedded in emergent organisations, give a software
solution in emergent terms - one with continual change.
The solution never ends and neither does the provision of
software. This is most accurately termed engineering for
emergent solutions.

3.2. Service-based approach to software evolution

Currently, almost all commercial software is sold on
the basis of ownership (we exclude free software and
open source software). Thus an organisation buys the
object code, with some form of license to use it. Any
updates, however important to the purchaser, are the
responsibility of the vendor. Any attempt by the user to
modify the software is likely to invalidate warranties as
well as ongoing support. In effect, the software is a “black
box” that cannot be altered in any way, apart from built-in
parameterization. This form of marketing (known as
supply-led) applies whether the software is run on the
client machine or on a remote server. A similar situation
can arise whether the user takes on responsibility for in-
house support or uses an applications service provider. In
the latter case there is still a “black box” software, which

is developed and maintained in the traditional manner, it
is just owned by the applications service provider rather
than by the business user.

Let us now consider a very different scenario. We see
the support provided by our software system as structured
into a large number of small functional units, each
supporting a purposeful human activity or a business
transaction (see K1, K4, K5 above). There are no
unnecessary units, and each unit provides exactly the
necessary support and no more. Suppose now that an
activity or a transaction changes, or a new one is
introduced. We will now require a new or improved
functional unit for this activity. The traditional approach
would be to raise a change request with the vendor of the
software system, and wait for several months for this to
be (possibly) implemented, and the modified unit
integrated.

In our solution, the new functional unit is procured by
the use of an open market mechanism at the moment we
specify the change in our needs. At this moment the
obsolete unit is disengaged and the new unit is integrated
with the rest of the system automatically. In such a
solution, we no longer have an ownership of the software
product which provides all the required units of support
functionality. The software is now owned by the
producer of each functional unit. Instead of product
owners, we are now consumers of a service, which
consists of us being provided with the functionality of
each unit when we need it. We can thus refer to each
functional unit as a software service.

Of course, this vision assumes that the marketplace can
provide the desired software services at the point of
demand. However, it is a well-established property of
marketplaces that they can spot trends, and make new
products available when they are needed. The rewards
for doing so are very strong and the penalties for not
doing so are severe. Note that any particular software
supplier of software services can either assemble their
services out of existing ones, or develop and evolve
atomic services using traditional software development
techniques. The new dimension is that these services are
sold and assembled within a demand-led marketplace.
Therefore, if we can find ways to disengage an existing
service and bind in a new one (with enhanced
functionality and other attributes) dynamically at the point
of request for execution, we have the potential to achieve
ultra-rapid evolution in the target system.

These ideas led us to conclude that the fundamental
problem with slow evolution was a result of software that
is marketed as a product in a supply-led marketplace. By
removing the concept of ownership, we have instead a
service i.e. something that is used, not owned. Thus we
widened the traditional component-based solution to the

much more generic service-based software in a demand-
led marketplace.

This service-based model of software is one in which
services are configured to meet a specific set of
requirements at a point in time, executed and then
disengaged - the vision of instant service, conforming to
the widely accepted definition of a service:

“an act or performance offered by one party to another.
Although the process may be tied to a physical product,
the performance is essentially intangible and does not
normally result in ownership of any of the factors of
production” [6].

Services are composed out of smaller ones (and so on
recursively), procured and paid for on demand. An
analogy is the service of organising weddings or business
travel: in both cases customers configure their service for
each individual occasion from a number of sub-services,
where each sub-service can be further customised or
decomposed recursively.

This strategy enables users to create, compose and
assemble a service by bringing together a number of
suppliers to meet needs at a specific point in time.

3.3. Comparison with existing approaches to
building flexible software

Software vendors attempt to offer a similar level of
flexibility by offering products such as SAP, which is
composed out of a number of configurable modules and
options. This, however, offers extremely limited
flexibility, where consumers are not free to substitute
functions and modules with those from another supplier,
because the software is subject to vendor-specific binding
which configures and links the component parts, making
it very difficult to perform substitution.

Component-based software development [11] aims to
create platform-independent component integration
frameworks, which provide standard interfaces and thus
enable flexible binding of encapsulated software
components. Component reuse and alignment between
components and business concepts are often seen as
major enablers of agile support for e-business [14].
Component marketplaces are now appearing, bringing our
vision of marketplace-enabled software procurement
closer to reality. They, however, tend to be organised
along the lines of supply push rather than demand pull.
Even more significant difference from our approach is
that the assembly and integration (binding) of
marketplace-procured components are still very much part
of the human-performed activity of developing a software
product, rather than a part of the automatic process of
fulfilling user needs as soon as they are specified.

