This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2021.3095381, IEEE

Transactions on Pattern Analysis and Machine Intelligence

IEEE TRANS PATTERN ANALYSIS & MACHINE INTELLIGENCE, VOL. 14, NO. 8, AUGUST 2021 1

ProtTrans: Toward Understanding the Language
of Life Through Self-Supervised Learning

Ahmed Elnaggar, Michael Heinzinger, Christian Dallago,
Ghalia Rehawi, Yu Wang, Llion Jones, Tom Gibbs, Tamas Feher, Christoph Angerer,
Martin Steinegger, Debsindhu Bhowmik and Burkhard Rost

Abstract—Computational biology and bioinformatics provide vast data gold-mines from protein sequences, ideal for Language Models
(LMs) taken from Natural Language Processing (NLP). These LMs reach for new prediction frontiers at low inference costs. Here, we
trained two auto-regressive models (Transformer-XL, XLNet) and four auto-encoder models (BERT, Albert, Electra, T5) on data from
UniRef and BFD containing up to 393 billion amino acids. The protein LMs (pLMs) were trained on the Summit supercomputer using
5616 GPUs and TPU Pod up-to 1024 cores. Dimensionality reduction revealed that the raw pLM-embeddings from unlabeled data
captured some biophysical features of protein sequences. We validated the advantage of using the embeddings as exclusive input for
several subsequent tasks: (1) a per-residue (per-token) prediction of protein secondary structure (3-state accuracy Q3=81%-87%); (2)
per-protein (pooling) predictions of protein sub-cellular location (ten-state accuracy: Q10=81%) and membrane vs. water-soluble
(2-state accuracy Q2=91%). For secondary structure, the most informative embeddings (ProtT5) for the first time outperformed the
state-of-the-art without multiple sequence alignments (MSAs) or evolutionary information thereby bypassing expensive database
searches. Taken together, the results implied that pLMs learned some of the grammar of the language of life. All our models are

available through |https://github.com/agemagician/ProtTrans!

Index Terms—Computational Biology, High Performance Computing, Machine Learning, Language Modeling, Deep Learning

1 INTRODUCTION

EEP LEARNING (DL) has recently been advancing

hand-in-hand with High-Performance Computing (HPC)
to achieve new scientific breakthroughs in both fields. More
powerful supercomputers [1], [2] and advanced libraries [3],
[4], [5], [6l, [7] enable the training of more complex models
on bigger data sets using advanced processing units (incl.
Graphics Processing Units (GPUs) and Tensor Processing
Units (TPUs)).

Through contextualized Language Models (LMs) [8], [9],
Natural Language Processing (NLP) has been benefiting
substantially from advances in HPC. In particular Transform-
ers [10] have reached state-of-the-art (SOA) performance for
several tasks [11], [12]. Limitations in annotations do not
constrain LMs: the self-supervised training exclusively relies
upon the sequential order of the input, e.g., by reconstruct-

o A Elnaggar, M. Heinzinger, C. Dallago, G. Rehawi and B. Rost affiliated
with TUM (Technical University of Munich) Department of Informatics,
Bioinformatics & Computational Biology - i12, Boltzmannstr. 3, 85748
Garching/Munich, Germany.

o Y. Wang affiliated with Med AI Technology (Wu Xi) Ltd. , Ma Shan,
Mei Liang Road, 88, 2nd floor (west), Bin Hu District, Wu Xi, Jiang Su
Province, China.

o L. Jones affiliated with Google Al, Google, 1600 Amphitheatre Parkway,
Mountain View, CA 94043, USA.

o T. Gibbs, T. Feher and C. Angerer affiliated with NVIDIA, 2788 San
Tomas Expy, Santa Clara, CA 95051, Vereinigte Staaten, USA.

o M. Steinegger affiliated with School of Biological Sciences, Seoul National
University, Seoul, 08826, South Korea.

e D. Bhowmik affiliated with Oak Ridge National Laboratory (ORNL), 1
Bethel Valley Rd, Oak Ridge, TN 37830, Vereinigte Staaten.

e A. Elnaggar and M. Heinzinger contributed equally to this work.

o Corresponding author: ahmed.elnaggar [at] tum.de, tel: +49-289-17-811
(email rost: assistant [@] rostlab.org)

o The official GitHub repository: https://github.com/agemagician/ProtTrans

ing corrupted tokens given the surrounding sequence. After
training, we can extract some information learned by the
LMs, referred to as embeddings. Transfer-learning refers to the
idea of using such embeddings as input for subsequently
trained supervised models. These two steps outsource the
computationally demanding LM pre-training to the HPC
infrastructure, leaving the computationally less demanding
inference to commodity hardware.

