
Protractor3D: A Closed-Form Solution to
Rotation-Invariant 3D Gestures

Sven Kratz
Deutsche Telekom Laboratories, TU Berlin
Ernst-Reuter-Pl. 7, 10587 Berlin, Germany

sven.kratz@tu-berlin.de

Michael Rohs
Deutsche Telekom Laboratories, TU Berlin
Ernst-Reuter-Pl. 7, 10587 Berlin, Germany

michael.rohs@telekom.de

ABSTRACT

Protractor 3D is a gesture recognizer that extends the 2D
touch screen gesture recognizer Protractor [8] to 3D ges-
tures. It inherits many of Protractor’s desirable properties,
such as high recognition rate, low computational and low
memory requirements, ease of implementation, ease of cus-
tomization, and low number of required training samples.
Protractor 3D is based on a closed-form solution to finding
the optimal rotation angle between two gesture traces involv-
ing quaternions. It uses a nearest neighbor approach to clas-
sify input gestures. It is thus well-suited for application in
resource-constrained mobile devices. We present the design
of the algorithm and a study that evaluated its performance.

Author Keywords

Gesture recognition, gesture-based interaction, template
matching, rotation invariance, nearest neighbor approach

ACM Classification Keywords

H.5.2 Information Interfaces and Presentation: User inter-
faces; I5.2 Pattern recognition: Design methodology—Clas-
sifier design and evaluation

INTRODUCTION AND RELATED WORK

Acceleration sensors are currently in wide use in mobile
devices. Such sensors allow applications to use informa-
tion about the device’s movement. This information can
not only be used to set the correct screen orientation but,
more importantly, it allows the implementation of novel user
interfaces for gaming, AR reality browsing (e.g. Layar),
device-to-device interaction [1, 3, 12] or even authentication
(by moving two devices in the same way [11] or by using
motion-based gestures, which are gestures that users enter
by moving the mobile device with their arm [4]). Motion
gesture recognition can be implemented using advanced ma-
chine learning techniques such as Support Vector Machines
(SVM) [10] or Parzen Windows Classifiers (PWC) [2].
However, as a growing body of recent work shows, ad-hoc or
simpler classification techniques that are mostly data-driven

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
IUI’11, February 13–16, 2011, Palo Alto, California, USA.

Copyright 2011 ACM 978-1-4503-0419-1/11/02...$10.00.

are growing in popularity. On of the reasons for this is that
adapting state-of-the art machine learning techniques can be
cumbersome. Most of them require special libraries or en-
tail a high implementation effort, due to the high mathemat-
ical and algorithmic complexities of the approaches used.
For instance, while the theoretical concepts of SVMs should
be graspable to most developers, training SVMs requires
a Quadratic Programming (QP) [10] solver, which is non-
trivial to implement, and is in most cases supplied by spe-
cialized third-party toolkits. However, optimizing such ad-
vanced classifiers so that they achieve their best classifica-
tion performance is likely to be beyond the grasp of a stan-
dard mobile application developer, as this requires detailed
knowledge of the workings of a particular classifier and also
a great deal of experience in machine learning. A number
of recent publications have focused on implementation sim-
plicity, for instance [7], an extension of Wobbrock’s $1 Ges-
ture Recognizer [14] for use with 3D acceleration data, or
work by which extensively use a data-driven approach based
on Dynamic Time Warping (DTW) [9], a simple but effec-
tive pattern matching technique. Both of these simple ges-
ture recognition techniques use a template matching strategy.
This means that gesture recognition is usually performed on
a per-user basis, by matching the user’s input data with tem-
plates that were previously entered by her. Other research
has focused on slightly more complex, but still basic, ma-
chine learning techniques, e.g. [4]. This previous body of
work shows that the simple techniques usually perform rel-
atively well, with average correct recognition rates above
90%.