Current work in Web services does bring binding
closer to execution, allowing an application or user to find

Real World

Service Architecture

End-user

SSPsCSPs
ISPs

Service Use Interface

Catalogue
Service

Catalogu
e Service

Assembly
Service

Assembly
Service

Component
Provider

Solution
Provider

Certification Body

Service Specification Interface

of non-functional attributes with candidate services. Note
that the service composition (the design activity) is not
undertaken by the client or user, but the templates are
supplied by SSPs in the marketplace.

Figure 1: Service architecture

It can be seen that this architectural model offers a
dynamic composition of services at the instant of need. Of
course this raises the question of a service request for
which there is no offering in the marketplace. Although in
the long term there may be technological help for
automatic composition (e.g. using reflection), currently
we see this as a market failure; where the market has been
unable to provide the needs of a purchaser.

It is important to distinguish binding and service
composition. The design of a composition is a highly
skilled task which is not yet automatable, and there is no
attempt at “on the fly” production of designs. However,
we can foresee the use of variants or design patterns in
the future. We call this design a composition template.
Once it exists, we can populate the composition template
with services from the marketplace which will fulfill the
composition. Our architecture offers the possibility of
locating and binding such sub-services just before the
super-service is executed. The application code is
replaced by recursive sub-service invocation.

4. Service Implementation – Prototypes and
Results

4.1. Aims of the prototype implementation

This section describes the objectives of the two
experimental systems (referred to as prototypes 1 and 2),
the rationale for using the platforms, the results obtained
from the implementations, and the conclusions drawn by
bringing together the results of both experiments.

The general aim of the prototypes was to test ideas
about the following:

• dynamically bound services at run-time within the
flexible software service architecture;

• service binding with limited negotiation;
• service discovery.
To guide the development of our prototype series, we

have mapped some of the problems of service-based
software delivery into an established transaction model
[10]. This model characterises a transaction between
buyer and seller and provides the four process phases
shown in Table 1. The activities identified within the
phases are drawn both from the model and our own work.

Phase Activities Prototyp
e no.

Information Service Description
Service Discovery
Request Construction

2

Negotiation Negotiate
Evaluate

1

Settlement Service Invocation
Monitoring
Claim & Redress

1, 2

After-sales Evaluate for future

Table 1: Transaction model for software services
Our first experimental system had the aim of

demonstrating the capability of service binding and
limited service negotiation [9]. The objectives of the
second prototype were to investigate two aspects of the
above theoretical model: service discovery, and service
binding (see Table 2).

Prototype Aim Infrastructure
1. Calculation Service

binding &
negotiation

PHP, MySQL and
HTML

2. Print service Discovery &
binding

e-Speak

Table 2: Prototype Aims and Infrastructures

4.2. Prototype applications

4.2.1. A calculation service. The first prototype was
designed to supply a basic calculation service to an end-
user. The particular service selected was the problem of
cubing a number. Note that due to the service nature of
the architecture, we aim to supply the service of cubing,
rather than the product of a calculator with that function
in it. This apparently simple application was chosen as it
highlights many pertinent issues yet the domain is
understood by all.

4.2.2. A printing service. The second prototype was a
simple client application implemented on the e-Speak
platform. The application requests a high-speed printing
service with a specified speed requirement.

The e-Speak approach allows a single registration and
discovery mechanism for both composite and atomic
services. This supports our recursive model (Section 3.2)
for service composition. The key to the implementation is
a class, written outside e-Speak, called DGS
(Dynamically Generated Service). When a service
composition is returned from the discovery process, the
DGS interprets it to invoke sub-services.

4.3. Experimental infrastructures

4.3.1. Prototype 1: Calculation. This prototype is
implemented using an HTML interface in a Web browser.
PHP scripts are used to perform negotiation and service
composition by opening URLs to subsidiary scripts. Each
script contains generic functionality, loading its
“personality” from a MySQL database as it starts. This
allows a single script to be used to represent many service
providers. End-user and service provider profiles are
stored on the database, which also simulates a simple
service discovery environment.

4.3.2. Prototype 2: Printing. We used e-Speak [8] for
building this prototype. It offers a comprehensive
infrastructure for distributed service discovery, mediation
and binding for Internet based applications. e-Speak has
the following advantages as an experimental framework:

• A basic name-matching service discovery
environment, with an exception mechanism if no
service can be found.