Proteins are the machinery of life, built from 20 differ-
ent basic biochemical building blocks (called amino acids).
Like beads, those amino acids are strung up in one-
dimensional (1D) sequences (the beads are referred to as
residues once connected). These 1D sequences adopt unique
three-dimensional (3D) shapes (referred to as protein 3D
structure) [13]], and these perform specific function(s) (simply
put: as sequence determines structure determines function). We
know many orders of magnitude more protein amino acid
sequences than experimental protein structures (sequence-
structure gap) [14]. Knowing structure helps to understand
function. Closing, more generally, the sequence-annotation
gap through prediction methods based on artificial intelli-
gence (Al) is one of the crucial challenges for computational
biology and bioinformatics. Tapping into the vast wealth
of unlabeled data through transfer-learning is becoming
crucial to bridging these gaps.

Top prediction methods in computational biology [15],
[16], [17], [18]], [19], [20] combine machine learning (ML) and
evolutionary information (EI), first established as the winning
strategy to predict protein secondary structure [21f], [22]
in two steps. First, search for a family of related proteins
summarized as multiple sequence alignment (MSA) and
extract the evolutionary information contained in this MSA.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://github.com/agemagician/ProtTrans

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2021.3095381, IEEE

Transactions on Pattern Analysis and Machine Intelligence

IEEE TRANS PATTERN ANALYSIS & MACHINE INTELLIGENCE, VOL. 14, NO. 8, AUGUST 2021 2

Second, feed the El into the ML through supervised learning
of implicit structural or functional constraints. Such meth-
ods need no additional information as input other than the
EI which is amply available giving the exploding databases
of bio-sequences [23], [24]. However, there are several prices
to pay for EI Firstly, when predicting for entire proteomes
(all proteins in an organism), compiling the EI becomes
computationally costly [25]. Secondly, EI is not available
for all proteins (intrinsically disordered proteins [26] or
dark proteome [27]). Thirdly, the improvement is best when
the EI is most diverse [28], [29]. The latest, and arguably
largest leap ever in terms of protein structure prediction,
namely AlphaFold2, relies on an advanced combination
of EI and ML [30]. Although predicting protein structure
at unprecedented levels of accuracy, the method is many
orders of magnitude more computationally expensive than
the creation of "minimal" MSAs.

In analogy to NLP, protein Language Models (pLMs)
interpret an entire protein sequence as a sentence and its
constituents — amino acids — as single words. Protein se-
quences are constrained to adopt particular 3D structures
optimized for accomplishing particular functions. These
constraints mirror the rules of grammar and meaning in
NLP. Since pLMs extract features directly from single pro-
tein sequences, such single-sequence based methods might,
for the first time in almost three decades, reach top perfor-
mance without using EI/MSAs.

In this project, dubbed ProtTrans, we pursued two objec-
tives. Firstly, we explored the limits of up-scaling language
models trained on proteins as well as protein sequence
databases used for training. Secondly, we compared the
effects of auto-regressive and auto-encoding pre-training
upon the success of the subsequent supervised training, and
compared all LMs trained here to existing state-of-the-art
(SOA) solutions using evolutionary information (EI) [31].

2 METHODS

Protein Language Models (pLMs) copy the concepts of
Language Models from NLP by using as tokens (words in
NLP) amino acids from protein sequences, treating entire
proteins like sentences in LMs. In step 1 these pLMs are
trained in self-supervised manner, essentially learning to
predict masked amino acids (tokens) in already known
sequences (Data: 2.1, Method: 2.4). Once trained, we need to
establish that the pLMs capture relevant information (Data:
2.2). This first step uses only protein sequences without any
annotation as input. In step 2, we transfer what the pLMs
learned by extracting the embeddings and using them as
input for supervised training of per-residue/per-token (sec-
ondary structure) and per-protein/pooling (transmembrane
proteins and subcellular location) prediction tasks (Data:
2.3, Method: 2.5). The second step uses experimental labels
about proteins for the supervised training. Details about
Hardware (2.6) and Software (2.7) provide details about
implementing pLMs.