In this work, we present a contribution that aims to signifi-
cantly improve the computational requirements and the cor-
rect recognition rate of data-driven motion gesture recogniz-
ers. A major problem of existing recognition techniques for
motion gestures is that the gestures cannot be recognized in
a rotation-invariant way. For instance, a symbolic gesture,
such as drawing a circular shape in the air may be performed
either in the vertical or horizontal plane or simply using a
non-standard grip on the mobile device. Such rotated input
data cannot be matched accurately with training templates
that were entered using a different device posture. In the
following, we refer to this problem as the template–gesture
rotation problem. Protractor [8], an extension to Wobbrock’s
$1 gesture recognizer, addressed this problem in 2D by ex-
tending the original algorithm with a closed-form solution
to finding the optimal rotation between template and entered
gesture.

1

In the following, we present Protractor3D, a gesture recog-
nition algorithm based on the closed-form solution to the
absolute orientation problem for measurements in two 3D
coordinate systems [5]. This technique solves the template–
gesture rotation problem for motion gesture recognition. An
evaluation we conducted shows that, using actual input gen-
erated by test subjects, Protractor3D significantly increases
gesture recognition accuracy in comparison to an implemen-
tation that does not apply rotation correction when matching
entered gesture data to gesture templates.

SOLUTION TO THE OPTIMAL GESTURE – TEMPLATE

ROTATION PROBLEM

The solution to the absolute orientation problem for points
measured in two different Cartesian coordinate systems [5]
can be applied directly to solving the gesture–template ro-
tation problem. In the following we will only discuss
Horn’s technique in sufficient detail to implement a rotation-
invariant recognition algorithm for motion gestures. For the
relevant mathematical derivations and correctness proof we
refer the reader back to Horn’s original work.

The Template Rotation Problem Let C be a gesture class
represented by a set of template gestures. Each template is a
sequence of 3D accelerometer values. We consider a gesture
g entered by the user, again a sequence of 3D accelerome-
ter values. Ideally, this gesture is entered in a way similar
to a template gesture t of gesture class C. However, it is
very likely that the posture with which the user enters g is
different from the one with which the user entered the tem-
plate t. This can be due to variations of the user’s grip on
the mobile device or also differences in the user’s own body
posture, such as being seated or standing, while entering g.
For gestural interfaces, it is in many cases undesirable to
constrain the device posture for gesture entry, as for many
applications the device’s movement ought to determine the
type of gesture entered, not the device’s posture. To solve
the gesture–template rotation problem, we must find a rota-
tion R that minimizes the sum of squares error between g

and t.
n
∑

i=1

‖ti − R(gi)‖
2

between the points of t and the rotated points of g. Mini-
mizing this sum of squares is equivalent to maximizing the
scalar (or dot) product of t and R(g) [5].

n
∑

i=1

R(gi)
T · ti

FINDING THE OPTIMAL ROTATION USING

QUATERNIONS

Horn uses a technique based on Quaternions to determine the
optimal rotation R. Using the compound product q̊gq̊∗, that
represents R(g) utilizing Quaternions, the maximization of
the above equation can be reformulated as follows:

n
∑

i=1

(q̊giq̊
∗)T · ti

We assume here that g and t have been centered around the
origin of the coordinate system, i.e. g and t are differences
of the original point sequences and their respective centroids
g and t. This means that the centroid of both g and t is the
null vector. Horn shows that this is equivalent to finding the
unit Quaternion that maximizes

q̊T Nq̊

N is a matrix that is derived from the matrix sum of the prod-
ucts of t and g:

M =

n
∑

i=1

ti · gi
T

M , defined by its elements can be written as

M =

(

Sxx Sxy Sxz

Syx Syy Syz

Szx Szy Szz

)

where Sxx =
n
∑

i=1

gx,itx,i, Sxy =
n
∑

i=1

gx,ity,i and so forth.

The Matrix N can then be constructed from the elements of
M , so that:

N =

Sxx+Syy+Szz Syz−Szy Szx−Sxz Sxy−Syx

Syz−Szy Sxx−Syy−Szz Sxy−Syx Szx+Sxz

Szx−Sxz Sxy−+Syx −Sxx+Syy−Szz Syz+Szy

Sxy−Syx Szx+Sxz Syz+Szy −Sxx−Syy+Szz

Matrix Product is Maximized through Eigenvector

q̊T Nq̊ is maximized by finding the eigenvector e̊m corre-
sponding to the largest positive eigenvalue of N . By normal-
izing e̊m, we obtain the quaternion q̊ = w+ iqx +jqy +kqz ,

which encodes the optimal rotation angle θ = 2 cos−1(w)
and the unit representation of the corresponding rotation axis
(qx, qy, qz)

T . The optimal rotation matrix R is thus obtained
from θ and the imaginary parts of q̊ as follows.

