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ProtTrans: Towards Cracking the Language of
Life’s Code Through Self-Supervised Deep
Learning and High Performance Computing

Ahmed Elnaggar, Michael Heinzinger, Christian Dallago,

Ghalia Rehawi, Yu Wang, Llion Jones, Tom Gibbs, Tamas Feher, Christoph Angerer,

Martin Steinegger, Debsindhu Bhowmik and Burkhard Rost

Abstract—Computational biology and bioinformatics provide vast data gold-mines from protein sequences, ideal for Language Models

(LMs) taken from Natural Language Processing (NLP). These LMs reach for new prediction frontiers at low inference costs. Here, we

trained two auto-regressive language models (Transformer-XL, XLNet) and two auto-encoder models (Bert, Albert) on data from

UniRef and BFD containing up to 393 billion amino acids (words) from 2.1 billion protein sequences (22- and 112-times the entire

English Wikipedia). The LMs were trained on the Summit supercomputer at Oak Ridge National Laboratory (ORNL), using 936 nodes

(total 5616 GPUs) and one TPU Pod (V3-512 or V3-1024). We validated the advantage of up-scaling LMs to larger models supported

by bigger data by predicting secondary structure (3-states: Q3=76-84, 8-states: Q8=65-73), sub-cellular localization for 10 cellular

compartments (Q10=74) and whether a protein is membrane-bound or water-soluble (Q2=89). Dimensionality reduction revealed that

the LM-embeddings from unlabeled data (only protein sequences) captured important biophysical properties governing protein shape.

This implied learning some of the grammar of the language of life realized in protein sequences. The successful up-scaling of protein

LMs through HPC to larger data sets slightly reduced the gap between models trained on evolutionary information and LMs.

Index Terms—Bioinformatics, High Performance Computing, Natural Language Processing, Language Modeling, Deep Learning

✦

1 INTRODUCTION

H IGH-PERFORMANCE COMPUTING (HPC) has recently
been advancing hand-in-hand with Deep Learning (DL)

to achieve new scientific breakthroughs in both fields. More
powerful supercomputers [1], [2] and advanced libraries [3],
[4], [5], [6], [7] enable the training of ever more complex
models on bigger data sets using advanced processing units
such as Graphics Processing Units (GPUs) and Tensor Pro-
cessing Units (TPUs) at increasing speeds and efficiency.
HPC hardware is advancing both through infrastructure
of supercomputers, such as Fugaku [8], Summit [1] or the
SuperMUC-NG [9], and through its components, such as
TPU pods [2], specifically designed to ease large scale neural
network training for users. Concurrent software improve-
ments in form of more efficient libraries such as Horovod [6]
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allow executing general purpose code on large distributed
clusters with minor code changes.

Through contextualized Language Models (LMs) [10],
[11], Natural Language Processing (NLP) has been benefit-
ing more from advances in HPC than other fields. In par-
ticular Transformers [12] have reached state-of-the-art perfor-
mance in several tasks including translation, summarization
and question answering [13], [14]. LMs are trained on unla-
belled data; this independence of expensive validated data
opened vast sets of raw big data allowing to up-scale LMs in
NLP by orders of magnitude. The self-supervised training
exclusively relies upon the sequential order of the input.
Two approaches make use of this information, namely auto-
regressive (predict next token in a sequence, given all previ-
ous tokens) and auto-encoding (reconstruction of corrupted
input) training. Once trained, LMs can extract features,
referred to as embeddings, to use as input in subsequently
trained supervised models (transfer-learning). This two-step
training outsources the computationally expensive LM pre-
training to the HPC infrastructure while the computation-
ally simple inference can be done on commodity hardware.

Protein research provides an excellent use-case for
transfer-learning as large amounts of exponentially grow-
ing but unlabelled data contrast much more limited sets
with experimental annotations. One example for this is the
"sequence-structure" gap [15], i.e. the gap between the num-
ber of proteins for which one-dimensional (1D) sequences
are known and the orders of magnitude smaller subset of
proteins for which their three-dimensional (3D) structures
are known. Knowing these structures is crucial for under-
standing their function. Such understanding is needed, e.g.
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to possibly disrupt the binding of the spiky S1 protein of
the SARS-Cov-2 virus that by binding to the human recep-
tor ACE2 caused the COVID-19 pandemic. The sequence-
structure and sequence-function gaps, or more generally
the sequence-annotation gaps keep growing exponentially.
Closing those gaps through prediction methods based on
artificial intelligence (AI) is one of the crucial challenges for
computational biology and bioinformatics.

Recently, the leap of NLP through advanced LMs have
successfully been generalized toward understanding the
language of life through advanced LMs trained on proteins
[16], [17], [18], [19], [20], [21], [22], [23], [24]. The main
concept behind these approaches is to interpret protein
sequences as sentences and their constituent – amino acids –
as single words. Protein sequences are constrained to adopt
particular 3D shapes (referred to as protein 3D structure)
optimized for accomplishing particular functions. These
constraints mirror the rules of grammar and meaning in
natural language thereby allowing to map algorithms from
NLP directly onto protein sequences. During training, the
LM learns to extract those constraints from millions of
examples and store the derived knowledge in its weights.
While existing solutions in Protein Bioinformatics [25], [26],
[27], [28], [29], [30] usually have to search for evolution-
ary related proteins in exponentially growing databases,
LMs offer a potential alternative to this increasingly time-
consuming database search as they extract features directly
from single protein sequences. On top, the performance of
existing solutions deteriorates if not a sufficient number of
related sequences can be found, e.g. the quality of predicted
protein structures correlates strongly with the number of
effective sequences found in today’s databases [31]. Addi-
tionally, some proteins are intrinsically hard to align (e.g.
intrinsically disordered proteins [32] or proteins which do
not have any related sequences (dark proteome, [33]).

In this project (named by ProtTrans), we pursued two
objectives. Firstly, we explored the limits of up-scaling lan-
guage models trained on proteins as well as protein se-
quence databases used for training. Secondly, we compared
the effects of auto-regressive and auto-encoding pre-training
upon the success of the subsequent supervised training, and
compared all LMs to existing state-of-the-art solutions using
evolutionary information [34].

2 METHODS

2.1 Data for Language Models (LMs)

In this work, we assessed the impact of database size on
performance through two data sets: UniRef100 [35] (with
216M protein sequences) and BFD [36], [37] (with 2,122M
sequences). The latter merged all protein sequences avail-
able in UniProt [38] and proteins translated from multiple
metagenomic sequencing projects, making it the largest
collection of protein sequences available at the time of
writing. The original BFD set contained several copies of
identical sequences; only one of those was kept, resulting
in a subset with 2.1 billion (2.1B) protein sequences (with
>393B amino acids requiring 527GB of disk space as text);
we dubbed this set as BFD. This compared to UniRef100
with 216M proteins (80B amino acids, 150GB disk space;
Fig. 1. Overall, BFD was about eight times larger than the

largest data sets used previously [19]. Despite the 8-fold
increase in data, the number of tokens increased only five-
fold (Fig. 1b, because UniRef100 sequences were longer than
those in BFD (1.6-fold). A similar trend held for disk storage
(Fig. 1c. Translating LMs from NLP to proteins interprets
amino acids as words. Thereby, protein databases contain
several orders of magnitude more tokens than corpora used
in NLP, e.g., Google’s Billion Word data set [39] is one of
the biggest for NLP with about 829 million tokens (words),
i.e. about 500-times fewer than BFD with 393 billion tokens.
Both UniRef100 and BFD were tokenized with a single
space (indicating word-boundaries) between each token.
Each protein sequence was stored on a separate line, with
lines/proteins representing the equivalent of "sentences".
Additionally, an empty line was inserted between each pro-
tein sequence in order to indicate the "end of a document"
as some LMs such as Bert use consecutive sequences for an
auxiliary task, i.e. next-sentence prediction, which was not
used in this work. As a minor filtering step, all non-generic
or unresolved amino acids (B, O, U, Z) were mapped to
’unknown’ (X). After this pre-processing, Uniref100 required
150GB GB of storage, BFD 734 GB. For training ProtTXL, the
data was transformed to pytorch tensors on the fly. For Prot-
Bert and ProtAlbert, the data had to be pre-processed and
stored as tensorflow records, raising the storage to 2.3TB and
22TB for UniRef100 and BFD, respectively. Given tensorflow
records with terabytes, data sets had to be chunked into 6000
files for thousands of parallel workers. We also compared
the amino acid frequencies between databases as shown in
Fig. 1d in order to detect potential biases.

