

(e.g., the PRAM [FW78]). Not surprisingly, many dif-
ferent languages are currently used to construct par-
allel programs, re
ecting this diversity of underlying
machine models. Each of the speci�c language fea-
tures for parallelism | for specifying parallel execu-
tion and how parallel computations are mapped onto
physical processors, for synchronization, for communi-
cation, and for exception handling | mirror to some
extent the underlying organization of the machine.
For example:

� Distributed systems { Applications for loosely-
coupled distributed systems, such as a collection
of workstations connected via an ethernet, are pro-
grammed using the concepts of processes and block-
ing communication by message-passing. Languages
for these asynchronous distributed-state systems in-
clude OCCAM (CSP) [INM87, Hoa85] and Strand
[FT90]. Some languages commonly used for dis-
tributed systems may assume a logical model which
di�ers from the physical architecture. For example,
Linda [CGL86] assumes a nondistributed state in
the form of a \distributed data structure", a tuple
space shared among processes.

� Shared-memory multiprocessors { Applica-
tions for shared-memory multiprocessors, like the
BBN Butter
y or the Sequent, are typically pro-
grammed with languages that support shared vari-
ables with access-exclusion and synchronization
mechanisms like monitors, such as found in Con-
current Pascal, or with semaphores such as found
in Mach [BRS+85]. A theoretical model for these
asynchronous shared-memory machines is found in
the APRAM [CZ89].

� Highly-parallel processors { Applications for
distributed-memory machines such as the CM-2 or
the NCube are programmed using data-parallel op-
erations and barrier synchronization. Languages
used to program machine designs such as the CM
and the UltraComputer include speci�c features
that re
ect the fundamental organization of the ma-
chine. The PRAM model [FW78] presents a family
of abstract computational models, based on lock-
step execution and synchronously updated shared
memory, for this class of machines.

1.3. Towards a common foundation

The proliferation of machines and programming
languages for parallel computing creates a particu-
larly strong need for a common prototyping language
in which parallel applications can initially be devel-
oped independently of the target machines, and then
specialized to run on particular target machines as de-
sired.

We have developed such a common foundation for
these various machinemodels. Our foundation is small
and spartan, yet allows for higher-level control ab-
stractions to be built up using type abstraction and
syntax extension features. The spartan set of control
primitives together with higher-level extensions allows
us to accommodate elements of each style. A common

foundation also facilitates the prototyping of heteroge-
neous systems, such as a loosely coupled system con-
taining Crays and Connection Machines linked over a
high speed network, whose concurrent parts must cur-
rently be programmed following di�erent models.

1.4. Our approach

Our language starts with rich data models and op-
erators along the lines of SETL [SDDS86, BDL89] and
REFINE [Ref88], which employ the high-level math-
ematical notions of sets, tuples (or sequences), and
maps (or relations). We also incorporate metapro-
gramming capabilities found in REFINE for syntactic
language extension and transformation.

We then extend this base by allowing statements to
be �rst-class objects, that is, to be themselves values
in the data model. This permits us to express many
notions of execution-control in terms of operators over
sequences of statements. Constructs for alternative,
repetitive, nondeterministic and probabilistic execu-
tion may all be expressed in this fashion. Next we
augment this framework with a foundation for parallel
programming that relies on a shared-memory logical
model.

In a nutshell, our language supports parallelism
with one simple parallel composition operator, \k",
which speci�es \cobegin/coend"-like parallelism un-
constrained by any restrictions on atomicity or tem-
poral order of component execution. Communication
between concurrent processes is through shared vari-
ables. We augment this model by providing a small set
of mechanisms which can partition the initial global
state into shared and private variables, where each
process receives an independent copy of the private
state. These private copies are independently up-
dated, and may be \merged" back into the global state
at speci�able barrier synchronization points: at those
points a subset of the merged state may be re
ected
back into each private copy. We call this the barrier-
merge model.