Let s = sin(−θ), c = cos(−θ), then

R =

[

q2

x(1−q2

x)c qxqy(1−c)−qzs qxqz(1−c)+qys

qxqy(1−c)+qzs q2

y(1−q2

y)c qyqz(1−c)−qxc

qxqz(1−c) qyqz(1−c)+qxs q2

z+(1−q2

z)c

]

PROTRACTOR3D GESTURE CLASSIFIER

Using the optimal solution to the gesture – template rotation
problem, we can now formulate the Protractor3D Gesture
Classification algorithm.

Input and Output We define C =
⋃

Ci, i ∈ N as the set of
all gesture classes (or gesture library), i.e. the different ges-
ture movements that Protractor3D is trained to detect. Each
Ci contains a number of training gestures tCi,k, k ∈ N.
For a given input gesture g, Protractor3D will find the the
template tCx,y ∈ C with the lowest Euclidean distance, cor-
rected for rotation, with respect to g.

Subsampling, Scaling, Centering In order for gestures and
templates to be comparable, we subsample every input ges-
ture to consist of a fixed number of points. We chose n = 32

2

Circle Square Angular8

LeftRight Edges Zorro

Figure 1. This set of iconic gestures is a subset of the gestures we used

in our study.

as the number of subsampled points per gesture, as a higher
n did not have a noticeable effect on the gesture recognition
rate. We followed the same subsampling strategy as Wob-
brock et al. [14], adapted to work with 3D data. After sub-
sampling, the input gesture is scaled to fit into a cube of a
fixed side length, in our case s = 100. Finally, to be able
to perform optimal alignment of the gesture data, we cal-
culate the centroid of the input gesture and subtract it from
all gesture points, thus centering the gesture. When creating
gesture templates for the gesture library, user inputs are sub-
sampled, scaled and centered in the same way before they
are added to the gesture library.

Gesture Recognition In the main part of the algorithm the
gesture input, transformed as described in the previous sec-
tion, is compared to every template in the gesture library,
using rotational correction, to minimize the effects of de-
vice posture. The algorithm uses the Euclidean distance as
the metric to compare the distance between the template and
the input gesture. An advantage of Protractor3D is that it
provides the angle of absolute rotation θ between an input
and the template during comparison steps. Using θ helps
Protractor3D decide if the template should be rejected as a
possible recognition candidate. This does not need to be ap-
plied if complete rotation-invariance is desired. In our im-
plementation, we have set the cutoff angle θcut to ±45◦. If
all gestures in the gesture library have been rejected due to
θ being greater than θcut, Protractor3D recognizes the input
gesture as “unrecognized.” Otherwise, Protractor3D reports
the gesture class of the template with the lowest Euclidean
distance with respect to the input gesture as the recognized
gesture class.

EVALUATION

To evaluate the recognition performance of Protractor3D, we
recorded gestures from ten paid test subjects. This approxi-
mate number of subjects has been also been used in previous
studies on motion gestures [9, 13]. The gesture set consisted
of 11 gestures, six of which consisted of iconic gestures,
partially used in previous work by [13]. The other half of
the gestures was derived from the requirements of a related
study on mobile gestures conducted in our group [6], which
includes a user-defined gesture (own), everyday movements
(shakehand, shakearm) and also some usual movements per-
formed with mobile phones (“take out of pocket”, “take out
of handbag”). Each test subject recorded at least 40 repeti-

shakearm
pocket

own
zorro

leftri
ght

shakehand
edges

square

handbag
cir

cle

angular8
0

10

20

30

40

50

60

70

80

90

100

Average Correct Recognition Rate (%)

