
ProtTest-HPC: Fast Selection of

Best-Fit Models of Protein Evolution

Diego Darriba1,2, Guillermo L. Taboada,2, Ramón Doallo2, and David Posada1

1 Bioinformatics and Molecular Evolution Group,
University of Vigo, 36310 Vigo, Spain

2 Computer Architecture Group,
University of A Coruña, 15071 A Coruña, Spain

{ddarriba,taboada,doallo}@udc.es, dposada@uvigo.es
http://darwin.uvigo.es/software/prottesthpc

Abstract. The use of probabilistic models of amino acid replacement is
essential for the study of protein evolution, and programs like ProtTest
implement different strategies to identify the best-fit model for the data
at hand. For large protein alignments, this task can demand vast compu-
tational resources, preventing the justification of the model used in the
analysis.

We have implemented a High Performance Computing (HPC) version
of ProtTest. ProtTest-HPC can be executed in parallel in HPC environ-
ments as: (1) a GUI-based desktop version that uses multi-core processors
and (2) a cluster-based version that distributes the computational load
among nodes. The use of ProtTest-HPC resulted in significant perfor-
mance gains, with speedups of up to 50 on a high performance cluster.

1 Introduction

The evolution of protein sequences can be studied using statistical models that
describe the probabilities of particular amino acid replacements along specific
lineages. Because the number of parameters in these models can be large, in
most cases the 20×20 replacement matrices are not estimated de novo for each
data set. Instead, replacement rates previously estimated from large empirical
databases are adopted. Among these, some of the more popular are the Day-
hoff [4], JTT [7], mtREV [3], WAG [18], mtArt [1] or LG [10] matrices. Im-
portantly, many phylogenetic calculations like the estimation of tree topologies,
branch lengths, nodal support, divergence times or replacement rates benefit
from the use of explicit models of evolution. Because, the use of different mod-
els can change the outcome of the analysis [15], different model selection tools
for protein alignments have been implemented in the past, like ProtTest [2] or
ModelGenerator [9]. In addition, some model selection capabilities have been
added to more general phylogenetic programs like HYPHY [12], Treefinder [6]
or TOPALi [11].

M.R. Guarracino et al. (Eds.): Euro-Par 2010 Workshops, LNCS 6586, pp. 177–184, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

http://darwin.uvigo.es/software/prottesthpc

178 D. Darriba et al.

2 ProtTest

The program ProtTest is one of the most popular tools for selecting models of
protein evolution, with almost 4,000 registered users. ProtTest is written in Java
and uses the program PhyML [5] for the maximum likelihood (ML) estimation of
phylogenetic trees and model parameters. The current version of ProtTest (2.4)
includes 14 different rate matrices that result in 112 different models when we
consider rate variation among sites (+I: invariable sites; +G: gamma-distributed
rates) and the observed amino acid frequencies (+F). ProtTest uses the Akaike
Information Criterion (AIC) and other information criteria to find which of the
candidate models best fits the data at hand. In addition, it can perform multi-
model inference and estimate parameter importances [13]. The time required to
complete the likelihood calculations, that take most of the runtime of the pro-
gram, can be variable depending on the size and complexity of the alignments.
For large alignments, this task cannot be completed in a reasonable time us-
ing a single core. While ModelGenerator/MultiPhyl [8] and TOPALi implement
grid computing to speed-up the analyses, they consider fewer models and do not
implement model averaging.

3 Java for High Performance Computing

There are several programming options in Java for HPC [16]:

Java Shared Memory Programming. As Java has built-in multithreading
support, the use of threads is quite extended due to its portability and high
performance, although it is a rather low-level option. Nevertheless, Java now
provides concurrency utilities, such as thread pools, tasks, blocking queues, and
low-level high-performance primitives (e.g., CyclicBarrier), for a higher level
programming. However, this option is limited to shared memory machines, which
provide less computational power than distributed memory architectures.

Java Distributed Memory Programming. Message-passing is the preferred
programming model for distributed memory architectures (e.g., clusters) due
to its portability, scalability and usually good performance, although it gen-
erally requires significant development efforts. Among currently available Java
Message-Passing Java (MPJ) libraries, F-MPJ [17] and MPJ Express [14] de-
serve to be mentioned for their nested parallelism (MPJ+threads) support for
exploiting performance on clusters of multi-core processors.

4 ProtTest-HPC

ProtTest-HPC is a high performance computing application for protein model
selection, based on ProtTest, but completely redesigned in order to grant model
extensibility, traceability and encapsulation. ProtTest-HPC includes four main
hierarchies:

ProtTest-HPC: Fast Selection of Best-Fit Models of Protein Evolution 179

– Substitution Models contain the amino-acid model data, although they
can be extended to also support nucleotide models.