In the rest of this paper we present the technical
details of our language. First we give a brief summary
of the data types and sequential control constructs.
We then discuss our basic control constructs for paral-
lelism. To demonstrate their broad expressive power,
these constructs are used to specify the general forms
of totally asynchronous Gauss-Seidel relaxation, and
the phased-synchronous Jacobi variant. Our language
is then used to express the Shiloach-Viskin algorithm
for deriving the connected components of a graph.
This example serves well to show how we can cap-
ture the CRCW model of PRAM. We conclude with a
discussion of re�nement strategies, related work, and
directions of ongoing research. A more detailed de-
scription of Proteus can be found in [Nyl91].

2. Basic features of Proteus

The core of our language is a conventional imper-
ative notation to the degree that it is assignment-
based and block-structured; program state is main-

� Statements: assignments, procedure calls

� Guarded commands: <expr> ! <stmt>

� Operators over statement sequences: Syntactic abbreviation

Sequence: seq [S1; : : : ; Sn] (S1; : : : ;Sn)

Choice: alt [B1 ! S1; : : : ; Bn ! Sn] (B1 ! S1[] : : : []Bn ! Sn)

Repetition: rep [B1 ! S1; : : : ; Bn ! Sn] (B1 ! S1[] : : : []Bn ! Sn)�

Parallel Composition: par [P1; : : : ; Pn] (P1k : : : kPn)

Figure 1: Control primitives in Proteus

tained in typed, lexically-scoped variables, and assign-
ment statements or procedure calls modify this state.
However, Proteus includes a number of high-level pre-
de�ned data types such as sets and sequences.

Sets and sequences may be constructed by enumera-
tion or by generation based on another set or sequence.
Generators are of the form:

fx in set j pred(x) : expr(x)g (set)

[x in sequence j pred(x) : expr(x)] (sequence)

Note that, like UNITY, iterators are speci�ed �rst, fol-
lowed by predicates and lastly expressions comprising
elements in the set or sequence. For example,

fi in f0::5g j (i < 3) : i*ig

has value f0; 1; 4g. Standard operations on sets and
sequences are present, such as concatenation and in-
dexing on sequences, and union and arbitrary choice
on sets. Also present is the APL-like reduction oper-
ation f=S which applies a binary function f between
the elements of sequence S. For example, +=[1; 2; 3; 4]
is (1+2+3+4) or 10. The scan operation f==S com-
putes the sequence of reductions over all pre�xes of a
sequence. We note that these examples, and those
that appear later, are expressed using a provisional
syntax that is likely to change.

Functions and statements are also values in Pro-
teus. For example, the assignment

f := func(n) (return n+x);

yields as a value for f the closure of the function in
the lexically-scoped environment. As a result, higher-
order functions such as the reduction operation can be
de�ned directly, as is the case in ISETL [BDL89].

However, unlike SETL or ISETL, statement values
can also be formed. This allows the expression of
familiar control constructs { such as sequential com-
position { as operators over sequences of statements,
yielding a
exible and extensible control regime. Fig-
ure 1 summarizes a number of control operators over
sequences of statements and the familiar syntax that
may be used when all of the statement values are ex-
plicit rather than generated.

The power of combining sequence generators with
statement values is illustrated by the following exam-
ple, with performs a sort of the sequence s.

[i; j in [1::#s] j i < j :

s(i) > s(j)! s(i); s(j) := s(j); s(i)]�

Given an n element sequence s, the generator produces
a sequence of n(n + 1)=2 guarded commands [Dij78],
each of which can exchange a speci�c pair of out-of-
order elements of s. This statement sequence has all
guards false precisely when s is an ordered sequence.
Hence execution of this statement sequence using the
rep operator | corresponding to Dijkstra's repetitive
construct [Dij78] which repeatedly executes one com-
mand selected arbitrarily from those with true guards
| will nondeterministically exchange out-of-order ele-
ments of s and terminate when the sequence is sorted.

An additional consequence of including statements
as values is that it permits a simple representation of a
Proteus program as a Proteus value. Hence, like PCN
[CT90] and LISP, this permits metaprogramming.

3. Constructs for concurrency

Having presented some basic concepts of the lan-
guage we now turn to features supporting the con-
struction of parallel programs.