2.2 Data for supervised training

The information learnt by the LMs was condensed in form
of embeddings which were compared quantitatively through
their value for subsequent 2nd-step supervised training.
Toward this end we used previously published data sets
for ease of comparison to state-of-the-art methods based
on evolutionary information and to methods extracting
features through pre-trained LMs.

Per-residue prediction: When predicting properties on
the level of single residues, the data set published alongside
NetSurfP-2.0 [25] was used for 3- and 8-state secondary
structure prediction. The NetSurfP-2.0 dataset was created
through PISCES [40] selecting highest resolution protein
structures (resolution <=2.5A) from the PDB [41]. The set
was redundancy-reduced such that no pair of proteins had
>25% pairwise sequence identity (PIDE), leaving 10791 pro-
teins to train. About 500 proteins were randomly removed
from this set and used as validation set to determine hyper-
parameters such as early stopping. The final performance
was evaluated on three different data sets, each with <25%
PIDE to the training set: CB513 (513 proteins; [42]), TS115
(115 proteins; [43]) and CASP12 (21 proteins; [44]).

Per-protein prediction: For the prediction of features
of entire proteins, the DeepLoc [26] data set was used to
classify proteins into membrane-bound and water-soluble
and for classifying proteins into ten classes of subcellu-
lar localization (also referred to as cellular compartments).
This DeepLoc data set was created by pulling all proteins
with experimentally annotated localization from UniProt
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(release: 2016_04). Proteins in this set were redundancy
reduced at a level of PIDE<30% and split into 6621 proteins
for training and 1841 for testing.

2.3 Data: unsupervised embeddings

The embeddings extracted by the LMs were also evaluated
visually by projecting the high-dimensional representations
down to two dimensions using t-SNE [45]. A non-redundant
(PIDE<40%) version of the SCOPe database [46] (release
2.07 with 14323 proteins) served as one way to interpret
the t-SNE plots. For a subset of those proteins, we used
experimentally annotated EC (Enzyme Commission [47])
numbers for functional classifications. Taxonomic identifiers
from UniProt mapped proteins into one of the three major
domains of life (archaea, bacteria, or eukarya) or to viruses
(removing all proteins with missing classifications). The
number of iterations for the t-SNE projections was set to
3000 and the perplexity to 30 for all plots with the exception
of the amino acid plot for which we used a perplexity of 5.
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Fig. 1: Large Scale Dataset Training: here we compare the
two datasets that were used in this study for language
modelling (UniRef100, BFD) with a frequently used, redun-
dancy reduced dataset (UniRef50). a) shows the number of
sequences in each dataset in millions. (b) shows the number
of residues/tokens in each dataset in billions. (c) shows size
of each dataset raw text files as well as after converting to
tensors in terabytes. (d) shows the frequency of each amino-
acid/token in the each dataset

2.4 Models stage 1: LMs to extract embeddings

In this work, four LMs which achieved significant improve-
ments in NLP (Bert [48], Albert [49], Transformer-XL [50]
and XLNet [13]) were trained on protein sequences. Bert
was the first bidirectional model in NLP which tried to
reconstruct corrupted tokens, and is considered the de-facto
standard for transfer learning in NLP. Albert reduced Bert’s
complexity by hard parameter sharing between its attention
layers which allows to increase the number of attention
heads (64 chosen here). Transformer-XL was chosen because
it overcomes the problem of having a maximum sequence

length, which was inherent to all previous Transformer
based models (including Bert and Albert). With the average
length of an English sentence around 15-30 words [51], an
upper sentence length limit is no problem for sentence-
level NLP tasks but many proteins are more than 10-times
longer resulting in an average length of about 350 residues
(residues is the term used to describe amino acids joined
in a protein sequence, i.e. the sentence length measured
in number of words). For example, around 20% of the
sequences in UniRef100 (216M sequences) are longer than
510. Transformer-XL still cuts sequences into fragments but
allows for flow of information between fragments for longer
proteins by re-using hidden states of fragments which have
already been processed. This memory is uni-directional
as fragments are processed sequentially. XLNet uses the
memory mechanism introduced by Transformer-XL to also
allow for processing of sequences of arbitrary length. While
the memory remains uni-directional for both, Transformer-
XL and XLNet, only XLNet allows to gather bidirectional
context within one memory fragment while Transformer-XL
has only access to uni-directional context.

All these models were trained on UniRef100 and
Transformer-XL was additionally trained on BFD (Table
1 for model parameters). Largely, we used configurations
successfully transferred from NLP to protein sequences
[21], [24], [52], with the exception of the number of layers
that was increased to optimize memory utilization. Bert,
TransformerXL and XLNet were trained with a hidden layer
size (dimensionality of the features which can be extracted)
of 1024 while Albert was trained with a hidden layer size
of 4096. Models which use positional encoding like Bert
and Albert, can process only sequences shorter or equal to
the length of the positional encoding which has to be set
before training. Setting the length of the positional encoding
to 40k allowed the models to process protein sequences
up to a length of 40k. Albert, Bert and Transformer-XL
were optimized using the Lamb optimizer [53] designed for
large batch sizes, while XLNet was optimized using Adam.
No auxiliary tasks like Bert’s next-sentence prediction were
used for any model described here.

ProtTXL: The Transformer-XL versions trained here on
protein sequences are referred to as to ProtTXL (only Prot-
TXL when trained on UniRef100 and ProtTXL-BFD when
trained on BFD). Both LMs were trained with the configu-
ration shown in Table 1, sharing a dropout rate of 15%, a
memory length of 512 tokens and using mixed precision.
The number of layers, number of heads, batch size, learning
rate, weight decay, training steps and warm-up steps were
adjusted according to training set size as well as GPU
utilization. We focused especially on the complex interplay
between learning rate and the number of warm-up steps
which was shown to be crucial to prevent deeper layers of
creating instability during training [54] and speed-up model
convergence [55]. Here, the number of warm-up steps was
set to cover at least one epoch for each data set. We tested
initial learning rates between 0.001 and 0.005 which were
increased linearly at every training step over the warm-
up period. To avoid model divergence during training, the
learning rate had to be (i) reduced along with the warm-
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Hyperparameter ProtTXL ProtBert ProtXLNet ProtAlbert
Dataset BFD100 Uniref100 BFD100 Uniref100 Uniref100 Uniref100
Number of Layers 32 30 30 30 12
Hidden Layers Size 1024 1024 1024 4096
Hidden Layers Intermediate Size 4096 4096 4096 16384
Number of Heads 14 16 16 16 64
Positional Encoding Limits - 40K - 40K
Dropout 0.15 0.0 0.1 0.0
Target Length 512 512/2048 512 512/2048
Memory Length 512 - 384 -
Masking Probability - 15% - 15%
Local Batch Size 8 5 32/6 30/5 2 21/2
Global Batch Size 44928 22464 32768/6144 15360/2560 1024 10752/1024
Optimizer Lamb Lamb Adam Lamb
Learning Rate 0.0005 0.002 0.002 0.00001 0.002
Weight Decay 0.0 0.01 0.01 0.01 0.01
Training Steps 40.7K 31.3K 800K/200K 300K/100K 847K 150K/150K
Warm-up Steps 13.6K 5.5K 140K/20K 40K/0K 20K 40K/5K