– Likelihood Estimators optimize model parameters as a previous step to
model selection. This optimization relies on third-party applications.

– Execution Strategies determine how the optimization of the candidate
set of models is scheduled (i.e., how the workload is distributed among the
available computational resources).

– Information Criteria drive the model selection task according to the pre-
vious optimization and provide the basis for model-averaging calculations.

4.1 Shared Memory Implementation

ProtTest-HPC uses a thread pool to handle the execution of tasks on shared
memory architectures. This implementation is totally portable using thread
pools from the Java Concurrence API, which is included in the Java SDK. The
task queue contains the whole set of tasks (i.e., candidate models to optimize)
which will be processed by the thread pool in a particular order (reverse com-
plexity estimate) (Figure 1).

Fig. 1. ProtTest-HPC shared memory strategy

4.2 Distributed Memory Implementation

In order to handle the computation of tasks on distributed memory architectures
(e.g., clusters), ProtTest-HPC manages processes, which rely on message-passing
communication. ProtTest-HPC uses a distributor process to allocate the work-
load (Fig. 2) according to three different strategies, one static and two dynamic.

The static approach performs the whole distribution of the tasks before their
actual optimization. This distribution is based on the workload estimate for
each task, which is key to provide balanced workload assignments. Therefore,
message-passing among processes is avoided during computation. As long as the
computational load is very hard to estimate, this strategy will usually result in
significant runtime differences among processes. The performance of this strat-
egy is highly dependent on the workload estimate and the number of processes

180 D. Darriba et al.

Fig. 2. ProtTest-HPC distributed memory strategy

used (i.e., an inaccurate estimate when scheduling a small number of tasks per
process will show poor performance), so it is usually less scalable than dynamic
approaches. However, shorter running times will be obtained for small datasets,
where the time spent in message-passing becomes more significant.

On the other hand, the behavior of the dynamic approaches is more similar
to that of the thread pool, where a task manager distributes the tasks among
processes. In a distributed memory implementation, the root process can assume
this role, although incurring some overhead. However, the use of an additional
dedicated distributor thread can relieve the root process of this work, increasing
performance. The computational overhead imposed by this additional thread is
almost negligible, as most of the time the thread will be waiting for the processes.

The scalability of ProtTest-HPC using shared or distributed memory was lim-
ited by the replacement models with the highest computational load, usually the
”+I+G” models, which could take up to 90% of the overall runtime. In these
cases, the runtime was determined by the longest optimization, resulting in poor
speedups. Moreover, the higher the number of cores, the higher the workload
imbalance due to runtime differences. In fact, it is expected that ProtTest-HPC
could take advantage of up to 50 cores, approximately. This important limita-
tion suggests that the combination of the distributed memory version with a
parallel maximum-likelihood computation can increase significantly the scalabil-
ity of ProtTest-HPC. Therefore, this two-level parallelism approach can result
in a much more efficient exploitation of the available computational resources.

5 Performance Evaluation

We evaluated the performance of ProtTest-HPC on a representative multi-core
cluster under two different scenarios:

– shared memory, using the available cores in a machine.
– distributed memory, running the message-passing version on the whole

cluster.

ProtTest-HPC: Fast Selection of Best-Fit Models of Protein Evolution 181

Table 1. Test data sets used for performance evaluation. The base tree used for pa-
rameter estimation can be a BIONJ tree fixed across models or the particular ML tree
for each model. Execution times are given in minutes.

Data set/ Protein Number Length Base Execution
Analysis Sequences tree Time
RIB Ribosomal protein 21 113 Fixed BIONJ 5
RIBML ” ” ” ML tree 30
COX Cytochrome C oxidase II 28 113 Fixed BIONJ 10
COXML ” ” ” ML tree 58
HIV HIV polymerase 36 1,034 Fixed BIONJ 45
HIVML ” ” ” ML tree 185
10K Simulated alignment 50 10,000 Fixed BIONJ 552
20K ” ” 20,000 ” 1,470
100K ” ” 100,000 ” 4,785

To evaluate the performance of ProtTest-HPC we used 6 real and simulated
alignments (Table 1). In all cases the set of candidate models included all 112
models available in ProtTest.