3.1. Parallel composition

We postulate only one notion of concurrent com-
position. The statement (P1kP2) speci�es concurrent
execution of the two statements P1 and P2 which we
call processes. No assumptions about atomicity, in-
terleaving, or relative rates of progress of P1 and P2
are made. That is, in our model of execution each pro-
cess is viewed as a collection of events that inspect and
modify a shared state, ordered by temporal constraints
such as precedence or simultaneity. In the compo-
sition (P1kP2) we place no additional constraints on
the temporal ordering of events that constitute the
parallel execution of P1 and P2, beyond those implied
by explicit synchronization commands. This yields for
(P1kP2) a partially ordered set of events from P1 and
P2.

This lack of constraint is very close in spirit to the
parallel composition operator of PCN [CT90], which
also makes no assumption about atomicity or inter-

Figure 3: Private and shared variables

copies for each process, we have not yet given mech-
anisms by which processes can communicate informa-
tion from the private state into global, nor mecha-
nisms by which they can access this new global state
when it is shadowed by a private declaration. The
method for doing this is a simple primitive combin-
ing two-way communication and synchronization. The
barrier-merge operation

merge vi0 ; : : : ; vk0

may be invoked within the processes Pi, and delays
the process containing the operation until all other
processes in the composition have reached a merge
operation. This e�ects barrier synchronization.

At this point, each private variable has its values in
all processes combined under some speci�able merging
function (for example a function arb that arbitrarily
chooses one value from among the processes), and the
result updates the value of the corresponding variable
in the enclosing scope. This e�ects updating the global
state from the private state by combining private val-
ues using a speci�ed merge function. We then project
a portion of this merged state back down into each pri-
vate state. The private variables vi0 ; : : : ; vk0 in each
process are updated with the value of the shadowed
variable in the enclosing scope. This e�ects re
ection

of global into private state. If the vi0 ; : : : ; vk0 speci�ca-
tion is omitted, all private variables are updated from
the enclosing environment. Furthermore, an implicit
merge operation occurs at the end of every parallel
composition, so that the �nal state of a parallel com-
position is determined by merging the �nal values of
its named private variables.

The exact nature of the merge function f can be
explicitly speci�ed through the \private: : :using f"
declaration. This speci�es that every merge oper-
ation is to apply, for each private variable, the re-
duction of the binary operation f across the ordered
sequence of all processes' values, yielding the global
update. This is similar in spirit to other uses of com-
bining functions to resolve con
ict in message colli-
sions [Sab88].

When combining a variable's value from each of the
processes, a key consideration is whether the variable
has changed since the last merge operation. Conse-
quently we de�ne the combining function to apply only
between the changed values. Formally, for the com-
bining operation we augment the value domain with a
new value ? (unde�ned), indicating unchanged vari-
ables, which acts as an identity for every merge func-
tion. For example, the program

s := 5;

(private s using arb in [x := 0 k s := 10])

must yield 10 instead of 5, since s is not assigned in the
�rst process. With this de�nition the arb combining
function models the arbitrary choice write semantics
of the CRCW PRAM. Since we are frequently con-
cerned with PRAM algorithms, for the purposes of
this paper arb is the default merge function.

It is also interesting to note that our private state
and merge construct generalizes UNITY simultaneous
assignment. The UNITY multiple assignment

x; y; z := p(x; y); q(x; y); r(x; y; z)

indicates that the values for x, y, z are all fetched,
after which the expressions p, q, r are evaluated, and
the result is stored. This is just a special case of our
arb parallelism with fully private state:

(private x,y,z in

x := p(x; y; z)ky := q(x; y; z)kz := r(x; y; z))

In particular, we can give a meaning to \x, x := 1,
3", whereas UNITY requires that only identical values
can be simultaneously assigned to the same variable.
We de�ne our multiple assignment statement using the
above technique.

Indeed, having all variables private (simultaneous
assignment) or all variables shared (free parallel) rep-
resent extrema on a spectrum of what variables are
shared between the state. Since sometimes we may
want most variables private, it might be easier to name
shared exceptions, instead of assuming that all vari-
ables are shared and namingprivate exceptions. This
observation leads to a more general technique for ex-
ception naming:

allsharedexcept v1; :::; vk

allprivateexcept v1; :::; vk

which encompasses carving the state space from either
end.

