
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 5, No. 6, 2014

97 | P a g e

www.ijacsa.thesai.org

Prototype of a Web ETL Tool

Matija Novak, Kornelije Rabuzin

Faculty of Organization and Informatics

University of Zagreb

Varazdin, Croatia

Abstract— Extract, transform and load (ETL) is a process

that makes it possible to extract data from operational data

sources, to transform data in the way needed for data

warehousing purposes and to load data into a data warehouse

(DW). ETL process is the most important part when building the

data warehouse. Because the ETL process is a very complex and

time consuming, this paper presents a prototype of a web ETL

tool that offers step-by-step guidance through the entire process

to the end user. This ETL tool is designed as a web application so

users can save time (and space) required for installation

purposes.

Keywords—ETL; data warehouse; web; ETL tool

I. INTRODUCTION

Databases (DB) have been used for many years and it is
hard to imagine any (transaction) application that wouldn’t use
some database. Over time people realized that databases,
although they support daily operations, are not good source
when complex analysis must be made on data. Merging data
from multiple tables, the complexity of the model (as such), the
inability to generate reports by end users and (in)effectiveness
of such approach resulted with the need to reorganize
(transform) data into a form that will be suitable for analysis.
This form is called a data warehouse [1, p. 85].

The basic idea of data warehouses is to store data in such a
way that users can understand and analyze data. R. Kimball
and J. Caserta define the data warehouse as follows: "A data
warehouse is a system that extracts, cleans, conforms, and
delivers source data into a dimensional data store and then
supports and implements querying and analysis for the purpose
of decision making." [2, p. 23]. This definition says that data
warehouses are used to support decision-making. The data
warehouse would not be good without the iterative process of
extracting, cleaning, conforming and loading data (the so
called ETL process) from various sources into the star schema
model.

When we talk about data organization in the data
warehouse, we distinguish between fact and dimension tables.
While dimension tables contain large number of attributes that
we use when analyzing (filtering) data, fact tables contain
measures to quantify business processes (number of product
units sold, number of orders, number and duration of calls,
etc.). For end users such model is understandable and they can
independently create necessary reports.

Fig. 1. ROLAP model [3]

Basically there are two mechanisms (ways) that can be
used to store data in the data warehouse (Fig. 1): relational
online analytical processing (ROLAP) and multidimensional
online analytical processing (MOLAP) [4, p. 165] While
ROLAP stores data in tables, MOLAP stores data in special
structures also known as cubes. There are advantages and
disadvantages but we will not discuss them in this paper (more
can be found in [9]).

If one looks at today’s market, one can find various
Business Intelligence (BI) tools that are used to produce reports
by using data from data warehouses. Although data
warehouses are very valuable sources of data, the main
problem in the construction of the data warehouse is the so
called ETL process. Systems for extraction, transformation and
loading of data (ETL systems for short) are the foundation of
data warehouses. When constructing a data warehouse 70
percent of time and resources is used for the ETL purposes (by
Inmon 80 percent [5, p. 295]).

Building a data warehouse is expensive, time consuming
and complex job and the ETL phase is the most critical one.
Because of that the idea of this paper is to present the ETL tool
that should facilitate and accelerate the process of ETL. This
ETL tool offers the user step-by-step guidance through the
entire ETL process. In addition this ETL tool is designed as a
web application and users can save time (and space) required
for installation. This tool can start from heterogeneous sources
of data and result is a dimensional model stored in a relational
database which can be used for other purposes (primarily for
building reports by means of some BI tool).

This paper is structured as follows: the second section
describes the related work and the third section the basics of
ETL. Next, the model of the ETL tool is shown and several
screen shoots are given. In the end of the paper some open
questions are addressed (future work) and the conclusion is
presented.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 5, No. 6, 2014

98 | P a g e

www.ijacsa.thesai.org

II. ETL TOOLS

There are various professional tools, which can be used to
assist user in the ETL process; however, the problem of these
tools is their complexity and/or price. For example, if we take
free tool Talend Open Studio, its features are great and user can
execute complex operations. But, the tool can be very difficult
and confusing, especially if the user is not familiar with the
ETL process. Because the tool has a number of possibilities, it
is necessary to examine what our individual elements (or rather
objects) allow us to do and what are their attributes.