2.1 Data for protein Language Models (pLMs)

We measure the impact of data amount on performance
through three data sets (Table [I, SOM Fig. [0): Uniref50

[32], UniRef100 [32]], and BFD (Big Fantastic Database) [24]],
[33]. Merging UniProt [23] and proteins translated from
multiple metagenomic sequencing projects, BFD has become
the largest collection of protein sequences: about eight times
larger than the largest sets used previously for pLMs [34].
The 8-fold increase in data increased the number of tokens 5-
fold (Table[T), as proteins were 1.6-fold longer in UniRef100.
Without a clear mapping for LMs from NLP to proteins, i.e.,
the concept of words can be related to single amino acids,
a window of amino acids (k-mer motifs [35]) or functional
units (domains [36]), we decided to interpret single amino
acids as input tokens/words. Thereby, protein databases
contain several orders of magnitude more tokens than
corpora used in NLP, e.g., Google’s Billion Word data set
[37] top in NLP with about 829m (million) tokens (words),
compared to BFD with 393b (billion) tokens (amino acids).
Interpreting domains as words, would cut the number of
tokens in BFD roughly by a factor of 100 (average domain
length [38]) still leaving 5-times more tokens in BFD than
the Billion Word corpus. Uniref50, UniRef100 and BFD were
tokenized with a single space (indicating word-boundaries)
between each token. Each protein sequence was stored on
a separate line, with lines/proteins representing the equiva-
lent of "sentences". Additionally, an empty line was inserted
between each protein sequence in order to indicate the "end
of a document"; however, this is only essential for models
with auxiliary task (Bert and Albert). Non-generic or unre-
solved amino acids ([BOUZ]) were mapped to unknown (X).
For training ProtTXL and ProtT5, the data was transformed
to pytorch and tensorflow tensors, respectively on the fly.
For ProtBert, ProtAlbert, ProtXLNet and ProtElectra, the
data was pre-processed and stored as tensorflow records.
Given tensorflow records with terabytes, data sets had to be
chunked into 6000 files for thousands of parallel workers.

Data LM UniRef50 | UniRef100 | BFD
Number proteins [in m] 45 216 | 2,122
Number of amino acids [in b] 14 88 393
Disk space [in GB] 26 150 572

TABLE 1: Data Protein LM - UniRef50 and UniRef100 cluster the
UniProt database at 50% and 100% pairwise sequence identity (100%
implying that duplicates are removed) [32]; BFD combines UniProt
with metagenomic data keeping only one copy for duplicates [24],
[33]. Units: number of proteins in millions (m), of amino acids in
billions (b), and of disk space in GB (uncompressed storage as text).

2.2 Data for unsupervised evaluation of embeddings

We extracted the information captured by the protein LMs
through embeddings, i.e., vector representations from the last
hidden state of the protein LM (Fig. [I) and analyzed it by
projecting the high-dimensional representations down to
two dimensions (2D) using t-SNE [39]. Toward this end,
we took annotations from several sources. First, a non-
redundant (PIDE<40%) version of the SCOPe database [40]
(release 2.07 with 14,323 proteins). Second, we mapped
proteins into the three major domains of life (archaea, bac-
teria, or eukarya) or to viruses (removing all proteins with
missing classifications). The number of iterations for the t-
SNE projections was set to 3,000 and the perplexity to 30 for
all plots with the exception of the amino acid plot for which
we used a perplexity of 5. All visualizations used the same
random seed (42).

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2021.3095381, IEEE

Transactions on Pattern Analysis and Machine Intelligence

IEEE TRANS PATTERN ANALYSIS & MACHINE INTELLIGENCE, VOL. 14, NO. 8, AUGUST 2021 3

2.3 Data for supervised training

We also assessed the information captured during self-
supervised pre-training of our protein LMs by using em-
beddings extracted from those models as sole input for su-
pervised training. Although we mostly relied on previously
published data sets to ease comparisons to other methods,
for the supervised training, we also added a novel test set
to refine the evaluation.