3.4. Point synchronization

Our last control primitive for parallelism is a con-
ditional await construct. The \point synchronization"
operation:

await [B1 ! S1, : : : , Bn ! Sn]

waits for a true guard Bi and then executes the guard
and statement Bi ! Si atomically. In other words,
it delays the process containing the operation un-
til a state is reached in which one of the predicates
Bi holds, and then executes the corresponding Si in
that state while excluding all other processes. It cap-
tures both the concepts of Hoare's conditional wait
(\wait(B)") [Hoa74] and of selective communication
[Hoa85]. Furthermore,

await [true! S]

is equivalent to atomic execution of S; as a shorthand
we write this as � S �. In combination with parallel
composition, this can e�ect interleaving. For example:

� a := a+ 1� k� a := a+ 4�

has the meaning a := a + 5. This illustrates how
Proteus can readily capture the semantics of UNITY's
statement-level atomicity.

The barrier-merge primitives can also serve as a
foundation for extensions to other models of concur-
rency. A larger demonstration of their e�cacy is their
ability to be extended to express message-passing, in
the simplest case the blocking communication of CSP.
CSP primitives for reading and writing can be easily
developed by modeling the message queues for each
channel as a shared sequence, and ensuring mutual
exclusion with await. In a similar fashion we can
build Linda using shared message queues and some
pattern-matching capabilities of our language.

4. Expressing synchronous and

asynchronous parallelism

We now present a simple example to illustrate the
diversity of parallel computations that can be accom-
modated in Proteus. The problem considered is the
computation of a �xed point for a vector valued func-
tion f . What is required is to �nd a vector Y 2 Rn

(for some arbitrary domain R) such that Y = f(Y).
This problem is characteristic of a wide range of sci-
enti�c computations in the solution of linear systems
and di�erential equations.

The technique used is �xed point iteration, i.e. the
�xed point Y obtained through repetition of Y :=
f(Y). In the parallel computation of the �xed point,
we distribute the computation using n functions fi,
each of which updates Yi using Yi := fi(Y). The
�xed point of f is reached when all fi have reached

a �xed point. The parallel computation can be struc-
tured synchronously (Jacobi iteration) in which all
components of Y are simultaneously updated, or asyn-
chronously (Gauss-Seidel iteration) in which compo-
nents are updated one at a time, and the most recently
computed values of other components are used.

If we let f(i; Y) represent the computation fi(Y),
then a totally asynchronous parallel version of this
computation can be expressed in Proteus as follows:

par [i in [1..n] : (true ! Y[i] := f(i,Y))*]

where the vector Y is a shared variable. This corre-
sponds to n processes which continuously and inde-
pendently update their respective components of Y .

Of course this computation does not terminate
when the �xed point is reached. To do so it is nec-
essary to detect the �xed point and this will involve
some synchronization. A great variety of termination
detection approaches have been studied for problems
in this class (e.g. [DS80], [CM88]) and here we ex-
press one such solution due to Dijkstra that admits a
relatively large amount of concurrency in the compu-
tation.
s := false;
E := [i in [1..n] : false];
par (f i in [1..n] : Update(i)g with Detect())

The computation consists of n Update processes
and one Detect process. The process Update(i) is
given by

(not s ! var q,i,V;
� D[i] := true �;
seq [j in [1..n] : � V[j] := Y[j] �];
q := f(i,V);
q = V[i]! � E[i] := D[i]�;
q 6= V[i]! (

� Y[i] := q �;
seq [j in [1..n] :

�D[j] := false�;
�E[j] := false�;

]
)

)*
and the Detect process is simply

(not s ! � s := and / E �)*.

In this solution q,i and vector V are local variables,
and all remaining variables are shared. The state-
ments that must be executed atomically by each Up-
date process all involve simple references or assign-
ments to the shared state, a condition that is usually
assumed to be enforced in a shared-memory model.
Hence the Update processes in this Proteus program
model an interlock-free implementation on a shared-
memory multiprocessor. The Detect process requires
exclusion on the evaluation of the reduction and / E.