In addition, there is service-oriented architecture (SOA)
ETL Framework described in [7] that tries to split the tightly
coupled functionalities of an ETL tool into separate parts that
can be used as services.

To the authors knowledge there is no such thing as a
completely web based tool that would integrate the learning of
the ETL process into the tool itself. Furthermore, the ETL tool
described in this article is completely web based (it can be
easily accessed through web browser, no installation is needed
and multiple users can use it at the same time). To avoid
problems with the ETL process, the created tool guides the user
through the ETL process and teaches him during the way; so
the basic idea is that it can be used by people not familiar with
the ETL process.

III. ETL

The ETL process is a set of activities that are not visible to
the end user and that are taking place in the background. In
addition to retrieving information from different sources, many
activities need to be performed on data [2, p. xxi]: mistakes
have to be corrected, data needs to be structured, etc.

The ETL process (Fig. 2) has three steps [6, p. 139]:

 Data extraction – accessing data sources in order to
retrieve (required) data.

 Data transformation - In this step data collected from
various sources is checked, cleaned and conformed, i.e.
data undergoes a series of activities in order to improve
the quality of data. [4, p. 375]

 Data loading - extracted and transformed data is loaded
into the data warehouse (dimension and fact tables).

While extraction and loading only transfer data,
transformations are really changing data. Kimball and Caserta
propose the so-called Extracting, Cleaning, Conforming, and
Delivering (ECCD) instead of the ETL, but either way in the
end data has to be loaded in the data warehouse. ECCD
consists of four steps [2, pp. 18-19]:

 Extraction – the first step is to take data from different
sources and store it in the ETL environment in order to
make the necessary processing.

 Cleaning – performing the first transformation of data
in order to enhance the quality of the original data.

 Conforming – This step is necessary if there are two or
more data sources. Various sources tend to have

Fig. 2. ETL process steps

differently shaped and stored data and there is a need to
synchronize data (resolve conflicts when different names are
used, resolve the problem of duplicates, etc.).

 Delivery – The last step is the same as for the ETL
(loading data into the data warehouse). This process of
loading data can be further divided into two parts [2, pp.
161-254]:

o Loading data into dimension tables – they
contain information that allows
understanding (interpreting) the data in fact
tables

o Loading data into fact tables – central tables
that contain numerical values.

There is also the fifth step (the so called management)
which is not part of the flow of data processing, but it is used
for system and process management of the ETL environment.
ETL and ECCD describe the same data processing activities
and the end result is the same, yet the ECCD is somewhat
better because the steps define in detail the activities to be
carried out in the processing of the original data and it
separates activities related to a single source of data and
activities that include multiple data sources. Nevertheless the
term ETL is so "domestic" that it is not reasonable to expect
that it is replaced in the near future.

A. Metadata

During the ETL process various metadata is generated. The
ETL metadata is divided into four main categories [2, pp. 367-
368]:

 ETL job metadata – is a container of transformations
that manipulate the data. Every ETL task is captured
here.

 Transformation metadata – contains information about
every transformation that is used inside of the ETL jobs.

 Batch metadata – in the ETL process batches are used
to run collections of jobs together. Batches can contain
sub-batches and schedules can be made to run batches
periodically. All that information is stored in batch
metadata.

 Process metadata – is generated when batches are
executed. Process metadata has information on whether
loading of data (into the DW) was successful or not.

Load

Data sources Transform

Date

format/

Attribute

merge/

Not null/

… DW

Flat files

DB

XML Files

Extract

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 5, No. 6, 2014

99 | P a g e

www.ijacsa.thesai.org

1) Logical data map
At the beginning of the ETL process, it is necessary to

make a logical data map. The logical data map documents the
links between the columns (fields) in the source and the
columns in the destination table (in the data warehouse).
Logical data map is one of the most important and most useful
metadata generated by the ETL. Header of the logical data map
is shown in the following table [2, pp. 56-71].

Once created, the logical data map provides information
about what needs to be extracted, from where, how to process
data and where it needs to be saved after processing. The
logical data map is useful throughout the entire ETL process.