Mixed Precision
FP16 Model Weight
Fp32 Master Weight

None None None

Number of Parameters 562M 567M 420M 409M 224M
System Summit Summit TPU Pod TPU Pod TPU Pod
Number of Nodes 936 128 64 64 64
Number of GPUs/TPUs 5616 1024 512 512 512
Training Time (Days) 2 2 23.5 9.5 11 15.5

TABLE 1: Large Scale Deep Learning Training: the table shows the configurations used for training the protein language
models introduced here (ProtTXL, ProtBert, ProtXLNet, ProtAlbert) using either Summit or a TPU Pod v3.

up steps (for BFD), or (ii) increased for both (for Uniref100).
Even after increasing the warm-up steps to two epochs, the
maximum learning rate remained at 0.0025 for both data
sets. Beyond this point, the training diverged. Using weight
decay to regularize the network increased the GPU memory
usage as it required to compute the norm of all weight vec-
tors on our models, thus reducing the batch size. ProtTXL-
BFD was trained for 40k steps in total, with 13.6k warm-
up steps using a learning rate of 0.0005, while ProtTXL was
trained for 31k steps with 5k warm-up steps using a learning
rate of 0.002. The Lamb optimizer was able to handle the
resulting batch sizes of 44k and 22k for ProtTXL-BFD and
ProtTXL, respectively, without divergence.

ProtBert: Bert was trained using both UniRef100 and
BFD-100 datasets, these two versions are referred as ProtBert
and ProtBert-BFD, respectively. Both LMs were trained with
the configuration shown in Table 1. Compared to the origi-
nal Bert publication, the number of layers was increased in
order to potentially reach better performance in supervised
downstream tasks, while keeping inference time as well as
GPU memory consumption at a reasonable level. Unlike
Transformer-XL which was trained on Nvidia GPUs, mixed-
precision was not used to train other models because those
were trained on TPUs. Similar to the Bert version trained
in the Lamb paper [53], ProtBert was first trained for 300k
steps on sequences with a maximum length of 512 and then
for another 100k steps on sequences with a length of a
maximum length of 2k. While ProtBert-BFD was trained for
800k steps, then for another 200k steps for sequences with
maximum length of 512 and 2k, respectively .This allows the
model to first extract useful features from shorter sequences
while using a bigger batch size, which makes training on
longer sequences and thus overall training more efficient.

ProtAlbert: We referred to Albert trained on UniRef100

as to ProtAlbert. We used the configuration from the official
GitHub repository for Albert (version: xxlarge v2) with
12 attention layers. For Albert the number of layers is
increased through the number of times that Albert stacks
its single layer. Compared to the original publication, we
were able to increase the global batch size from 4096 to
10752 despite using the same hardware. The reason for this
counter-intuitive effect is the reduced vocabulary size in
protein sequences because the entire diversity of the protein
universe is mapped to 20 different amino acids, compared to
tens of thousands of different words. As ProtAlbert was also
trained on TPUs, no mixed-precision was used for training.
Similar to ProtBert, ProtAlbert was first trained for 150k
steps on sequences with a maximum length of 512 and then
for another 150k steps on sequences with a maximum length
of 2k.

ProtXLNet: XLNet was trained on UniRef100 (ProtXL-
Net) using the original NLP configuration [13] (Table 1)
except for the number of layers that was increased to 30
layers which reduced the global batch size to 1024. Due
to the relatively small batch-size, we used the original
optimizer: Adam with a learning rate of 0.00001. The model
was trained through more steps, i.e. 20k warm-up and 847k
steps to compensate for the smaller batch-size of this model.

2.5 Models stage 2: supervised models

The second-stage supervised models using the embeddings
from the LMs as input were deliberately kept relatively
minimal to focus the differential analysis on the power of
the LM embeddings. All our experiments used the pre-
trained LMs as feature extractors without fine-tuning, i.e.
without gradient back-propagating to the LMs. Thereby, we
could proxy the information contained in the embeddings
through the performance of the supervised tasks. The su-
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pervised models have been described before [17]. To briefly
summarize: we applied tasks on two different levels, namely
per-residue and per-protein predictions. For the per-residue
prediction a simple two-layer convolutional neural network
(CNN) was trained on the embeddings. The first layer of
our CNN compressed the output of the language models
down to 32 dimensions using a window size of 7 (1024 for
ProtBert, ProtTXL and ProtXLNet, 4096 for ProtAlbert). The
compressed representation was fed to two different CNNs
each having again a window size of 7. One of these CNNs
was trained on predicting secondary structure in 3-states,
the other was trained on predicting 8-states. The network
was trained on both outputs simultaneously by adding their
losses (multi-task learning). For the per-protein prediction
features were also extracted from the last layer of the LMs.
However, for this task the representations were averaged
(mean-pooled) over the length-dimension of the protein
resulting in a fixed-size representation for all proteins. The
resulting vector (1024-dimensional for ProtBert and Prot-
TXL, 4096-dimensional for ProtAlbert) was used as an input
to a single feed forward layer with 32 neurons which com-
pressed information before making the final predictions for
both per-protein tasks simultaneously (multi-task learning).

2.6 Hardware

ORNL Summit & Rhea: The Oak Ridge National Lab-
oratory (ORNL) provides several clusters for researchers
who need computational resources not provided by research
facilities such as universities. Here, we used Summit and
Rhea. Summit was used to train the deep learning models,
while Rhea was used for the pre-processing of data sets
including the distributed generation of tensorflow records.

Summit is the world’s second fastest computer, consist-
ing of approximately 4618 nodes. Each node has two IBM
POWER9 processors and six NVIDIA Volta V100 with 16GB
of memory each (Figure 2 [1]). Every POWER9 processor
is connected via dual NVLINK bricks, each capable of a
25GB/s transfer rate in both directions. A single node has
0.5 TB of DDR4 main memory and 1.6TB of non-volatile
memory that can be used as a burst buffer. Summit is
divided into racks with each rack having 18 nodes. In all
of our experiments we reserved 936 nodes for training. As
having nodes on the same rack decreases the communica-
tion overhead, we reserved entire racks.

The smaller cluster (Rhea) contains two partitions: Rhea
and GPU. The Rhea partition has 512 node, each with 128
GB of memory and two Intel R© Xeon R© E5-2650. The GPU
partition has only 9 nodes, each with 1 TB of memory and
two Intel R© Xeon R© E5-2695. Reha reduced the time needed
for creating tensorflow records for the BFD dataset from
7.5 months (!) to fewer than two days, by converting the
original sequential script to distributed processing using
MPI. The generation script used two nodes of the GPU
partition, with a total of 112 parallel threads.

Google TPU Pod: In 2016, Google introduced tensor
processing unit (TPU) as its application-specific integrated
circuit optimized for training neural networks. TPUs can be
accessed through Google Cloud. Training the protein LMs
used the latest TPU generation (V3) with 512 cores. These
cores are divided into hosts with each host having access to

8 cores. Consequently, we had access to 64 hosts, and each
core had 16 GiB of high-bandwidth memory. Training on the
TPUs required access to a virtual machine on Google Cloud
and storage on Google Bucket [56]. The workflow as well as
the different scales of TPUs are depicted in Fig. 3.

2.7 Software

Summit integrates several pre-configured modules which
include the most popular libraries and tools required for
simulation, deep learning, distributed training and other
purposes. We used the IBM Watson Machine Learning mod-
ule versions 1.6.0 and 1.6.2 for our deep learning training.
In contrast to this, the Google Cloud server, which we used
for the TPU Pod training, had to be configured manually
because only the operating system was installed.