• Issues of distribution and location are handled
through virtualisation.

• It is based on widely used systems such as Java
and XML.

It also has the following drawbacks:
• The dynamic interpretation of composition

templates and subsequent binding in our theoretical
model need to be implemented outside the core e-
Speak system.

• The discovery mechanism does not support a more
flexible scheme than name matching.

• It intercepts all invocations of services and clients,
potentially resulting in supplier lock-in for
organizations using the system.

4.4. The prototype implementations

4.4.1. Calculator prototype. Three main types of
entities are involved in service delivery in the prototype:
the end-user, an interface, and service providers. The
arrows on Figure 1 show the interactions and
relationships between them. The interface (in this case, a
Web browser) allows the end-user to (a) specify their
needs as shown on Figure 2, and then (b) to interact with
the delivered software. It is expected that the interface
will be light-weight and perhaps supplied free in a similar
manner to today’s Web browsers.

Service from the end-user’s point of view is provided
using the following basic model:

1) The end-user requests a software service.
2) The end-user selects a service domain (e.g.

calculation).
3) The end-user selects a service within the domain

(e.g. cube).
4) The end-user enters the number they want to

cube.
5) The end-user receives the result.
Apart from the notion of requesting the service of cube

rather than the product of calculator, it can be seen that
the process of cubing is similar to selecting the function
from a menu in a software product. However, the hidden
activity for service provision is considerable.

Each provision of service is governed by a simple
contract. This contains the terms agreed by the service
provider and service consumer for the supply of the
service. The specific elements of a contract are not
prescribed in terms of the general architecture; providers
and consumers may add any term they wish to the
negotiation. However, for the prototype, three terms are
required:

1) The law under which the contract is made.
2) Minimum performance (represented in the

prototype by a single integer).
3) Cost (represented by a single integer).
In order to negotiate a contract, both end-users and

service providers must define profiles that contain

acceptable values for contract terms. The profiles also
contain policies to govern how these values may be
negotiated.

The profiles used in the first demonstrator are
extremely simple. End-user profiles contain acceptable
legal systems for contracts, the minimum service
performance required, the maximum acceptable cost, and
the percentage of average market cost within which
negotiation is possible. Service provider profiles contain
acceptable legal systems for contracts, guaranteed
performance levels, and the cost of providing the service.
Negotiation in the prototype thus becomes a process of
ensuring that both parties can agree a legal system and
that the service performance meets the minimum required
by the end-user. If successful, service providers are
picked on the basis of lowest cost. Acceptable costs are
determined by taking the mean of all service costs on the
network for the service in question and ensuring that the
cost of the service offered is less than the mean plus the
percentage specified in the end-user profile. It must also
be less than the absolute maximum cost.

To avoid the overhead of negotiation for basic,
common services such as catalogues, it is assumed that
external bodies will provide “certificates” which represent
fixed cost, fixed performance contracts that do not require
negotiation. Both end-user and service provider profiles
contain acceptable certificates.

Figure 2: Specifying requirements for the
calculator prototype service

Negotiations take place within the following simplified
procedure for service provision:

• A contractor (assembly) service is selected using
negotiation, and the requirements passed to the
service.

• The selected contractor service obtains available
solution domains from the catalogue services, and
the end-user selects the calculation service
domain.

• The contractor then retrieves services available
within the calculation domain. Again, a list is
presented and the end-user selects cube.

• Now the contractor negotiates the supply of a cube
solution description from a software service
provider. The solution tells the contractor service
which other services are required to perform
cubing and how to compose them.

• The contractor then finds potential sub-services,
negotiates contracts with them, and composes
them following the template.

• The user uses the cube service.
• Having completed the service provision, the

contractor disengages all the sub-services.

4.4.2. Printing service prototype. For the client
application that requests a printing service, the e-Speak
engine first attempts to locate a single printing service on

a remote host. However, no specification of a single
printing service satisfies the speed requirement from the
client at the point of need, although a service composition
does meet the requirement. Therefore, instead of returning
the stub of a single service back to the client, a service
composition template is returned.

In this case, the client application invokes the service
by sending the composition template to DGS (note that,
normally, the client would use the stub of a service to
invoke, via e-Speak, the service on a remote host.) DGS
serves as a broker and actually invokes three sub-services
provided on three distributed printers A, B and C. Under
the control of DGS, the original printing task is executed
in parallel on the three printers, in a coordinated fashion.
The required printing speed is therefore achieved by this
composed service.