A synchronous determination of the �xed point can
also be expressed conveniently in Proteus. In the syn-
chronous case we may think of the evaluation of the
fi proceeding in \rounds". After each round, Y is
updated at every point. To express this case in the

program below we let Y and s be private variables
that are merged after each iteration.

s := false;
par [i in [1..n] :

private s using and; private y using arb;
(not s ! v := f(i,Y);

s := (v = Y[i]);
Y[i] := v;
merge;

)*
]

The merge required of the private Y variables is
the PRAM merge to provide pointwise update of the
shared Y (there is no collision, so combining is not an
issue), while the merge required for s is to combine
all values using logical \and" reduction. The merged
value of s controls termination.

The examples above illustrate that both the syn-
chronous and asynchronous formulations of this par-
allel computation can readily be expressed in Proteus.

5. An example: the Shiloach-Vishkin

algorithm

We now give an application of our language in the
speci�cation of the Shiloach-Vishkin parallel connec-
tivity algorithm presented in [SV82] using the CRCW
PRAM execution model. The objective of the al-
gorithm is to identify the connected components of
an undirected graph G with vertices V and edges E,
speci�cally by assigning the same label to each ver-
tex within a connected component while giving each
component a unique label.

Informally, the algorithm as described by Shiloach
and Vishkin is as follows. We are given an undirected
graph G with n vertices and m edges. We represent
the vertices of the graph G as numbers in the range
1..n, and the edges as a set E of pairs of vertex num-
bers (both (v; w) and (w; v) are in E if (v; w) is an
edge in G). To record the connected components, we
use an auxiliary map D which holds, for each vertex,
a pointer to another vertex or to itself. D represents a
pointer graph G0 of edges (v ! D(v)) which, although
changing throughout execution, will always be a forest
of rooted trees plus self-loops. By the end of the algo-
rithm, for each vertex v, D(v) is constructed to point
to the smallest numbered vertex in its connected com-
ponent in G, so that the vertices in each connected
component form a rooted star in G0.

The algorithm begins by implicitly allocating a pro-
cessor to each vertex and to each edge. Each D(v) is
initialized to v, thus making each vertex in the pointer
graph a root. The algorithm then repeats the follow-
ing steps until D is stable:
1. Shortcutting: paths in G0 are halved in length

by pointer doubling at each vertex v: D(v) :=
D(D(V)).

2. Hooking trees onto neighbor's trees: Each root v
in G0 (and each of its children v before short-
cutting) tries to attach its tree to a neighboring

smaller-numbered component reached by some
edge (v; w) in G. We \hook" by redirecting the
root pointer of the G0-tree to the neighbor w's
smaller-numbered G0-parent.

3. Hooking stagnant trees: For trees in G0 whose
roots are stagnant (nothing was just shortcut to
it nor attached to it), we try hooking roots and
children as above, except to any other di�erent
component, not just smaller-numbered.

4. Shortcutting again.

We faithfully express this algorithm in Proteus in
Figure 4, capturing CRCW PRAM behavior by us-
ing independent-state parallelism and explicit barrier
synchronization to combine the independent states at
each step.

In prototyping the above algorithmby transcription
into ISETL, it was discovered that although the algo-
rithm correctly yielded connected components, it did
not meet the time complexity which was established
for it in [SV82]. Examination revealed an apparent
program error due to subtleties in CRCW write se-
mantics. Speci�cally, when hooking stagnant trees,
even though D(v) may be attached to many vertices,
only the actual vertex attached to (as determined by
the merge of D) should change its value of Q. In the
algorithm in Figure 4 we correct this by merging and
testing for successful update of D before updating Q
in step 2.

6. Execution of prototypes

While programs in Proteus should be able to run
on parallel platforms, it is not our intention that
any single program execute well on all parallel plat-
forms. Early prototypes that explore speci�cations are
likely to be expressed independent of a speci�c class
of platforms, and initially executed on sequential ma-
chines. Prototypes can then evolve to use Proteus in
more restricted ways that are in close correspondence
with a particular architecture or programming model.
In common with other architecture-independent lan-
guages, re�nement can help achieve this architectural
specialization.