Pytorch was used to train ProtTXL, tensorflow to train
ProtBert, ProtAlbert and ProtXLNet. Both libraries used the
Horovod framework [6] to train the models on distributed
clusters such as Summit. Horovod supports distributed
GPU training with minimal change in the code. It sup-
ports different backends including MPI, NCCL and IBM
PowerAI distributed deep learning (DDL). We tested all
three backends and found DDL to be the fastest for our
training purpose on Summit. The time needed to finish a
single batch with ProtTXL-BFD increased from one to two
nodes due to the communication overhead (Fig. 4). After
two nodes the communication overhead plateaued, even
when scaling up to 936 nodes with 5616 GPUs. Summit has
integrated DDL in their Watson Machine Learning module
which comes with most DDL libraries including pytorch,
tensorflow, apex, DDL and horovod. However, Summit has
only a license for using DDL up to 954 nodes. Contrary to
Summit, training on TPU Pods did not require any changes
in the Tensorflow code to use either a single TPU host or to
distribute workload among multiple TPU hosts.

Mixed precision allows to fit bigger models and batch
sizes into GPU memory by using 16-bit precision only or a
mix of 16-bit and 32-bit precision. Nvidia’s APEX library
[57] was used for mixed precision training of ProtTXL,
due to its pytorch support. As ProtTXL training became
instable when training with 16 Bit precision, we switched
to almost half precision training (storing all model weights
at 16 Bit precision; exception: batch-normalization layers),
while keeping a master copy of the model’s weights in 32
Bit. We did not use mixed-precision for models trained on
TPUs.

Another optimization technique/library crucial for our
training on Summit was IBM’s large model support (LMS)
[58]. Similar to gradient checkpointing [59], LMS virtually
extends the GPU memory by outsourcing parts of the model
from GPU to main memory. This allows training models
larger than the GPU memory. The obvious drawback of LMS
is the increase in training time due to shuttling data between
CPU and GPU and back. However, the reduced memory
consumption of the model allows to increase the batch size,
potentially compensating for the communication overhead.
Compared to gradient checkpointing, LMS provides easier
integration into existing code by operating directly on a
computational graph defined by users and automatically
adds swap-in and swap-out nodes for transferring tensors

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 21, 2020. ; https://doi.org/10.1101/2020.07.12.199554doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.12.199554
http://creativecommons.org/licenses/by-nc-nd/4.0/


JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 6

A Summit Single Node Overview

B Summit Node Internal Architecture

Fig. 2: Summit Architecture: Panel A shows a single node of the Summit super computer consisting of two power9 CPUs
and 6 V100 GPUs while Panel B shows how they they are connected including their connection speed.

A TPU V3 Training Pipeline Overview B TPU Pod V3 Slices Overview

Fig. 3: TPU Training: Panel A shows the TPU Pod training pipeline, Panel B the different TPU Pod v3 configurations.
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Fig. 4: Large Scale Dataset Training: The figure shows the
overhead of increasing the number of nodes/gpus for both
ProtTXL (blue; low) and ProtBert (red; high). The overhead
increases slightly from 1 to 2 nodes but remains constant
even when scaling up to 936 nodes with a total of 5616
GPUs.

from GPU memory to main memory and vice versa. We
have tested LMS on ProtTXL as well as ProtBert (Figure
4). As Pytorch and tensorflow have different strategies to
integrate LMS, we also compared the effect of LMS on batch-
size, model size and training time using the two different
libraries. ProtTXL was used to evaluate the effect of Py-
torch’s implementation of LMS while ProtBert was trained

for a few steps BFD using Summit to evaluate tensorflow’s
implementation of LMS. Training ProtBert for a few steps
was sufficient to assess the effect of LMS on batch-size,
model size as well as an estimate of training time. In the end,
we used LMS only for ProtTXL to strike a balance between
model size and training time. The number of LM parameters
could be increased by about 15.6% for ProtTXL-BFD and to
6.6% for ProtBert (5a). Additionally, we could increase the
batch size by 700% for ProtTXL-BFD (Figures 5b and 5c). The
NV-Link between CPU and GPU on Summit-nodes, reduced
the training time for ProtTXL by 60%while it increased by
72% for ProtBert (Figure 5d).

3 RESULTS

3.1 Unsupervised embeddings from LMs informative

The embeddings extract some of the information learned
by the LMs in the first stage of unsupervised learning. To
establish that our protein LMs have extracted an under-
standing akin to the grammar in NLP, we projected the high-
dimensional embedding space down to two dimensions
using t-SNE [45] and visualized proteins according to an-
notated structural, functional or evolutionary information.

Capturing biophysical features of amino acids. Apply-
ing t-SNE to the first embedding layer visualized informa-
tion extracted by the LMs representing individual amino
acids irrespective of their surrounding context (residues
next to it). As previously established for another protein
LM [24], the t-SNE projections (e.g. ProtBert Fig. 6A) sug-
gested that all LMs captured essential biophysical aspects
of amino acids. These included charge, polarity, amino acid
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Fig. 5: Large Scale Deep Learning Training: The figures
show the effect of enabling (red bars) or disabling (blue bars)
large model support (LMS) on both, model size as well as
batch size, when we tested ProtTXL or ProtBert on Nvidia V-
100 16GB GPUs. It highlights the difference between apply-
ing LMS using PyTorch (ProtTXL) or tensorflow (ProtBert).
Panel (a) shows the effect of using LMS on the maximum
model size that can fit in the memory of a single V-100.
Panels (b,c) compare the effect of LMS on the maximum
local (b) and global batch size (c) that can fit in the GPU.
The number of hours required to finish a single epoch using
936 nodes, each with 6 GPUs when LMS being enabled is
shown in (d).

size (small amino acids A, C, G, P, S, T separated from large
F, H, R, W, Y), hydrophobicity, even to the level of aliphatic
(A, I, L, M, V) vs. aromatic (W, F, Y).

Capturing protein structure classes. To assess which
aspects of protein structure were captured by the unsu-
pervised LMs, we averaged over the length-dimension of
the representations derived from the last layer of each
model. This created fixed-size representations for each pro-
tein. These we applied to the SCOPe database [46] clas-
sifying proteins by their 3D structures (Methods). On the
most coarse-grained level, SCOPe distinguishes between
all-alpha, all-beta, alpha|beta, alpha&beta, multi-domain,
membrane/cell surface and small proteins. ProtTXL (SOM
Fig. 14D) and ProtBert (SOM Fig. 15D) produced higher
entropy embeddings, while ProtAlbert (SOM Fig. 12D),
ProtXLNet (SOM Fig. 13D) and ProtBert-BFD (6D) packed
proteins into denser clusters. Consequently, ProtAlbert, Pro-
tXLNet and especially ProtBert-BFD embeddings visually
separated the proteins better than ProtTXL embeddings.
Although sequence length was not explicitly encoded and
our pooling squeezed sequences to a fixed vector size, all
models separated small from long proteins (light blue, e.g.
ProtBert-BFD Fig. 6D). All models also to distinguished be-
tween water-soluble and transmembrane proteins (brown,
e.g. ProtBert-BFD Fig. 6D) and to some extent secondary

structure composition, i.e. all-alpha versus all-beta (dark
blue vs. dark green, e.g. ProtBert-BFD Fig. 6D).

Capturing aspects of protein function. Using the
same proteins as for SCOPe but different annotations (EC-
numbers [60]), we assessed whether the LM embeddings
captured aspects of protein function, namely EC numbers
(proteins from SCOPe without known ECs were removed,
making Figs. 6F and 6D not directly comparable). Although
most proteins were scattered for all LMs, ProtTXL clustered
some proteins into transferases, hydrolases and oxidoreduc-
tases (particular types of enzymes, SOM 14F).

Capturing domains of life and viruses. The follow-
ing three domains of life are distinguished: archaea, bacte-
ria, and eukarya, while viruses are not considered as life.
We used the same SCOPe proteins and fixed-size repre-
sentations for this analysis. Despite being trained differ-
ently (ProtTXL/ProtXLNet predicting next token vs. Prot-
Bert/ProtAlbert reconstructing noise), all models captured
domain-specific aspects (e.g. ProtBert-BFD Fig. 6E). In gen-
eral, Eukarya and bacteria were separated best by all LMs,
while viruses and archaea formed less homogeneous clus-
ters. When comparing the different LMs, the same trend
as for protein structure classes could be observed: ProtTXL
(SOM 14E) and ProtBert (SOM 15E) produced higher en-
tropy clusters while ProtAlbert (SOM 15E) and ProtXLNet
(SOM 13E) produce visually easier separable clusters.