TABLE I. HEADER OF THE LOGICAL DATA MAP [2, P. 60]

Target

Transformation

Table

name

Column

name

Data

type

Table

type

SCD

type

Source

Database

name

Table

name

Column

name
Data type

2) Data sources
A data warehouse often uses different data sources

(Enterprise Resource Planning (ERP) Systems, extensible
markup language (XML) files, databases and flat files). No
matter which source is used, specific metadata is required. The
following metadata attributes are minimally required [2, p.
362]:

 Database or file system – “The name commonly used
when referring to a source system or file.” [2, p. 362]

 Table specification – “The ETL team needs to know the
purpose of the table, its volume, its primary key and
alternate key, and a list of its columns.” [2, p. 362]

 Exception-handling rules – Necessary information
related to the quality of data and how should the ETL
process manage them.

 Business definitions – It's good to get the business
definitions as these two or three sentences are very
useful when you need to understand data.

 Business rules – “Every table should come with a set of
business rules. Business rules are required to understand
data and to test for anomalies.” [2, p. 362]

Types of data sources can be:

 Flat Files - In most data warehouses regular files can’t
be avoided. Flat files can be used in the ETL system for
at least three reasons [2, pp. 90-91]: delivery of source
data, working/staging tables or preparation for bulk
load. There are two types of files [2, pp. 91-93]: fixed
length flat files and delimited flat files.

 XML files - In recent years the XML is used very much.
XML files are good for the ETL process because they

are self-documented unlike ordinary files that are not.
XML files are often used for data exchange and provide
independence from the specific computational
implementations [4, p. 126].

 Operational databases - the most common source of
data for the data warehouse. Benefits of databases
regarding the ETL phase are [2, pp. 40-41]: Apparent
metadata, Relational abilities (exp. referential
integrity), Open repository (data can easily be accessed
by any structured query language (SQL) compliant
tool), DBA Support (there is a group responsible for
data in database management system (DBMS)), SQL
interface, etc.

 Other sources:

o ERP Systems – systems that are quite
common in organizations.

o Master data management (MDM) Systems -
are centralized resources designed to hold
the main copy of the key entity, such as a
customer or a product.

o Web log – for example a control document
that is automatically created from the Web
server.

IV. THE MODEL OF THE ETL TOOL

The following figure (Fig. 3) shows the high level
architecture of the proposed ETL tool. The user uses web
interface to define the metadata (i.e. user creates project,
process, group, destination, etc.) that the ETL processing will
use. When all data is entered, user runs the thread that extracts
information from one source, then performs defined
transformation (as necessary) and finally loads data into the
data warehouse. After one source is completed, the thread
proceeds to the next source. Possible improvement is to
implement multithreading in order to process multiple sources
at once.

A. ETL thread

Data processing is made by the thread that starts after the
metadata is entered. Fig. 4 shows the class diagram of this part
of the tool. When you start the thread class “Main logic”, it is
instantiated and it then instantiates classes “Extraction”,
“Transformation” and “Load”. After that the methods of the
class “Load” are called to create the destination (dimension and
fact tables). Then, the logical data map is read and information
is stored into two vectors. The first vector contains metadata
relating to data for dimension tables and second vector stores
data for fact tables. The thread then moves and processes
dimensions, one by one, and SQL query for extraction is
created and run. After that, data is transformed as it is
described in the metadata entered by the user; after the
transformations are done, the loading starts to load data into the
data warehouse (row by row). When dimensions are finished,
the fact tables are processed in the next step (the procedure is
the same but one has to have in mind that fact tables have to be
connected to specific dimension tables).