Re�nement and architectural specialization:
Re�nement strategies whereby a program is special-
ized to a particular subset of the language and mech-
anisms for the translation of such a subset to run on
a parallel platform are being developed in conjunction
with our colleagues at the Kestrel Institute (the third
member of our CPL team), building on their envi-
ronments for transformational program development.
The KIDS system (Kestrel Interactive Development
System) [Smi90] has been used to develop programs
from speci�cations, and includes a number of algo-
rithm design tactics and data re�nement transforma-
tions [BG90].

We are investigating new tactics to help make ex-
plicit the parallelism implicit in high level programs.
For example, a tactic to transform the implicit data-
parallelism in set and sequence operations to a more

explicit form could help in the re�nement of such a
program to run on a highly-parallel machine. We
are looking to data-re�nement techniques to e�ect the
change of notation required to yield programs suitable
for execution on particular parallel platforms.

Targeting intermediate languages: Providing
re�nement techniques to target many speci�c archi-
tectures is likely to be prohibitive, hence our strat-
egy is to re�ne to existing or proposed intermediate
languages which permit execution on a broad class of
parallel platforms. For example, we intend intially to
reduce data-parallelism to the set of parallel vector
operations provided by the CVL library [Ble90], de-
veloped by Guy Blelloch and colleagues at Carnegie-
Mellon as a machine-independent library used in the
interpretation of the data-parallel intermediate code
VCODE [BC90]. Likewise, we intend to reduce pro-
cess parallelism to the set of procedures provided with
the threads facility of Mach [BRS+85].

7. Related work

There are a wide variety of programming languages
that are cited as being useful for prototyping sequen-
tial computations. These languages include APL,
SETL, Prolog, and OPS-5, to name a few. Proteus fol-
lows the approach typi�ed by SETL in which high-level
prede�ned data types supply the bulk of the expres-
sive power. This approach is important for Proteus be-
cause it is the fundamental source of data-parallelism.
Early forms of these ideas appear in CSP [Hoa85] and
are developed further in UNITY [CM88].

For the prototyping of concurrent systems, there
are a plethora of candidate parallel languages, which
might be roughly divided into the following classes.
� Languages with widely translatable logical mod-
els, such as Linda's distributed data structures
[CGL86], the synchronization-variable methods of
Strand [FT90] and PCN [CT90], or the data-parallel
abstraction of the Paralation model [Sab88].

� Languages which incorporate a large variety of par-
allel primitives, such as Ease [Zen90] and Alloy
[MH90].

� Wide-spectrum parallel languages that rely on re-
�nement from architecture-independent speci�ca-
tion. Notable wide-spectrum parallel language
e�orts include Crystal [Che86] and variants of
the Bird-Meertens functional formalism [Ski90].
UNITY, although not a wide-spectrum notation, is,
as its name suggests, a particularly elegant nota-
tion for describing a large range of parallel and dis-
tributed computations.

We see Proteus as falling into the last category. All
of these wide-spectrum languages support a methodol-
ogy in which parallel speci�cations are re�ned to par-
allel programs for a particular class of machine. In
the case of Crystal, UNITY, and the Bird-Meertens
formalism the re�nement steps are justi�ed formally
through inference steps or algebraic transformations.