Using a different protein set [26], we analyzed whether
or not the embeddings captured aspects of protein function
as proxied by the cellular compartment (also referred to as
subcellular localization) and membrane-association. All LMs
distinguished some aspects of localization with nuclear and
extracellular proteins forming the most coherent clusters
(e.g. ProtBert-BFD Fig. 6C). The LMs also picked up the
membrane-association, clustering most proteins homoge-
neously (Fig. 6B).

3.2 Embeddings good input for supervised predictions

Successful protein predictions exclusively using embed-
dings as input constitutes an even more important acid test
than any statistical clustering analysis could. Toward this
end, we compared secondary structure (per-residue level)
and localization (per-protein level) predictions, along with
the classification into membrane/non-membrane proteins
(per-protein level). Protein LMs were only used as feature
extractors, i.e. LMs were not fine-tuned on a specific task.

Per-residue prediction of secondary structure. Sec-
ondary structure was predicted by CNNs using only embed-
dings extracted from the last layer of our pre-trained LMs.
All models were evaluated using standard measures for per-
formance (Q3/Q8: three/eight-state per-residue accuracy,
i.e. percentage of residues predicted correctly in either of the
3/8 states). Performance differed slightly between different
data sets: from Q3(CASP12)=71-76% (interval marks one
standard error), over Q3(CB513)=74-83%, to Q3(TS115)=75-
84% (Fig. 7; results for 8-state predictions confined to Fig.
10 Supplementary Material). The computed standard error
intervals fail to completely reflect the real spread of the
data, because the three data sets were not consistent, i.e.
the average over their performance differed by some level
of statistical significance. Ultimately, this reflects problems
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Fig. 6: Unsupervised training captures various features of proteins: We used t-SNE projections to assess which features the
LMs trained here learnt to extract from proteins. Exemplarily for ProtBert-BFD, the best-performing model on supervised
tasks, we showed that the protein LMs trained here captured biophysical- and biochemical properties of single amino
acids during pre-training (Panel A). A redundancy reduced version (30%) of the DeepLoc [26] dataset was used to
assess whether the LM learnt to classify proteins into membrane-bound and water-soluble (Panel B) or according to their
cellular compartment (Panel C). Not all proteins in the set had annotations for both features, making Panels B and C not
directly comparable. Further, a redundancy reduced version (40%) of the Structural Classification of Proteins – extended
(SCOPe) database was used to assess whether ProtBert-BFD captured structural (Panel D), functional (Panel F) or lineage-
specific (Panel E) features of proteins without any labels. Towards this end, contextualized, fixed-size representations
were generated for all proteins in both datasets by mean-pooling over the representations extracted from the last layer
of ProtBert-BFD (average over the length of the protein). The high-dimensional embeddings were projected to 2D using
t-SNE. ProtBert-BFD captured protein information on different levels: ranging from structural features as annotated in the
main classes in SCOPe, over functional aspects as defined by in the Enzyme Commission (E.C.) numbers or the cellular
compartment to the branch of the protein within the tree of life, without ever having been explicitly trained on any of
these features. Comparing different features for the same datasets revealed that potentially heterogeneous clusters are only
formed due to the multi-modal nature of proteins, e.g. the eukaryotic proteins are well separated from bacterial proteins
(Panel E) but form internally multiple sub-clusters in structure space (Panel D).
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Fig. 7: Performance comparison of Language models on supervised tasks: the predictive power of the embeddings derived
from the Language Models (LMs) trained here (ProtBert, ProtAlbert, ProtTXL, ProtXLNet) was assessed via three-state
secondary structure prediction (y-axis: Q3). To simplify comparability to other approaches, we used the same training and
test data sets (red:CASP12, yellow:TS115, blue:CB513) as an existing approach, i.e. NetSurfP-2.0 [25]. All LMs developed
here were evaluated by training a simple network on top of the representations extracted from the last layer of the pre-
trained LMs. As comparison, a method using evolutionary information was also added (NetSurfP-2.0, left side of the bar
chart). Approaches using only the proposed embeddings (ProtBert, ProtAlbert, ProtTXL, ProtXLNet) are located one the
right side of the bar chart. While outperforming uncontextualized (ProtVec [61]) as well as existing, LSTM-based LMs
(SeqVec [17]), all LMs trained here still fall short compared to methods using evolutionary information.

with each of those data sets: CASP12 was too small, but
completely new to all methods compared; CB513 was the
largest set (513 proteins), but allowed for substantial re-
dundancy, and TS115 (115 proteins) allowed for even more
redundancy. Despite these shortcomings, these data sets
enabled direct comparison to state-of-the-art methods using
evolutionary information.

For simplicity, we use the worst and the best
performance among the three data sets in the following
to highlight the performance variation depending on
the test set. For the four LMs trained on UniRef100
this resulted in Q3(ProtTXL)=71-75, Q3(ProtBert)=75-
83, Q3(ProtAlbert)=74-82, and Q3(ProtXLNet)=73-81
(for 8-states: Q8(ProtTXL)=59-63, Q8(ProtBert)=63-72,
Q8(ProtAlbert)=62-70 and Q8(ProtXLNet)=62-69). For
ProtTXL and ProtBert we could also analyze the influence
of the size of the database used to train the LMs: the
10-times larger BFD improved slightly over UniRef100, i.e.
Q3(ProtBert-BFD) - Q3(ProtBert)= +1.3 and Q8(ProtBert-
BFD) - Q8(ProtBert)= +2.3. For ProtTXL only a minimal
improvement could be observed for TS115, i.e. Q3 and Q8
improved by one percentage point. However, none of these
differences was statistically significant, especially, in the
light of the relatively high variation between test sets.

All databases and all models (Prot-
TXL/ProtBert/ProtAlbert/ProtXLNet, BFD/UniRef)
improved significantly over the approach using only
context-free feature extractors such as word2vec-based
approaches (dubbed DeepProtVec in Figs. 7 and 10).

However, none of the solutions improved in any way over
the state-of-the-art methods using evolutionary information
(methods left of the dashed vertical line in Figs. 7 and 10),
with ProtBert-BFD reducing the gap between those different
approaches.

Per-protein prediction of 10-state localization and
2-state membrane/non-membrane proteins. The feed
forward model was trained to predict protein local-
ization in ten different classes and to binary classify
membrane/non-membrane proteins. For simplicity, perfor-
mance was evaluated using standard accuracy (Q10 for lo-
calization, Q2 for membrane/non-membrane). ProtBert and
ProtAlbert numerically performed best: Q10(ProtBert)=74,
Q10(ProtAlbert)=74, while ProtTXL as well as ProtXL-
Net performed substantially worse: Q10(ProtTXL)=66,
Q10(ProtXLNet)=68. The 10-fold increase from UniRef100
to BFD when training ProtTXL or ProtBert appeared to have
little effect: Q10(ProtTXL-BFD)=65, Q10(ProtBert-BFD)=74
(Fig. 8). However, again those differences were not statis-
tically significant either way.