Per-residue prediction /single tokens: to predict prop-
erties of single tokens (here: single amino acids, dubbed
residues when joined in proteins), we used the training
set published with NetSurfP-2.0 [15] describing secondary
structure in 3- and 8-states (class distribution for all data
sets in SOM Tables [[3). We also included other public test
data sets, namely CB513 [41]]), TS115 [42], and CASP12 [43].
Each of those has severe limitations (CASP12: too small,
CB513 and TS115 redundant and outdated). Therefore, we
added a new test set using only proteins published after
the release of NetSurfP-2.0 (after Jan 1, 2019). We included
proteins from the PDB [44] with resolutions < 2.5A and
> 20 residues. MMSeqs2 [45] with highest sensitivity (-s
7.5) removed proteins with >20% PIDE to either the training
set or to itself. On top, PISCES [46] removed any protein
considered by its procedure to have >20% PIDE. These filters
reduced the number of new proteins (chains) from 18k to
364 (dubbed set NEW364).

Per-protein prediction/embedding pooling: For the pre-
diction of features for entire proteins (analogous to the
classification of whole sentences in NLP), the DeepLoc [16]
data set was used to classify proteins into (i) membrane-
bound vs. water-soluble and (ii) ten classes of subcellular
localization (also referred to as cellular compartments).

2.4 Step 1: self-supervised protein LM pre-training

We trained six successful LMs in NLP (T5 [47], Electra [48],
BERT [49], Albert [50], Transformer-XL [51] and XLNet [11])
on protein sequences. BERT was the first bidirectional model
in NLP which tried to reconstruct corrupted tokens, and
is considered the de-facto standard for transfer learning in
NLP. Albert reduced BERT’s complexity by hard parameter
sharing between its attention layers which allows to increase
the number of attention heads (64 chosen here). Electra tries
to improve the sampling-efficiency of the pre-training task
by training two networks, a generator and a discriminator.
Instead of only reconstructing corrupted input tokens, the
generator (BERT) reconstructs masked tokens, potentially
creating plausible alternatives, and the discriminator (Elec-
tra) detects which tokens were masked. This enriches the
training signal as the loss can be computed over all tokens
instead of the subset of corrupted tokens (usually only
15%). T5 uses the original transformer architecture proposed
for sequence translation, which consists of an encoder that
projects a source language to an embedding space and a
decoder that generates a translation to a target language
based on the encoder’s embedding. Only later, models used
either the encoder (BERT, Albert, Electra) or the decoder
(TransformerXL, XLNet), but T5 showed that this simplifi-
cation might come at a certain price as it reaches state-of-
the-art results in multiple NLP benchmarks. Additionally, it
provides the flexibility to apply different training method-

A 4 4
| T Concatenate
L ainino acid 1024 1024 1024 w2 7T
L amino acid i]
embeddings T T T T g A ;
i

k Lnst midden tayer I rnean\'L]l Pooling

i [
Stack of N self- | ¢
attention layers Transformer model 1024 Protein

A ES

embedding

Tokenization &

o1ttt

aongn. S) ([E (@[]

—
C ,
—1 5

Fig. 1: Feature extraction overview - We give a general overview on
how ProtTrans models can be used to derive features (embeddings)
for arbitrary protein sequences either on the level of single amino
acids or whole proteins and how they can be used for classification
tasks on both levels. First, an example protein sequence "SEQ" is
tokenized and positional encoding is added. The resulting vectors
are passed through any of our ProtTrans models to create context-
aware embeddings for each input token, i.e. each amino acid. Here,
we used the last hidden state of the Transformer’s attention stack as
input for downstream prediction methods. Those embeddings can
either be used directly as input for prediction tasks on the level
of individual tokens, e.g. a CNN can be used to predict an amino
acid’s secondary structure. Alternatively, those embeddings can be
concatenated and pooled along the length-dimension to get fixed-
size embedding irrespective of the input length, i.e., global average
pooling is applied. The resulting protein-level embedding can be used
as input for predicting aspects of proteins, e.g., a FNN can be used
to predict a protein’s cellular localization.

ologies and different masking strategies, e.g., T5 allows to
reconstruct spans of tokens instead of single tokens.