Algorithm (Shiloach+Vishkin):

Let V = [1..n] be a set of vertex labels, and
E = f (v,w) j v,w in V and 9 an edge from v to w in G g

s,t := 1,1; | Iteration number
D := V; | Pointer graph: every node initially points to itself
Dp := V; | Previous values of D in step s-1
Q := [i in V : 0]; | Last step D(i) updated (not stagnant node if =s).
(s=t !

par [i in V : private D; | Shortcutting
Dp[i],D[i] := D[i],D[D[i]];
D[i]6=Dp[i]! Q[i] := s;

];
par [[v,w] in E : private D,Q; | Hook trees

var root,nbor := D[v],0;
D[v]=Dp[v] and D[w]<D[v]! nbor,D[D[v]] := D[w],D[w];
merge;
D[root]=nbor ! Q[nbor] := s; | See if hook chosen in CRCW
merge; | Hook stagnant trees next
D[v]=D[D[v]] and Q[D[v]]<s and D[v] 6=D[w]! D[D[v]] := D[w];

];
par [i in V : private D,t; | Shortcutting and detection of termination

D[i] := D[D[i]];
Q[i]=s ! t := t+1

];
s := s+1;

)*

Figure 4: Shiloach-Vishkin parallel connected-components algorithm

In comparison with these languages Proteus sup-
ports fundamental parallel abstractions at a higher
level (e.g. barrier merge) than UNITY and at a lower
level than Crystal (where concurrency is implied by
independence in the equational speci�cation). As the
prototyping process yields a procedural speci�cation
rather than an equational or predicate logic speci�ca-
tion, Proteus programs can refer to shared state explic-
itly and must use the barrier-merge or the await syn-
chronization primitives to control interference between
parallel operations. Although UNITY programs also
manipulate shared state, the control of interference is
implicit by constraining execution to statement-level
interleaving.

8. Summary and future work

In this paper we introduced Proteus, a prototyping
language whose constructs for expressing parallelism
can serve as a foundation for embracing many con-
current programming models. Synchronous and asyn-
chronous parallel programs may be expressed with
barrier and conditional synchronization, while dis-
tributed and shared memory computation are ex-
pressed with the designation of variables as private or
shared across a parallel composition. With these facil-
ities we are able to express such diverse concurrency
models as PRAM and CSP within a single setting.
Proteus thus provides a reasonable foundation for the
construction of a wide spectrum of parallel programs,

when used in conjunction with re�nement techniques
for architectural specialization. While we have pre-
sented here only an informal semantics for Proteus, we
are developing a formal operational semantics based
on the lambda calculus.

Ongoing work in the area of the Proteus language
design is concentrated on two areas. First, we are are
investigating the inclusion of higher-level features for
distributed programming, using the notion of concur-
rent objects as the basis of an approach to controlling
process parallelism [Agh90]. Second, we are investi-
gating the modeling of time-constrained computation
in the form of annotations for the relative execution
rates of processes.

Finally, we are currently involved in the implemen-
tation of key features of the language and re�nement
system to assess the suitability of the approach. The
long-term goal of the work is to incorporate Proteus
into a prototyping system that links several prototyp-
ing languages, targeting di�erent problem domains, to
form an e�ective vehicle for the development and as-
sessment of prototypes.

Acknowledgements

The authors would like to thank Mike Landis and
Dan Palmer for their constructive advice and com-
ments.

References

[Agh90] G. Agha, \Concurrent object-oriented program-

ming," Communications ACM, vol. 33, pp. 125{

141, Sept. 1990.

[BC90] G. Blelloch and S. Chatterjee, \VCODE: a data-
parallel intermediate language," in Proceedings

Frontiers 90, IEEE, 1990.

[BDL89] N. Baxter, E. Dubinsky, and G. Levin, Learning
Discrete Mathematics with ISETL. New York:

Springer-Verlag, 1989.

[BG90] L. Blaine and A. Goldberg, \Modules and types
for a common prototyping language," Technical

Report, Kestrel Institute, Palo Alto, California,

Oct. 1990.

[Ble90] G. Blelloch, \The CVL library," Draft Technical

Note, Carnegie Mellon University, 1990.

[Bro87] F. Brooks, \No silver bullet: essence and acci-
dents of software engineering," IEEE Computer,

vol. 20, pp. 10{19, Apr. 1987.

[BRS+85] R. Baron, R. Rashid, E. Siegel, A. Tevanian,

and M. Young, \Mach-1: An operating envi-
ronment for large-scale multiprocessor applica-

tions," IEEE Software, July 1985.