For the binary classification into membrane/non-
membrane proteins (Q2), the trend observed for localization
(Q10) largely remained: ProtBert and ProtAlbert performed
best (Q2(ProtBert)=89, Q2(ProtAlbert)=88, Fig. 8). However,
for Q2 ProtXLNet largely closed the performance gap from
Q2 (Q2(ProtXLNet)=87) while ProtTXL again performed
worst (Q2(ProtTXL)=85). As for localization, there was lit-
tle difference between the small (UniRef100) and large
(BFD) data set used for generating the LMs: Q2(ProtTXL)
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Fig. 8: Performance comparison on protein-level supervised tasks: the protein LMs trained here (ProtTXL, ProtBert,
ProtAlbert, ProtXLNet) were compared on the prediction of subcellular localization in 10-states (red bars) as well as on
classifying proteins into membrane-bound and soluble (blue bars) using the dataset of an existing approach, i.e. DeepLoc
[26]). A simple two-layer neural network is trained on top of fixed-size representations for each protein which were
derived by averaging over the length dimension of embeddings extracted from the last layer of the language models.
The performance of all our LMs falls short when being compared to an existing approach which uses evolutionary
information (DeepLoc). However, transformer-based protein LMs introduced here outperform previously published LSTM-
based protein LM approaches (DeepSeqVec) as well as uncontextualized approaches using word2vec (DeepProtVec).

- Q2(ProtTXL-BFD) = +1 and Q2(ProtBert) - Q2(ProtBert-
BFD) = 0, although the trend form localization (worse for
larger data set) was reversed.

On one hand, the per-protein predictions using only
embeddings as input, like those for secondary structure,
remained behind the best state-of-the-art methods using
evolutionary information (methods left of the dashed ver-
tical line in Fig. 8). On the other hand, performance was
substantially and statistically significantly higher for ProtAl-
bert/ProtBert/ProtTXL/ProtXLNet than for the word2vec-
like solutions (DeepProtVec in Fig. 8). However, in contrast
to the per-residue solutions, the per-protein predictions out-
performed some popular methods that did use evolutionary
information (Fig. 8), specifically ProtBert-BFD reached a
value only a few percentage points below the current state-
of-the-art using evolutionary information (Q2(ProtBert-
BFD)-Q2(Deeploc)=-3, Q10(ProtBert-BFD)-Q10(DeepLoc)=-
4).

3.3 Fast predictions from embeddings

Although embedding-based predictions were less accurate
than those using evolutionary information, one crucial ad-
vantage of representations derived from protein LMs is
their speed-up compared to database searches required
to generate evolutionary information. This speed-up was
quantified by comparing the time required to generate
representations for each protein in the human proteome
(20.353 proteins with a median sequence length of 415
residues) using our protein LMs or mmseqs2 [62], the

fastest tool to gather evolutionary information from protein
sequence databases at the moment. The same parameters
as in NetSurfP-2.0 [25] were used to search with mmseqs2
the human proteome against two large protein sequence
database (UniRef90=113M and UniRef100=216M proteins),
i.e. the number of iterations was set to two (profile search)
and the maximum number of sequences passing the pre-
filtering was set to 2.000. For the database search we used
an IntelR c© XeonR c© Scalable Processor “Skylake” Gold
6248 with 40 threads, SSD and 377GB main memory, while
protein LMs were run on a single Nvidia P100 with 16GB
memory using dynamic batch size based on the variable
sequences length. Using the experimental setup described
above, mmseqs2 is around 8- or 4-times slower than the
fastest LMs (SeqVec and ProtBert, Fig. 9 (a)) when searching
UniRef100 or UniRef90, respectively.

When checking the effect of protein sequence length on
the inference speed of protein LMs (Fig. 11 (b)), we noticed
that SeqVec is the slowest model (9.92s) for long proteins
(up to 4096 residues), while ProtBert is the fastest (0.91s).
We used only single sequence processing on a Nvidia Titan
V with 12GB vRAM.

We also investigated the cross-effect of sequence length
and batch-size (see Table 2) on the inference speed of dif-
ferent protein LMs. When using a single Nvidia Titan V
on varying batch-sizes (1,16,32) as well as sequence lengths
(128, 256, 512), SeqVec provided the fastest inference with
an average of 0.02 seconds per protein when using a batch
size of 32, followed by ProtBert (0.03s). However, the batch-
size of ProtBert could have been further increased on the
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Fig. 9: Inference Speed Comparison: The time required to
generate protein representations for the human proteome
(20.353 proteins) is compared using either our protein LMs
or mmseqs2 (protein sequence search tool [62] used to gen-
erate evolutionary information; NetSurfP-2.0 [25] parame-
ters are used). Here, we used mmseqs2 (red bar) to search
each protein in the human proteome against two large pro-
tein sequence database (UniRef90 and UniRef100 with 113M
and 216M proteins, respectively). Only embedding or search
time is reported, i.e. no pre-processing or pre-training was
measured. mmseqs2 was run on a Intel R© Xeon R© Scalable
Processor “Skylake” Gold 6248 with 40 threads, SSD and
377GB main memory, while protein LMs were run on a
single Nvidia P100 with 16GB memory using dynamic batch
size depending on sequence length (blue bar).

same hardware but was limited to allow a direct comparison
between all models.

4 DISCUSSION

Supercomputers such as the green energy-driven Summit
[1] and Google’s cloud TPU Pod [2], combined with op-
timized libraries such as IBM DDL [7] and Horovod [6]
set the stage for training LMs with billions of free pa-
rameters on large corpora with terabytes of data in hours
or days. Increasing model size improves performance for
some NLP applications [14], although the massive data
challenges the communication between thousands of nodes
and divergence between large batches during training. Here,
we presented some solutions to overcome these challenges
by fully utilizing 20% of Summit for the training of Trans-
formerXL [50], as well as, by using one TPU Pod V3-512
for the training of Bert [48], Albert [49] and XLNet [13]
on protein sequences. This translated into the parallel use
of 5616 GPUs on Summit or 512 TPU cores on a TPU
Pod, while avoiding training divergence with specialized
optimizers such as LAMB [53] up to a global batch size of
44K samples (here: proteins).

4.1 HPC challenges for larger protein LMs on Summit

Up-scaling LMs to the enormous sizes of protein databases
(our largest data set of BFD contained 112-times the number
of words in the English Wikipedia) on Summit threw up six
main challenges that we addressed as follows.
(1) Architecture: Summit is based on IBM Power processors;
most libraries and software tools are written for Intel and
AMD. This makes finding compatible tools directly from
the developers often challenging. However, the IBM Watson
Machine Learning Module, included almost all necessary
deep learning libraries, for others common package man-
agement tools such as Anaconda [63] were available.
(2) Communication overhead: large-scale training increased
the communication overhead. IBM DDL used the least com-
putation time on Summit.
(3) Distributed training: using thousands of GPUs with
Tensorflow [3] and Pytorch [4] required extremely efficient
distributed communication between nodes and assignment
of work loads (tokenized text files) to workers (GPUs).
Horovod [6] provided the best training for both of these
frameworks on Summit.
(4) File sharing: parallel file access can increase run-time.
During training, multiple nodes access the same files hold-
ing model parameters and logs. To address this, separate log
copies for each node were used, while storing a single copy
of the model on the master node. Data set files remained
shared, not impairing file reading.
(5) Pre-processing:, especially tokenization, of batches on
the fly increased GPU waiting and CPU processing while
reducing storage. For small data sets (few GBs), pre-
processing and disk-storing batches before training ap-
peared optimal. For large data sets (TBs), there was a trade-
off between disk space and training time. In our hands, the
best solution was using ORNL’s Rhea cluster, cutting pre-
processing from >215 to <2 days through MPI.
(6) Deep learning library: The integration of LMS into Py-
torch (ProtTXL) required adjusting only a few parameters; in
contrast, Tensorflow (ProtBert) required more code changes.
Tensorflow might compensate for this problem by auto-
tuning certain parameters such as the memory usage; how-
ever, for our use-case, this failed. The different parameters
for Pytorch and Tensorflow resulted in different behaviors
with respect to swapping in and out nodes between GPU
and CPU. This in turn varied speed and model/batch sizes.

