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ABSTRACT
Summary: Using an appropriate model of amino acid replacement
is very important for the study of protein evolution and phylogenetic
inference. We have built a tool for the selection of the best-fit model
of evolution, among a set of candidate models, for a given protein
sequence alignment.
Availability: ProtTest is available under the GNU license from
http://darwin.uvigo.es
Contact: fabascal@uvigo.es

1 INTRODUCTION

1.1 Models of protein evolution
Models of protein evolution, or amino acid replacement, describe the
probabilities of change from one amino acid to another, and therefore
become indispensable tools for the characterization of the process
of protein evolution (Thorne, 2000; Thorne and Goldman, 2003).
Indeed, these models provide the foundation for the reconstruc-
tion of protein phylogenies under distance, maximum likelihood and
Bayesian methods. Dayhoff et al. (1978) introduced the most influ-
ential model of amino acid replacement, a 20-state time reversible
homogeneous Markov model. Because the large number of paramet-
ers in a 20-state replacement matrix, estimates of these parameters
are usually obtained from large datasets prior to the analysis of the
dataset of interest. In this way, different empirical matrices with fixed
relative rates of amino acid replacement have been already proposed,
like the Dayhoff matrix (Dayhoff et al., 1978), the JTT matrix (Jones
et al., 1992), the mtREV matrix (Adachi and Hasegawa, 1996) or
the WAG matrix (Whelan and Goldman, 2001). While these mod-
els generally assume that the process of amino acid replacement is
very similar across all positions, conservation of protein function and
structure imposes constraints on which positions can change. This
evolutionary information can be inferred by considering a fraction
of amino acids to be invariable (‘+I’) (Reeves, 1992), or assign-
ing each site a probability to belong to given rate categories (‘+G’)
(Yang, 1993). Additionally, observed amino acid frequencies can
also be considered (‘+F’) (Cao et al., 1994).

1.2 Model selection and inference
Model selection may be seen as a way of identifying the model
that, among a set of candidates, is closest to reality. Looking for
a balance between accuracy and simplicity, Akaike (1973) found a
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simple relationship between the likelihood (L) and the number of
parameters (K):

AIC = −2ln L + 2K

to estimate the expected distance of a given model from truth. When
the sample size (n) is small compared to the number of parameters
(e.g. n/K<40), the AIC might not be accurate and then the use of
the corrected AIC (AICc) (Sugiura, 1978) is recommended as,

AICc = AIC + 2K(K + 1)

n − K − 1
.

A different, but simple approach is the Bayesian Information
Criterion (BIC) (Schwarz, 1978), formulated as

BIC = −2ln L + K log n.

Scaled AIC (Akaike weights) and the BIC can be easily used to
asses model selection uncertainty, for model-averaging and to estim-
ate parameter importance in an evolutionary context (Burnham and
Anderson, 2002; Posada and Buckley, 2004).

2 THE PROGRAM: PROTTEST
Although widely-used software exists for the selection of the best-fit
nucleotide models (Posada and Crandall, 1998), no program has been
developed until now for protein models. ProtTest is a java program
to find the best model of amino acid replacement for a given protein
alignment. It is based on the Phyml program (Guindon and Gascuel,
2003) for the ML optimizations, modified to support +F and four
extra substitution matrices and uses the PAL library (Drummond and
Strimmer, 2001) for handling protein alignments and trees. ProtTest
is available for Mac OSX, Linux and Windows, and it can be run in
three ways: using a GUI, at the command-line and through the web.
Its basic workflow is summarized in Figure 1.

Given a protein alignment and a tree topology the program cal-
culates the likelihood under each candidate model, and estimates
model parameters. The current version 1.2 implements 64 empir-
ical models: the eight matrices WAG, mtREV, Dayhoff, JTT, VT,
Blosum62, CpREV and RtREV under +F, +G, +I and their com-
binations. Other models exist, particularly mechanical models, that
are not implemented in ProtTest. For each model, the tree topology
can be fixed [provided by the user or calculated by BIONJ (Gas-
cuel, 1997)] or optimized under ML. After this, the user can choose
a model selection strategy (AIC, AICc, BIC), and obtain a rank of
model fits, model-averaged parameter estimates or measures of para-
meter importance. For the AICc and the BIC, sample size is set by
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Fig. 1. The basic workflow of ProtTest Program. This figure can be viewed in colour on Bioinformatics online.

default to the number of positions in the alignment. Other options
to define sample size attempt to take into account both the number
of sequences and their redundancy. Other valuable features include
the ability to restrict the set of candidate models (only in the GUI
version) and the possibility to output the tree corresponding to the
best model.
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