[BST89] H. Bal, J. Steiner, and A. Tanenbaum, \Pro-
gramming languages for distributed computing

systems," ACM Computing Surveys, vol. 21,

pp. 261{322, Sept. 1989.

[BT88] H. Bal and A. Tanenbaum, \Distributed pro-

gramming with shared data," in Proceedings of

the IEEE CS 1988 International Conference on

Computer Languages, (Miami, Fla., Oct. 9-13),

pp. 82{91, The Computer Society of the IEEE,

New York, 1988.

[CGL86] N. Carriero, D. Gelernter, and J. Leichter, \Dis-

tributed data structures in Linda," in POPL 13,

(St. Petersburg, Fla., Jan.13-15), pp. 236{242,
ACM, New York, 1986.

[Che86] M. Chen, \Very-high-level parallel programming

in Crystal," in Proc. 1986 Hypercube Confer-

ence, (Knoxville,Tn.), 1986.

[CM88] K. Chandy and J. Misra, Parallel Program De-

sign, A Foundation. Addison-Wesley Publishing

Company, 1988.

[CT90] K. Chandy and S. Taylor, \A primer for Pro-

gram Composition Notation," Technical Report,

California Institute of Technology, June 1990.

[CZ89] R. Cole and O. Zajicek, \The APRAM: Incor-

porating asynchrony into the PRAM model,"

in Proceedings of the First ACM Symposium on

Parallel Algorithms and Architectures, pp. 169{

178, ACM Press, 1989.

[Dij78] E. Dijkstra, \Guarded commands, nondetermi-
nacy and the formal derivation of programs,"

Communications ACM, no. 18, pp. 453{457,
1978.

[DS80] E. Dijkstra and C. Scholten, \Termination de-

tection for di�using computations," Information
Processing Letters, no. 11, 1980.

[FT90] I. Foster and S. Taylor, Strand: New Concepts

in Parallel Programming. Englewood Cli�s, NJ:
Prentice-Hall, 1990.

[FW78] S. Fortune and J. Wyllie, \Parallelism in ran-

dom access machines," in Proc.10th Ann. ACM

Symp. on Theory of Computing, pp. 114{118,

1978.

[Hoa74] C. Hoare, \Monitors: An operating system
structuring concept," Communications ACM,

vol. 17, pp. 549{557, Oct. 1974.

[Hoa85] C. Hoare, Communicating Sequential Processes.

Reading, Mass.: Addison-Wesley, 1985.

[INM87] INMOS Ltd., \The Occam programming man-
ual." Prentice Hall, 1987.

[MH90] T. Mitsolides and M. Harrison, \Generators

and the replicator control structure in the par-
allel environment of ALLOY," in ACM SIG-

PLAN'90, (White Plains, N.Y.), pp. 189{196,

June 1990.

[Nyl91] L. S. Nyland, The Design of A Prototyping Pro-

gramming Language for Parallel and Sequential

Algorithms. Ph.d. dissertation, Duke University,
Feb. 1991.

[Ref88] Reasoning Systems, Inc., Palo Alto, California,
Re�ne 2.0 Language Summary, Aug. 1988.

[Sab88] G. Sabot, The Paralation Model: Architecture-

Independent Parallel Programming. MIT Press,
1988.

[SDDS86] J. Schwartz, R. Dewar, E. Dubinsky, and

E. Schonberg, Programming with Sets, An In-

troduction to SETL. New York: Springer-Verlag,

1986.

[Ski90] D. Skillicorn, \Architecture-independent par-
allel computation," IEEE Computer, vol. 23,

pp. 38{50, Dec. 1990.

[Smi90] D. Smith, \KIDS { a semi-automactic pro-
gram development system," IEEE Transactions

on Software Engineering Special Issue on For-

mal Methods in Software Engineering, vol. 16,

pp. 1024{1043, Sept. 1990.

[SV82] Y. Schiloach and U. Vishkin, \An O(log n) par-
allel connectivity algorithm," Journal of Algo-

rithms, no. 3, pp. 57{67, 1982.

[Zen90] S. Zenith, \Programming with Ease: a semiotic

de�nition of the language," Research Report

RR809, Yale University, July 1990.