Whilst the theoretical model assumes that a service
name also describes the required functionality, e-Speak
assumes that a client application knows the name of a
previously existing service before it contacts the e-Speak
system. A theoretical client does not necessarily expect to
find the required service in the marketplace; an e-Speak
client does. The client connects itself to e-Speak and asks
it to find the named service. The dynamic behaviour
supported by e-Speak is essentially:

• Using the service name to locate a (remote) server
that provides that service.

• Locating an appropriate server for the desired
implementation if several exist.

• Returning an exception to the client, if the service
is no longer available.

It is not possible for e-Speak to locate a service for the
client just based on the description of the client's request;
it must be a precise name of the service. Note that the
theoretical model assumes that the name is equivalent to
the description and does support this.

4.5. Results

The calculation prototype has demonstrated that the
ideas behind our approach and the primitives of our
architecture are feasible and viable. A very simple
application domain example has been found sufficiently
rich to enable demonstration of many of the basic ideas,
such as service negotiation, dynamic composition and
subsequent disengagement. The prototype has also been
extended with little effort to supply an “addition” service.
The implementation has shown that a service architecture
is not prescriptive, by allowing, with very few exceptions,
the use of different negotiation, discovery and description
methods. In summary, the experimental work on the
calculator prototype has provided two areas of evidence
to support our aim of ultra rapid evolution:

• Very late binding, and subsequent disengagement
can be achieved for both functional and non-
functional service attributes, given suitable
discovery, description and negotiation
representations.

• It is feasible to build a service architecture which
is not committed to particular description
notations or negotiation mechanisms.

The aim of the print prototype experiment has been to
explore two aspects of our architectural model: the
dynamic binding and service discovery. Additionally, we
were able to assess the feasibility of using a commercial
platform, e-Speak, to build the prototype.

The e-Speak system allows services to be registered
and discovered through vocabularies. It does not support
the much more powerful and flexible “on the fly”
discovery and binding required by our model. We had to
implement this using an external component (the DGS
class). We also need to extend this to support negotiation
on non-functional aspects, again outside e-Speak.

Support for dynamic service binding is provided, but
for our purposes, the great majority of the functionality in
interpreting compositions has to be undertaken by another
external object: a broker, which plays the role of a
contractor service provider in our architecture. This is
necessary because e-Speak does not have the concept of
composition templates or patterns. These have to
implemented externally and interpreted by the broker.

5. Future Research Issues

Using the results of both prototypes, we have
identified three key major issues that need to be
addressed.

Requirements for software need to be represented in
such a way that an appropriate service can be discovered
on the network. The requirements must convey therefore
both the description and intention of the desired service.
Given the highly dynamic nature of software supplied as a
service, the maintainability of the requirements
representation becomes an important consideration.
However, the aim of the architecture is not to prescribe
such representation, but support whatever conventions
users and service suppliers prefer.

Automated negotiation is another key issue for
research, particularly in areas where non-numeric terms
are used e.g. legal clauses. Such clauses do not lend
themselves to offer/counter-offer and similar approaches.
In relation to this, the structure and definition of profiles
and terms needs much work, particularly where terms are
related in some way (e.g. performance and cost). Also we
need insight to the issue of when to select a service and
when to enter negotiations for a service. It is in this area
that multi-disciplinary research is planned.

Dynamic binding at the point of need is a third issue
that warrants research to understand the performance,
security and fault tolerance implications of service based
software.

6. Conclusions

We have presented a radical approach to achieving
ultra rapid evolution of software by moving from the
concept of a software product to a mechanism of service
delivery at the point of need. Service provision involves
recursive decomposition to sub-services, and atomic
services are still produced using traditional software
development techniques. However, providing software as
a service postulates a completely different software
marketplace, which is demand-led, not supply-led. Using
demand-led marketplaces ensures availability of up-to-
date services, which are bound together at the point of
customer need, just before execution, and disengaged
afterwards, so a service can be replaced by an improved
one when needed. The software may thus be continually
adapted to meet user requirements.

Two prototype implementations have been built using
two different technologies: scripting and e-Speak. We
have found the scripting approach to be very flexible, but
with significant performance limitations, while in e-
Speak, the innovative aspects of our architecture have to

http://www.e-speak.hp.com/
http://www.uddi.org/