5.1 Shared Memory Benchmarking

Figure 3 and Table 2 show the performance of ProtTest-HPC in an 8-core Harper-
town cluster node using shared memory. Here ProtTest-HPC was limited to the
use of up to 8 threads (one thread per core). In this scenario, where the number of
available threads is significantly lower than the number of models to be optimized,
the computational workload was usually well-balanced, and the scalability almost
reached the ideal case (i.e., obtaining speedups close tonwithn threads).Neverthe-
less, for the simplest analyses (e.g., COX and RIB) the performance results when
using 8 threads were poorer than for more computationally intensive tasks (e.g.,
COXMLandRIBML)as the overheadof threads operation (e.g., synchronizations)
and the workload imbalance had a higher impact on the overall performance.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 1 2 4 8

S
p

ee
d

u
p

Number of Threads

ProtTest−HPC shared memory performance (8−core system)

RIB
COX
HIV
RIBML
COXML
HIVML

Fig. 3. Scalability of ProtTest-HPC in an 8-core node using shared memory

182 D. Darriba et al.

Table 2. Runtime (seconds) using shared memory on an 8-core Harpertown node

Threads RIB COX HIV RIBML COXML HIVML

1 330 563 2544 1710 3300 9498
2 165 282 1269 851 1647 5149
4 94 151 639 427 825 2581
8 63 90 338 215 415 1300

5.2 Distributed Memory Benchmarking

We explored three different distribution strategies for message-passing. Here we
only evaluated the dynamic option because it provided the most balanced work-
loads without incurring significant penalties (the core devoted to the dedicated
distributor thread represents a small percentage of the total number of available
cores, 256).

Starting from 16 cores, we ran on the cluster the message-passing parallel im-
plementation of ProtTest-HPC using multiples of 14 cores. The reason for this is
that the computational load for a given model depends on the rate heterogeneity
and frequency parameters because the replacement matrix is given. Thus, for a
specific parameter combination like “+I+G” there are 14 models with similar
workload. This suggested the use of a number of cores multiple of 14, so the
workload would be more balanced. In this case the number of tasks processed
per core is likely to be the same. Additionally, it is expected that models with
similar workloads would be optimized by different processes. Finally, ProtTest-
HPC currently includes 112 models, and as each model is optimized sequentially
by a single core, the maximum number of cores that can be used is 112. Perfor-
mance in this case was almost linear for the simple analyses up to 28 cores, while
in other cases (HIVML) the biggest speedups were obtained with 56 cores (Fig-
ure 4 and Table 3). ProtTest-HPC could only take advantage of around 56 cores
on a 256-core cluster, as the running times on 56 or 112 cores were similar. This
happens because of the coarse-grained paralelism and the differences between
the sequential execution times of each substitution model optimization, so this
is the main performance bottleneck (the longest model optimization determines
the runtime). Moreover, distributing a reduced number of tasks per core severely
limits the load balancing benefits, as it is not possible to take advantage of the
spare computational power available once a core finishes its task processing.

Table 3. Runtime (seconds) using distributed memory on a Harpertown testbed

Cores RIBML COXML HIVML 10K 20K 100K

1 1710 3300 9498 33160 88129 287134
8 224 429 1880 4421 11750 38284
16 113 251 1172 2963 6590 23417
28 71 152 516 1960 4972 15275
56 64 93 207 1032 3148 7988
112 49 78 206 1028 2593 7178

ProtTest-HPC: Fast Selection of Best-Fit Models of Protein Evolution 183

 0

 4

 8

 12

 16

 20

 24

 28

 32

 36

 40

 44

 48

1 8 16 28 56 112

S
p

ee
d

u
p

Number of Cores

ProtTest−HPC distributed memory performance (Harpertown)

RIBML
COXML
HIVML
10K
20K
100K

Fig. 4. Scalability of ProtTest-HPC using distributed memory

6 Conclusions

We have developed a high performance computing version of ProtTest for the fast
selection of best-fit models of protein evolution. In order to allow for the parallel
execution of ProtTest in high performance computing environments, our imple-
mentation can work either (i) as a GUI-based desktop version that supports the
execution using the available multi-core processors, or (ii) as a cluster-based ver-
sion that distributes the computational load among the available compute nodes.
We show that ProtTest-HPC achieves a significant performance gain over
ProtTest, with speedups of up to 50 on an HPC cluster, although the combination
of the cluster-based version with a parallel maximum-likelihood computation can
increase significantly ProtTest-HPC scalability. For very large alignments, this
can be equivalent to a reduction of the running time from more than one day
to around half an hour. In this way, statistical model selection for large protein
alignments becomes feasible, not only for cluster users, but also for the owners of
standard multi-core desktop computers. Moreover, the flexible design of ProtTest-
HPC will allow developers to extend future functionalities, whereas third-party
projects will be able to easily adapt its capabilities to their requirements.