4.2 Unsupervised LMs learned simple protein features

Some rudimentary information about how proteins are
formed, shaped, and function has been learned by the
LMs because all models (ProtBert, ProtAlbert, ProtTXL,
ProtXLNet) extracted valuable information as revealed by
the embeddings. The basic understanding extended from
biophysical features of the amino acid building blocks (e.g.
hydrophobicity, charge, and size, Fig. 6A), over classifica-
tions of protein structure (Fig. 6D), and protein function
(Fig. 6F), to the macroscopic level of the domains of life
(Fig. 6E). Global structural properties (e.g. overall secondary
structure content, Fig. 6D) and global biochemical properties
(e.g. membrane-boundness, Fig. 6B) appeared most distinc-
tive. In contrast, local features relying on short motifs were
less separated (EC-numbers: Fig. 6F, localization: Fig. 6C).
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4.3 Bi-directional beats uni-directional for proteins

The t-SNE and UMAP analyses suggested that the LMs had
extracted some level of understanding of the language of life.
However, any such statistical differences have ultimately
limited validity unless they are predictive. In this sense
prediction is the acid test of understanding. To pass this
test, we extracted the embeddings learned by the LMs
directly as input to predict aspects of protein structure and
function (per-residue prediction of secondary structure and
per-protein prediction of localization and membrane/non-
membrane). Overall, the supervised results confirmed [17]
that evolutionary information scientifically and statistically
significantly outperformed LMs not using such information
(on all per-residue 7,10 and per-protein tasks 8). However,
ProtBert-BFD reduced the gap from embeddings-only input
to those approaches. Newer contextual models improved
both over previous LM-based approaches [17] (3-5 percent-
age points in Q3) and over non-contextualized word2vec-
type approaches [64], [65], [66] (12-17 percentage points in
Q3). A merger of models using evolutionary information
and embeddings might bring the best.

In NLP uni-directional models (auto-regressive) perform
on par with bi-directional models (auto-encoding) [14], [67].
In contrast, it bi-directional context appeared crucial to
model aspects of the language of life. While auto-encoding
models such as Albert [49] utilize context to both sides
during loss calculation, auto-regressive models such as
TransformerXL [50] consider only context to one side.
This difference resulted in a substantial performance
difference between ProtTXL and ProtXLNet (XLNet extends
Transformer-XL to capture bi-directional context), both
trained on UniRef100: Q3(ProtXLNet)-Q3(ProtTXL)=3.6,
Q8(ProtXLNet)-Q8(ProtTXL)=4.0, Q10(ProtXLNet)-
Q10(ProtTXL)=2, Q2(ProtXLNet)-Q2(ProtTXL)=2. This
might be compensated for by first pre-train on sequences
and their reverse and then concatenating the output
of uni-directional LMs applied on both directions.
While this does not allow the LM to use bi-directional
context during training, it allows supervised networks
to combine context derived independently from both
sides. One example for an auto-regressive model that
makes use of this is ELMo [10] which concatenates the
embeddings derived from a forward and a backward
LSTM. Interestingly, ELMo trained on protein sequences
(SeqVec) performs better than the uni-directional ProtTXL
but worse (Q3,Q8) or equal (Q2,Q10) than the bi-
directional ProtXLNet: Q3(ProtXLNet)-Q3(SeqVec)=1.0,
Q8(ProtXLNet)-Q8(SeqVec)=0.7, Q10(ProtXLNet)-
Q10(SeqVec)=0, Q2(ProtXLNet)-Q2(SeqVec)=0. While
part of this difference might be explained by the difference
in model size (SeqVec=93M vs. ProtXLNet=409M) and
training data (SeqVec=30M vs. ProtAlbert=224M), pure
uni-directionality as used in TransformerXL seems to be
detrimental for modeling protein sequences.

4.4 Bigger data not always better?

LMs were trained on the largest protein database ever
used for this purpose, namely BFD [36], more than an
order of magnitude larger than UniProt [38], the standard
in the field. Although bigger did not equate better for

all 2nd stage predictions, some models clearly improved
through more data. Nevertheless, given the immense in-
crease, the highest performance increase remained rather
limited with respect to existing LMs [17] (∆Q3=Q3(ProtBert-
BFD)-Q3(SeqVec)=4.7%) despite a significant increase in
model size (SeqVec=93M vs. ProtBert=420M) and data size
(SeqVec=30M vs. ProtBert=216M). Although a ∆Q3 of 4-
5 percentage points might imply an improvement that is
crucial for the methods using such predictions [68], the
value has also to be put into relation to the GPU/TPU hours
needed to train those models: while SeqVec needed around
1680 GPU hours, ProtTXL needed 202176 GPU hours and
ProtBert-BFD needed 116736 TPU core hours.

4.5 Protein LMs reached a ceiling?

Applying techniques from NLP to proteins opens new op-
portunities to extract information from proteins in a self-
supervised, data-driven way. New protein representations
may complement existing solutions, most successful when
combining evolutionary information and machine learning
[34], [69], [70], [71]. The gain in inference speed for protein
LMs compared to traditional models using evolutionary
information is so significant that some analyses might prefer
much faster and slightly less accurate to better but much slower,
for instance, when time or resources for much slower are
amiss. Nevertheless, given the experiments described here
and in previous work [17], [18], [19], [20], [21], [22], [24],
we might expect an upper limit for what protein LMs can
learn when using auto-regressive or auto-encoding exclu-
sively. Although this work explicitly addressed the possi-
bility of reaching that limit, we could only conclude: bi-
directional models appeared superior over uni-directional
models. Answers to the following questions might advance
from the status-quo. (1) Why do LSTM-based approaches
require fewer parameters and resources while perform-
ing similarly at downstream prediction tasks (Q3(ProtBert-
BFD)-Q3(SeqVec)=4.7%) compared to Transformer-based
approaches? (2) Would the addition of auxiliary tasks such
as next-sentence or sentence-order prediction offered by
BERT or Albert suit protein sequences? A suggestion might
be the usage of structure information [72] or evolutionary
relationship [20]. (3) Addressing model vs. data parallelism:
Were the large models introduced here still too small to
capture all data? Unfortunately, this brings up training
efficiency as recently investigated by sparse Transformers
[73] or attention optimized with locality-sensitive hashing
(LSH) [74] as introduced recently by the Reformer model
[75]. (4) Might full precision training stabilize training and
speed up convergence by leveraging 32-bit floats? Mixed
precision training, employed in this evaluation, uses 16 Bit
as well as 32 Bit vectors; this made it more difficult for
the model to converge during training. Training the models
presented here in full precision might stabilize training and
thus provide more informative representations. Overall, our
results established that the combination of HPC solutions
for building protein LMs and subsequent training of super-
vised prediction methods scaled up to the largest data sets
ever used in the field.
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SUPPLEMENTARY ONLINE MATERIAL (SOM)

-1.1 Supervised Learning

On the level of single residues we also compared the pre-
diction performance of the LMs introduced here on 8-state
secondary structure prediction performance (Fig. 10). On the
level of single residues, we also compare our protein LMs
on results for secondary structure prediction in 8-states as
shown in Fig. 10.

-1.2 Protein LM inference speed

The effect of varying sequence lengths (128, 256, 512) and
different batch sizes (1, 16, 32) on the inference time of
the protein LMs introduced here is reported in table 2.
The effect of sequence length on different LM architectures
(LSTM-based SeqVec and transformer-based ProtTrans) was
also visualized in figure 11. The x-axis represents different
sequence length from 128 up to 4096, while the y-axis
represents the time of inference in ms for a single protein
with a batch size of 1 on a Nvidia Titan V with 12GB.

-1.3 Unsupervised Learning

Using t-SNE projections, the information content stored
within the novel embeddings was qualitatively assessed
on various levels, ranging from different aspects of pro-
tein function (E.C. numbers, subcellular localization and
membrane-boundness) to the level of kingdoms of life, i.e.
Eukaryota, Bacteria and Archaea (for completeness here also
including Viruses).
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Fig. 10: Performance comparison of Language models on supervised tasks: similar to the analysis performed for three-
state secondary structure (Fig. 7), the features learnt by the proposed Language models (LMs) trained here (ProtBert,
ProtAlbert, ProtTXL, ProtXLNet) were also evaluated on eight-state secondary structure prediction (y-axis: Q8). The same
datasets (NetSurfP-2.0 [25]), pre-processing steps as well as the same supervised models were used for this analysis,
confirming the trend suggested by the three-state secondary structure prediction.