Figure 2. The average correct recognition (CRR) rates by gesture for

Protractor3D, with a training set size of 5. The error bars show the

95% confidence intervals of the gesture CRR means.

tions of every gesture in the gesture set. A SHAKE SK6 sen-
sor package was used to capture the data at a rate of 100Hz.
The accuracy and sampling rate of the SHAKE SK6 accel-
eration sensor is comparable to those integrated into modern
smartphones. To delimit individual gesture entries, the users
were required to press and hold the navigation button of the
SHAKE SK6 during gesture entry, and to release the but-
ton upon termination of the gesture entry. To determine the
benefit of rotational correction that is delivered by Protrac-
tor3D, we measured the Correct Recognition Rate (CRR) of
Protractor3D with rotational correction, as well as Protrac-
tor3D without rotational correction, which in the following
we refer to as MSE (mean square error).

Choice of Validation and Test Set In order to evaluate the
performance of Protractor3D, we defined training and vali-
dation sets for each of the gesture types on a per-user basis.
We chose a 40:60 split between training and validation sets.
When constructing the training and validation sets, we took
only the first 40 gesture entries per gesture class, and dis-
carded the rest (if present). Thus, for each gesture class the
training set consisted of the first 16 gestures, and the remain-
ing 24 were used at the validation set. As a consequence, we
define CRR as the number of correctly recognized gestures
divided by the size of the validation set. To “train” Protrac-
tor3D, we used the last five gestures of the training set for
each gesture, for each user. We chose this low number of
training samples to demonstrate the ability of Protractor3D
to produce relatively robust gesture recognition results with
only a few training samples. This property is advantageous
for users seeking to rapidly add new gestures to their mo-
bile device or developers who wish to rapidly prototype new
gestures in a mobile user interface they are creating.

Recognition Results Figure 2 shows the recognition results
using Protractor3D with a training set size of 5 per gesture
class. “Angular 8” was the gesture with the highest correct
recognition rate of 98.9%, whereas “shakearm” has the low-
est correct recognition rate of 83.3%. The reason for these
differences in gesture recognition rate is unclear, but it could

3

0°

45°

90°

135°

180°

225°

270°

315°

0.2
0.4

0.6
0.8

1.0

Rotation around axis (1,1,1)

Protractor3D
MSE

Figure 3. Polar plot of influence of rotation on the correct recognition

rate. Protractor3D has a constant CRR under all rotations and thus is

rotation-invariant, whereas MSE-only is highly susceptible to changes

in the rotation of the input gestures, and in some cases falls back to zero

recognized gestures.

be that the movements corresponding to the gestures with a
lower correct recognition rate may have been more ambigu-
ous to the test subjects than the gestures which achieved a
higher gesture recognition rate. This ambiguity is also re-
flected, for instance, in the relatively large standard error in
the average recognition of leftright, where we did not specify
the exact way this movement was to be performed.

Effect of Rotational Correction To verify if Protractor3D
has a noticeable correction effect on rotated input data, we
repeated the evaluation of the algorithm with pre-rotated in-
put gestures and compared the CRR of Protractor3D and
(unrotated) mean square error (MSE) matching. We chose
(1, 1, 1)T as the rotation axis and pre-rotated the input ges-
tures by 0, 15, 30, 45, 90 and 180 Degrees (positive and
negative). As can be seen in Figure 3, MSE is highly unsta-
ble under rotation, yielding very poor recognition results. In
contrast, Protractor3D yields the same CRR for each rotation
angle, thus showing that Protractor3D is rotation-invariant
and truly finds the optimal rotation compensation for any
given rotation of the input points.