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 5, No. 6, 2014

100 | P a g e

www.ijacsa.thesai.org

Fig. 3. ETL tool High-level architecture

Fig. 4. Class diagram – ETL thread

Thread

Main logic

FIL format date

Transformation

<<Interface>>

Transformation I

FIL not null

FIL upper lover

case

UN conn

DIM_FAC

UN merge attr

source

Load

Work DB

Work buffer Work DW

Work DB ETL

Query execution Global params

Extraction

<<Interface>>

Extraction I

Source PostgreSQL

Source MySQL

Source Query

Execution

Source Flat

File

Attribute

merge

Date

Format

Upper/Lover

Case Not null

Start

ETL

MySQL PostgreSQL Plain file

EXTRACTION

PostgreSQL

(metadata)

SCREEN

HTML/JSP

PostgreSQL

(DW) LOAD

MAIN

ETL

LOGIC TRANSFORMATION

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 5, No. 6, 2014

101 | P a g e

www.ijacsa.thesai.org

B. Dynamic loading

In order to create a flexible tool and have the option of
upgrading, dynamic load of classes and JSP files has been
implemented in two places:

 In source extraction part – for every source type one
class has been made;

 In data transformation part - for every transformation
that the tool can perform one class has been made;

Since each type of source and each transformation have
their own class, it is possible to add new types of sources or
new transformations. All you need to do is create a class (and if
needed a JSP file) and add metadata info about it.

Three important things enable dynamic loading of classes:

 Each class of source type (or transformation) must have
a method that returns an instance of a class within the
class itself (Fig.5).

 The interfaces implemented by source type or
transformation classes (Fig. 6).

 The class that has methods to search for required class
through its name and dynamic load of the class into
memory and methods to search for functions within the
retrieved class that return an instance of the desired
class (Fig. 7)

In addition to the dynamic class loading, transformations
also use dynamic load of JSP files which contain fields (if
necessary) that the user must fill in when choosing this
particular transformation. JSP loading is done with AJAX.

C. Tool configuration

In order to use the ETL tool, administrator has to pre-
configure it. Most important are the following parts:

 Source types (Fig. 8) – it refers to the source types that
the tool can work with (for now PostgreSQL, MySQL
and flat file with delimiter)

public class Source_MySQL

 implements Extraction_I {

 public static Source_MySql

 get_instance(String args[]){

 Source_MySQL instance =

 new Source_MySQL();

 return instance;

 }

 public boolean load_parameters(

 String address, String name,

 int port, String username,

 String password){...}

 public Vector get_table_columns(){...}

 public Vector execute_query(

 String query, Vector info){...}

}

Fig. 5. Example 1 Example of dynamic loading class

public interface Extraction_I {

 public boolean load_parameters(

 String address, String name,

 int port, String username,

 String password);

 public Vector get_table_columns();

 public Vector execute_query(

 String query, Vector info);

}

Fig. 6. Example 2 Example of the interface that dynamic loading class must

implement

public class Extraction {

 private Extraction_I extraction_i;

 public boolean set_class_instance(

 String src_class) {

 Thread t = Thread.currentThread();

 ClassLoader c =

 t.getContextClassLoader();

 Class toRun = null;

 try{toRun = c.loadClass("subsys_ext."

 +src_class); ...}

 Method mainMethod = null;

 try{mainMethod =

 findMain(toRun,"get_instance");

 }...

 Object instance = null;

 try{ instance =

 mainMethod.invoke(null, new

 Object[]{new String[1]});

 }...

 extraction_i =

 (Extraction_I) instance;

 return true;

 }

 private Method findMain(

 Class my_class, String function_name) {

 Method[] methods =

 my_class.getMethods();

 for (int i = 0; i < methods.length;

 i++) {

 if (methods[i].getName()

 .equals(function_name))

 return methods[i];

 }

 return null;

 }}

 public void some_method()

 {...

 extraction_i.load_parmeters(address,

filename, port, username, password);...}}

Fig. 7. Example 3 Example of a class that dynamically loads another class

[8, p. 11]

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 5, No. 6, 2014

102 | P a g e

www.ijacsa.thesai.org

 Transformations (Fig. 9) – defines which
transformations does the tool support, defines the names
of classes that implement some particular functionality
and the corresponding JSP file which is loaded when
the user chooses this transformation.

 Checkpoints or steps (Fig. 10) – administrator has to
define steps that user follows when filling in the
metadata (the administrator must define the page (a JSP
file) that opens when user is on a particular step as well
as the checkpoints name);

As we mentioned earlier, the program guides the user
through the entire process. Fig. 10 shows the steps
(checkpoints) for the user; the user has to define how much
sources are going to be used.