As self-attention is a set-operation and thus order-
independent, Transformers require explicit positional en-
coding. Models trained with sinusoidal position signal like
BERT, Albert or Electra, can process only sequences shorter
or equal to the length of the positional encoding which has
to be set before training. Due to the huge memory require-
ment of Transformer-models, this parameter is usually set
to a value lower than the longest proteins, e.g., Titin with
33k residues. Here, we trained models that were affected
by this limitations (ProtBERT, ProtAlbert, ProtElectra) first
on proteins of length < 512, then on proteins < 1024. Only
setting the length of the positional encoding to 40k after pre-
training allowed the models to process protein sequences
up to a length of 40k. In contrast to this, TransformerXL
introduced a memory that allows it to process sequences
of arbitrary length. Still, the model cuts sequences into frag-
ments but allows for flow of information between fragments
for longer proteins by re-using hidden states of fragments
which have already been processed. While its memory
is uni-directional as fragments are processed sequentially,
TransformerXL captures only uni-directional context within
one memory fragment (auto-regressive) while XLNet, which
uses a similar memory mechanism to process sequences
of arbitrary length, allows to gather bidirectional context
within one memory fragment.

In contrast to this, TS learns a positional encoding for
each attention head that is shared across all layers. This way,
the model learned to combine the relative offset between

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2021.3095381, IEEE

IEEE TRANS PATTERN ANALYSIS & MACHINE INTELLIGENCE, VOL. 14, NO. 8, AUGUST 2021

Transactions on Pattern Analysis and Machine Intelligence

Hyperparameter ProtTXL ProtBert ProtXLNet | ProtAlbert | ProtElectra ProtT5-XL ProtT5-XXL
Dataset BFD100 | UniRef100 | BFD100 | UniRef100 | UniRef100 | UniRef100 | UniRef100 [UniRef50 [BFD100 | UniRef50 [BFD100
Number of Layers 32 | 30 30 30 12 30 24 24
Hidden Layers Size 1024 1024 1024 4096 1024 1024 1024
Hidden Layers Intermediate Size 4096 4096 4096 16384 4096 16384 65536
Number of Heads 14] 16 16 16 64 16 32 128
Positional Encoding Limits - 40K - 40K 40K - -
Dropout 0.15 0.0 0.1 0.0 0.0 0.1 01 [00
Target Length 512 512/2048 512 512/2048 | 512/1024 512 512
Memory Length 512 - 384 - - - -
Masking Probability - 15% - 15% 25% 15% 15%
Local Batch Size 8 5 32/6 [30/5 2 21/2 18/7 8 [4 8 [4
Global Batch Size 44928 | 22464 [32768/6144|15360/2560 1024 10752/1024 | 9216/3584 | 2048 | 4096 2048 | 4096
Optimizer Lamb Lamb Adam Lamb Lamb AdaFactor AdaFactor
Learning Rate 0.0005 0.002 0.002 0.00001 0.002 0.002 0.01 0.01
Weight Decay 0.0 0.01 0.01 0.01 0.01 0.01 0.0 0.0
Training Steps 40.7K 31.3K |800K/200K[300K/100K| 847K |150K/150K [400K/400K| 991K [1.2M 343K [920K
Warm-up Steps 13.6K 5.5K 140K/20K | 40K/0K 20K 40K/5K | 40K/40K 10K 10K
Mixed Precision II:E;S 11\\/[/[;’32 “//Vvillgl;lt None None None None None None
Number of Parameters 562M [409M 420M 409M 224M 420M 3B 11B
System Summit| Summit TPU Pod TPU Pod | TPUPod | TPU Pod TPU Pod TPU Pod
Number of Nodes 936 128 | 64 64 64 64 32 [128 32 [128
Number of GPUs/TPUs 5616 1024 | 512 512 512 512 256 | 1024 256 | 1024

TABLE 2: Large-scale Deep Learning: the table shows the configurations for pre-training the protein LMs introduced here (ProtTXL,
ProtBert, ProtXLNet, ProtAlbert, ProtElectra, ProtT5) using either Summit, a TPU Pod v2 or a TPU Pod v3.

residue pairs of lower layers, enabling the model to make
predictions beyond the actual length of the positional encod-
ing. No auxiliary tasks like BERT’s next-sentence prediction
were used for any model described here.