Model BioTXL BioBert BioAlbert BioXLNet SeqVec
Sequence Length Batch Size

512 1 0.10 0.06 0.24 0.10 0.92
16 0.11 0.05 0.24 0.14 0.07
32 0.11 0.05 0.25 0.14 0.04

256 1 0.05 0.03 0.16 0.04 0.46
16 0.04 0.02 0.11 0.04 0.03
32 0.04 0.02 0.11 0.05 0.02

128 1 0.03 0.03 0.08 0.03 0.24
16 0.02 0.01 0.06 0.01 0.02
32 0.01 0.01 0.06 0.02 0.01

Average 1 0.06 0.04 0.16 0.06 0.54
16 0.05 0.03 0.14 0.07 0.04
32 0.05 0.03 0.14 0.07 0.02

TABLE 2: Comparison of inference speed: The analysis distinguished proteins of different length, as well as different
batch sizes (numbers of proteins processed: 1, 16 and 32; cap at 32 due to limitation of GPU memory to 12GB vRAM). For
simplicity, no proteins longer than 512 is shown . Each test was repeated 100 times and the average time per protein was
reported. The experiment was conducted using a single Nvidia Titan V GPU.

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 21, 2020. ; https://doi.org/10.1101/2020.07.12.199554doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.12.199554
http://creativecommons.org/licenses/by-nc-nd/4.0/


JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 17

12
8

25
6

51
2

10
24

20
48

40
96

0

2

4

6

8

10

Sequence Length

T
im

e
in

m
s

p
er

p
ro

te
in

ProtBert

ProtTXL

ProtXLNet

ProtAlbert

SeqVec

Fig. 11: Inference speed depends on sequence length: The effect of protein sequence length on the inference time of the
protein LMs trained here and a previously published LM (SeqVec) were compared using a Nvidia Titan V with 12GB
memory (batch-size=1). Longer proteins take disproportionate long to embed for all language models. In particular, SeqVec
was affected due to the sequential nature of the LSTMs used this LM. Transformer-based models require longer for proteins
because the attention maps that need to be computed square with sequence length. In contrast to LSTMs, the computation
of attention can be parallelized, resulting in lower inference time for long proteins when using transformer-based LMs.
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Fig. 12: Unsupervised training captures various features of proteins: We used t-SNE projections to assess which features
the LMs trained here learnt to extract from proteins. Exemplarily for ProtAlbert, we showed that the protein language
models trained here captured biophysical- and biochemical properties of single amino acids (Panel A). A redundancy
reduced version (30%) of the DeepLoc ( [26]) dataset was used to assess whether ProtAlbert learnt to classify proteins into
membrane-bound or water-soluble (Panel B) or according to the cellular compartment they appear in (Panel C). Not all
proteins in the set had annotations for both features, making Panels B and C not directly comparable. Further, a redundancy
reduced version (40%) of the Structural Classification of Proteins – extended (SCOPe) database was used to assess whether
ProtAlbert captured structural (Panel D), functional (Panel F) or lineage-specific (Panel E) features of proteins without
any labels. Towards this end, contextualized, fixed-size representations were generated for all proteins in both datasets by
mean-pooling over the representations extracted from the last layer of ProtAlbert (average over the length of the protein).
The high-dimensional embeddings were projected to 2D using t-SNE. Compared to the some of the other protein LMs
trained here (ProtTXL 14 and ProtBert 15, ProtAlbert formed more dense clusters, especially for the projections based on
the SCOPe dataset (Panels D, E and F).
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F Function: E.C.

Fig. 13: Unsupervised training captures various features of proteins: We used t-SNE projections to assess which features
the LMs trained here learnt to extract from proteins. Exemplarily for ProtXLNet, we showed that the protein language
models trained here captured biophysical- and biochemical properties of single amino acids (Panel A). A redundancy
reduced version (30%) of the DeepLoc ( [26]) dataset was used to assess whether ProtXLNet learnt to classify proteins into
membrane-bound or water-soluble (Panel B) or according to the cellular compartment they appear in (Panel C). Not all
proteins in the set had annotations for both features, making Panels B and C not directly comparable. Further, a redundancy
reduced version (40%) of the Structural Classification of Proteins – extended (SCOPe) database was used to assess whether
ProtXLNet captured structural (Panel D), functional (Panel F) or lineage-specific (Panel E) features of proteins without
any labels. Towards this end, contextualized, fixed-size representations were generated for all proteins in both datasets by
mean-pooling over the representations extracted from the last layer of ProtXLNet (average over the length of the protein).
Compared to other protein LMs trained here, ProtXLNet learnt small coherent clusters that are scattered among the t-SNE
projection. Only comparing different features for the same datasets reveals that potentially heterogenous clusters are only
formed due to the mulit-modal nature of proteins, e.g. the eukaryotic proteins are well separated from bacterial proteins
(Panel E but form multiple sub-clusters in structure space (Panel D). Compared to other protein LMs trained here (e.g.
ProtTXL 14, ProtXLNet learnt small coherent clusters that are scattered among the t-SNE projection. Simlar to ProtBert-BFD,
some of the small scattered clusters form homogeneous clusters when focusing on other aspects of proteins, e.g. some of
the proteins in the heterogeneous cluster in the lower left part showing subcellular localization (Panel C) can be explained
by proteins bound to the membrane (red in Panel B).
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Fig. 14: Unsupervised training captures various features of proteins: We used t-SNE projections to assess which features
the LMs trained here learnt to extract from proteins. Exemplarily for ProtTXL, we showed that the protein language
models trained here captured biophysical- and biochemical properties of single amino acids (Panel A). A redundancy
reduced version (30%) of the DeepLoc ( [26]) dataset was used to assess whether ProtTXL learnt to classify proteins into
membrane-bound or water-soluble (Panel B) or according to the cellular compartment they appear in (Panel C). Not all
proteins in the set had annotations for both features, making Panels B and C not directly comparable. Further, a redundancy
reduced version (40%) of the Structural Classification of Proteins – extended (SCOPe) database was used to assess whether
ProtTXL captured structural (Panel D), functional (Panel F) or lineage-specific (Panel E) features of proteins without any
labels. Towards this end, contextualized, fixed-size representations were generated for all proteins in both datasets by
mean-pooling over the representations extracted from the last layer of ProtTXL (average over the length of the protein).
The high-dimensional embeddings were projected to 2D using t-SNE. While generally forming the least dense clusters
compared to other LMs trained here, ProtTXL captured certain aspects about protein function (e.g. Transferases, dark
green Panel F) that other LMs trained here did not capture.
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Fig. 15: Unsupervised training captures various features of proteins: We used t-SNE projections to assess which features
the LMs trained here learnt to extract from proteins. Exemplarily for ProtBert, we showed that the protein language
models trained here captured biophysical- and biochemical properties of single amino acids (Panel A). A redundancy
reduced version (30%) of the DeepLoc ( [26]) dataset was used to assess whether ProtBert learnt to classify proteins into
membrane-bound or water-soluble (Panel B) or according to the cellular compartment they appear in (Panel C). Not all
proteins in the set had annotations for both features, making Panels B and C not directly comparable. Further, a redundancy
reduced version (40%) of the Structural Classification of Proteins – extended (SCOPe) database was used to assess whether
ProtBert captured structural (Panel D), functional (Panel F) or lineage-specific (Panel E) features of proteins without any
labels. Towards this end, contextualized, fixed-size representations were generated for all proteins in both datasets by
mean-pooling over the representations extracted from the last layer of ProtBert (average over the length of the protein).
The high-dimensional embeddings were projected to 2D using t-SNE. ProtBert formed less dense clusters compared to the
same model trained on a larger dataset (ProtBert-BFD Fig. 6).
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