After that (Fig. 11) we see the input form that is used to
define a new data source (there is new PostgreSQL source
defined). It is always possible to choose from already existing
sources. The tool will use that info and will connect to the
source and will retrieve metadata as well. When we have all
(sources) metadata and we have defined dimension and fact
tables with attributes, the user must define all merges of the
attributes (Fig. 12) (for example merge of first and last names
into the attribute buff_name_surname).

After this is defined, the user can connect the attributes
from the source to destination attributes and define
transformations that need to be done. When this step is done
for all dimensions/fact tables and the corresponding sources,
the last step starts the thread for ETL processing. Before
starting the thread the user can change entered data and go
back to previous steps.

V. CONCLUSION

The ETL process is the most important and most
problematic part when creating data warehouses. In order to
speed up the whole process and in order to make it easier (for
users), we built a tool that leads the users through the whole
process. Although this ETL tool is far from being perfect and
cannot be measured with professional tools on the market, its
major advantage is that it is web based; no installation is
needed, it is available right away, more users can use it at the
same time and users can learn the ETL process when using the
tool. The ETL tool is good for users who are not that familiar
with the ETL process and who have no time to analyze new
ETL tools but want to summarize data, move data into the data
warehouse and analyze data. The ETL tool is flexible and
because of that it can be easily upgraded.

VI. FUTURE WORKS

Because this tool is only a prototype, there are many
possible improvements. Some parts are already improved;
some complex queries were made that extracted more data at
once, some filters were implemented to retrieve relevant data
(to speed up the tool) etc. In the future we plan to optimize the
tool (speed, design, source code, DB queries, security), add
new features (add new data sources, new transformations, etc.)
and test the tool with larger set of data and compare results to
other tools. Also, it is planned to take data from two grocery
stores (data from a small data warehouse that was
implemented a few years ago) and test the ETL tool with
that data and compare it first to manual ETL, and later with
other tools. When this is done and tool is optimized, it is
planned to do a research with experts where experts should
give feedback about usage of the tool in comparison to the
tools they are using right now.

Fig. 8. Administration view of source types

Fig. 9. Menu of checkpoint (steps) for the user (left)

and form to select number of sources (right)

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 5, No. 6, 2014

103 | P a g e

www.ijacsa.thesai.org

Fig. 10. Administration view of existing transformations and corresponding screen dimension

Fig. 11. Form for entering new source

Fig. 12. Form to define attribute merges

REFERENCES

[1] K. Rabuzin and M. Novak, “Data warehouses and ETL,” Methods and
Tools for Information and Business Systems development (Case22),
Zagreb, Jun. 2010, pp. 85-89

[2] R. Kimball and J. Caserta, The Data Warehouse ETL Toolkit: Practical
Techniques for Extracting, Cleaning, Conforming, and Delivering Data,
Indianapolis: Wiley Publishing Inc., 2004.

[3] C. White: "OLAP in the Database - Intelligent Business Strategies" June
2003. http://www.information-management.com/issues/20030601/6807-
1.html?pg=2. [Accessed 3 August 2010].

[4] R. Kimball R., M. Ross, W. Thornthwaite, J. Mund and B. Becker, The
Data Warehouse Lifecycle Toolkit – Second Edition, Indianapolis:
Wiley Publishing, Inc., 2008.

[5] H. W. Inmon, Building the Data Warehouse – Third Edition, New York:
John Wiley & Sons Inc., 2002.

[6] F. Silvers, Building and Maintaining a Data Warehouse, Boca Raton:
CRC Press, 2008.

[7] I. M. M. Awad, S. M. Abdullah and M. A. B. Ali, "Extending ETL
framework using service oriented architecture", Procedia Computer
Science, vol. 3, 2011., pp. 110-114

[8] T. Neward, "Understanding Class.forName - Loading Classes
Dynamically from within Extensions" 2000.
http://media.techtarget.com/tss/static/articles/content/dm_classForname/
DynLoad.pdf. [Accessed 5 July 2010].

[9] P. Ponniah, Data Warehousing Fundamentals: A Comprehensive Guide
for IT Professionals, New York: John Wiley & Sons Inc., 2001.