ProtTXL, ProtBert, ProtXLNet, ProtAlbert and ProtElec-
tra were trained on UniRef100, ProtT5 on UniRef50, and
ProtTXL, ProtBert & ProtT5, on BFD (Table [2). Largely, we
transferred configurations successfully from NLP to protein
sequences [52], [53], [54], with the exception of the number
of layers that was increased to optimize memory utilization.

ProtTXL: The Transformer—XLD was trained using both
UniRef100 and BFD-100 datasets (referred to as ProtTXL and
ProtTXL-BFD, respectively; Table [2). Both models used a
dropout rate of 15%, a memory length of 512 tokens and
using mixed precision. The number of layers, number of
heads, batch size, learning rate, weight decay, training steps
and warm-up steps were adjusted according to training set
size as well as GPU utilization. The number of warm-up
steps was set to cover at least one epoch for each data
set. We tested initial learning rates between 0.001 and 0.005
which were increased linearly at every training step over
the warm-up period. To avoid model divergence during
training, the learning rate had to be (i) reduced along with
the warm-up steps (for BFD), or (ii) increased for both (for
Uniref100). Even after increasing the warm-up steps to two
epochs, the maximum learning rate remained at 0.0025 for
both data sets. Beyond this point, the training diverged.
Using weight decay to regularize the network increased the
GPU memory usage as it required to compute the norm
of all weight vectors on our models, thus reducing the
batch size. ProtTXL-BFD was trained for 40k steps in total,
with 13.6k warm-up steps using a learning rate of 0.0005,
while ProtTXL was trained for 31k steps with 5k warm-up
steps using a learning rate of 0.002. The Lamb optimizer
was able to handle the resulting batch sizes of 44k and
22k for ProtTXL-BFD and ProtTXL, respectively, without
divergence.

1. https:/ /github.com/NVIDIA /DeepLearningExamples/

ProtBert: BERTE] was trained using both UniRef100
and BFD-100 datasets (referred to as ProtBert and ProtBert-
BFD, respectively; Table [2). Compared to the original BERT
publication, the number of layers was increased. Unlike
Transformer-XL which was trained on Nvidia GPUs, mixed-
precision was not used to train other models because those
were trained on TPUs. Similar to the BERT version trained
in the Lamb paper [55], ProtBert was first trained for 300k
steps on sequences with a maximum length of 512 and then
for another 100k steps on sequences with a length of a
maximum length of 2k. While ProtBert-BFD was trained for
800k steps, then for another 200k steps for sequences with
maximum length of 512 and 2k, respectively. This allows the
model to first extract useful features from shorter sequences
while using a larger batch size, rendering training on longer
sequences more efficient.

ProtAlbert: We trained Alber{’|on UniRef100 (ProtAlbert;
Table 2). We used the configuration from the official GitHub
repository for Albert (version: xxlarge v2). For Albert the
number of layers is increased through the number of times,
Albert stacks its single layer. Compared to the original
publication, we achieved increasing the global batch size
from 4096 to 10752 on the same hardware. The reason for
this counter-intuitive effect is the reduced vocabulary size
in proteins: the entire diversity of the protein universe is
realized by 20 different amino acids, compared to tens of
thousands of different words. Similar to ProtBert, ProtAl-
bert was first trained for 150k steps on sequences with a
maximum length of 512 and then for another 150k steps on
sequences with a maximum length of 2k.

ProtXLNet: XLNe was trained on UniRef100 (Pro-
tXLNet) using the original NLP configuration [11] (Table
except for the number of layers that was increased to
30 layers which reduced the global batch size to 1024.
Due to the relatively small batch-size, we used the original
optimizer: Adam with a learning rate of 0.00001. The model

2. https:/ / github.com/google-research/bert
3. https:/ / github.com/google-research/albert
4. https:/ / github.com/zihangdai/xInet

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2021.3095381, IEEE

Transactions on Pattern Analysis and Machine Intelligence

IEEE TRANS PATTERN ANALYSIS & MACHINE INTELLIGENCE, VOL. 14, NO. 8, AUGUST 2021 5

was trained through more steps, i.e. 20k warm-up and 847k
steps to compensate for the smaller batch-size of this model.