CONCLUSION AND FUTURE WORK

We presented a lightweight recognizer for motion-based 3D
gestures that solves the problem of finding the optimal ro-
tation between an input gesture and a template gesture by
employing a closed-form solution. This solution to the
template–gesture rotation problem is a major step over ex-
haustive search, since the latter requires finding the opti-
mum in a three-dimensional search space. A brute force ap-
proach of checking all possible rotations for all templates in
the gesture library is thus out of the question, in particular
for resource-constrained mobile devices. Our contribution
is the application of a closed-form solution to finding the
optimal rotation based on a quaternion representation orig-

inally proposed by Horn [5]. This approach leads to an ef-
ficient and accurate gesture recognizer that can be imple-
mented easily. Protractor 3D requires only a low number
of training gestures and thus imposes a low overhead in de-
sign and prototyping phases of gesture-based interfaces, in
which designers (or later also users) wish to come up with
their own custom gestures. The design and personalization
of gesture-based interfaces thus becomes more approachable
by designers as well as users. Remaining challenges include
gesture segmentation and detecting the initiation of a ges-
ture in the stream of sensor data. However, this is a general
problem that needs to be solved by all gesture recognition
systems that do not rely on a separate clutching mechanism.

REFERENCES
1. R. Dachselt and R. Buchholz. Natural throw and tilt

interaction between mobile phones and distant displays. In
CHI EA ’09: Proceedings of the 27th international conference
extended abstracts on Human factors in computing systems,
pages 3253–3258, New York, NY, USA, 2009. ACM.

2. R. DUDA, P. HART, and D. STORK. Pattern Classification.
Wiley, 2000.

3. K. Hinckley. Synchronous gestures for multiple persons and
computers. In UIST ’03: Proceedings of the 16th annual ACM
symposium on User interface software and technology, pages
149–158, New York, NY, USA, 2003. ACM.

4. M. Hoffman, P. Varcholik, and J. LaViola Jr. Breaking the
Status Quo: Improving 3D Gesture Recognition with Spatially
Convenient Input Devices. In Proc. of IEEE VR 2010, 2010.

5. B. K. Horn, H. M. Hilden, and S. Negahdaripour. Closed-form
solution of absolute orientation using orthonormal matrices.
Journal of the Optical Society of America, 5(7):1127–1135,
1988.

6. N. Kischnick, S. Kratz, and S. Moeller. An improved
approach to gesture-based authentication for mobile devices
(poster). In Symposium On Usable Privacy and Security
(SOUPS) 2010, 2010.

7. S. Kratz and M. Rohs. A $3 gesture recognizer: simple
gesture recognition for devices equipped with 3d acceleration
sensors. In IUI ’10: Proceeding of the 14th international
conference on Intelligent user interfaces, pages 341–344,
New York, NY, USA, 2010. ACM.

8. Y. Li. Protractor: a fast and accurate gesture recognizer. In
CHI ’10: Proceedings of the 28th international conference on
Human factors in computing systems, pages 2169–2172, New
York, NY, USA, 2010. ACM.

9. J. Liu, L. Zhong, J. Wickramasuriya, and V. Vasudevan.
uWave: Accelerometer-based personalized gesture
recognition and its applications. Pervasive and Mobile
Computing, 5(6):657–675, 2009.

10. S. Marsland. Machine Learning: An Algorithmic Approach.
Chapman & Hall / CRC, 2009.

11. R. Mayrhofer and H. Gellersen. Shake well before use:
Intuitive and secure pairing of mobile devices. IEEE
Transactions on Mobile Computing, 8(6):792–806, 2009.

12. T. Pering, Y. Anokwa, and R. Want. Gesture connect:
facilitating tangible interaction with a flick of the wrist. In TEI
’07: Proceedings of the 1st international conference on
Tangible and embedded interaction, pages 259–262, New
York, NY, USA, 2007. ACM.

13. T. Schloemer, B. Poppinga, N. Henze, and S. Boll. Gesture
recognition with a wii controller. In Proc. TEI ’08, pages
11–14. ACM, 2008.

14. J. O. Wobbrock, A. D. Wilson, and Y. Li. Gestures without
libraries, toolkits or training: a $1 recognizer for user
interface prototypes. In Proc. UIST ’07, pages 159–168, New
York, NY, USA, 2007. ACM.

4

	Introduction and Related Work
	Solution to the Optimal Gesture – Template Rotation Problem
	Finding the Optimal Rotation Using Quaternions
	Matrix Product is Maximized through Eigenvector

	Protractor3D Gesture Classifier
	Evaluation
	Conclusion and future work
	REFERENCES