Acknowledgments. Special thanks to Stephane Guindon for his continuous
help with PhyML. This work was financially supported by the European Re-
search Council [ERC-2007-Stg 203161-PHYGENOM to D.P.] the Spanish Min-
istry of Science and Education [BFU2009-08611 to D.P. and TIN2010-16735 to
R.D.] and by the Xunta de Galicia [Bioinformatics (to D.P.) and HPC (to R.D.)
Galician Thematic Networks].

184 D. Darriba et al.

References

1. Abascal, F., Posada, D., Zardoya, R.: MtArt: a new model of amino acid replace-
ment for Arthropoda. Mol. Biol. Evol. 24(9), 1–5 (2007)

2. Abascal, F., Zardoya, R., Posada, D.: ProtTest: Selection of best-fit models of
protein evolution. Bioinformatics 24(1), 1104–1105 (2007)

3. Adachi, J., Hasegawa, M.: Model of amino acid substitution in proteins encoded
by mitochondrial DNA. J. Mol. E 42(4), 459–468 (1996)

4. Dayhoff, M., Schwartz, R., Orcutt, B.: A model for evolutionary change in proteins.
Nat’l Biomedical Research Foundation, 345–352 (1978)

5. Guindon, S., Gascuel, O.: A simple, fast, and accurate algorithm to estimate large
phylogenies by maximum likelihood. Syst. Biol. 52(5), 696–704 (2003)

6. Jobb, G., von Haeseler, A., Strimmer, K.: TREEFINDER: a powerful graphical
analysis environment for molecular phylogenetics. BMC Evol. Biol. 4, 18 (2004)

7. Jones, D.T., Taylor, W.R., Thornton, J.M.: The rapid generation of mutation data
matrices from protein sequences. Comp. Appl. Biosci. 8(3), 275–282 (1992)

8. Keane, T.M., Naughton, T.J., McInerney, J.O.: MultiPhyl: a high-throughput phy-
logenomics webserver using distributed computing. Nucleic Acids Res. 35(Web
Server issue), W33–W37 (2007)

9. Keane, T., Creevey, C., Pentony, M., Naughton, T., Mclnerney, J.: Assessment of
methods for amino acid matrix selection and their use on empirical data shows that
ad hoc assumptions for choice of matrix are not justified. BMC Evol. Biol. 6(1),
29 (2006)

10. Le, S.Q., Gascuel, O.: An improved general amino acid replacement matrix. Mol.
Biol. Evol. 25(7), 1307–1320 (2008)

11. Milne, I., Lindner, D., Bayer, M., Husmeier, D., McGuire, G., Marshall, D.F.,
Wright, F.: TOPALi v2: a rich graphical interface for evolutionary analyses of mul-
tiple alignments on HPC clusters and multi-core desktops. Bioinformatics 25(1),
126–127 (2009)

12. Pond, S.L.K., Frost, S.D., Muse, S.V.: HyPhy: hypothesis testing using phylogenies.
Bioinformatics 21, 676–679 (2005)

13. Posada, D., Buckley, T.R.: Model selection and model averaging in phylogenetics:
advantages of akaike information criterion and bayesian approaches over likelihood
ratio tests. Syst. Biol. 53(5), 793–808 (2004)

14. Shafi, A., Carpenter, B., Baker, M.: Nested parallelism for multi-core HPC systems
using Java. J. Parallel Distr. Com. 69(6), 532–545 (2009)

15. Sullivan, J., Joyce, P.: Model selection in phylogenetics. Annu Rev. Ecol. Evol.
S 36, 445–466 (2005)

16. Taboada, G.L., Tourino, J., Doallo, R.: Java for high performance computing:
assessment of current research and practice. In: Proc. 7th Intl. Conf. on Principles
and Practice of Programming in Java, Calgary, Canada, pp. 30–39 (2009)

17. Taboada, G.L., Tourino, J., Doallo, R.: F-MPJ: scalable Java message-passing com-
munications on parallel systems. J. Supercomput. (2010) (in press)

18. Whelan, S., Goldman, N.: A general empirical model of protein evolution derived
from multiple protein families using a maximum-likelihood approach. Mol. Biol.
Evol. 18(5), 691–699 (2001)

	ProtTest-HPC: Fast Selection of Best-Fit Models of Protein Evolution
	Introduction
	ProtTest
	Java for High Performance Computing
	ProtTest-HPC
	Shared Memory Implementation
	Distributed Memory Implementation

	Performance Evaluation
	Shared Memory Benchmarking
	Distributed Memory Benchmarking

	Conclusions
	References