ProtElectra: Electraﬂ consists of two models, a generator
and discriminator (same number of layers, generator 25%
of the discriminator’s hidden layer size, hidden layer in-
termediate size, and number of heads). We copied Electra’s
NLP configuration with two changes: increasing the number
of layers to 30 and using Lamb optimizer. Again, we split
the training into two phases: the first for proteins < 512
residues (400k steps at 9k global batch size), the second for
proteins < 1024 (400k steps at 3.5k global batch size). While
ProtTXL, ProtBert, ProtAlbert and ProtXLNet relied on pre-
computed tensorflow records as input, Electra allowed to
mask sequences on the fly, allowing the model to see differ-
ent masking patterns during each epoch.

ProtT5: Unlike the previous LMs, TSH uses an encoder
and decoder [10]]. We trained two model sizes, one with 3B
(T5-XL) and one with 11B parameters (T5-XXL). T5-XL was
trained using 8-way model parallelism, while T5-XXL was
trained using 32-way model parallelism. First, T5-XL and
T5-XXL were trained on BFD for 1.2M and 920k steps respec-
tively (ProtT5-XL-BFD, ProtT5-XXL-BFD). In a second step,
ProtT5-XL-BFD and ProtT5-XXL-BFD were fine-tuned on
UniRef50 for 991k and 343k steps respectively (ProtT5-XL-
Us0, ProtT5-XXL-U50). Contrary to the original T5 model
which masks spans of multiple tokens, we adopted BERT’s
denoising objective to corrupt and reconstruct single tokens
using a masking probability of 15%. All T5 models used the
AdaFactor optimizer with inverse square root learning rate
schedule for pre-training. Like ProtElectra, T5 masks each
sequence on the fly. In our hands, the encoder outperformed
the decoder on all benchmarks significantly and running
the model in half-precision during inference instead of full-
precision had no effect on performance but allowed to run
the model on on a single Nvidia TitanV (12GB vRAM). Thus,
we dropped the decoder from further analysis which cuts
model size by half during inference. For completeness, we
made weights for encoder and decoder publicly available.

2.5 Step 2: Transfer learning of supervised models

In the transfer-learning step, embeddings from our pre-
trained protein LMs served as sole input to subsequent su-
pervised training, thereby transferring knowledge acquired
during self-supervised pre-training to other tasks. To best
analyze the impact of transfer learning, we deliberately
kept the supervised models using the embeddings from the
protein LMs as input minimal. In particular, compared to
SOA solutions such as NetSurfP-2.0, all our experiments
used the pre-trained LMs as feature extractors without fine-
tuning, i.e. without gradient back-propagating to the LMs.
Throughout, we extracted the embeddings from the last
hidden state of the pre-trained LMs as described in detail
elsewhere [56]. To briefly summarize (Fig. [I): we applied
tasks on two different levels, namely on the level of single
tokens (per-residue) and whole sentences through pooling
(per-protein) predictions. For the per-residue prediction,
we input the embeddings into a two-layer convolutional
neural network (CNN). The first CCN layer compressed the

5. https:/ / github.com/google-research/electra
6. https:/ / github.com/google-research/text-to-text-transfer-transformer

embeddings to 32 dimensions using a window size of 7. The
compressed representation was fed into two different CNNs
(each with window size 7). One learned to predict secondary
structure in 3-states, the other in 8-states. The network was
trained on both outputs simultaneously by adding their
losses (multi-task learning). For ProtBERT-BFD embeddings
we additionally trained three other models: logistic regres-
sion, FNN and LSTM. Similar to the CNN, the two-layer
FNN first compressed the output of the language model
down to 32 dimensions which the second FNN-layer used
to predict 3- and 8-states simultaneously. The bi-directional
LSTM compressed the embeddings down to 16 dimensions.
Concatenating both directions, the resulting 32 dimensional
representation was used by a FNN layer to predict 3- or 8-
states. As the CNN performed best (SOM Table , we used
CNNs throughout. For the per-protein prediction, we also
extracted the embeddings from the last layer of the protein
LMs. However, then we pooled the representations over
the length-dimension resulting in a fixed-size representa-
tion for all proteins. Using ProtBERT-BFD embeddings, we
compared alternative pooling strategies (SOM Table [8) and
chose mean-pooling for all further experiments. The result-
ing vector was used as an input to a single feed forward
layer with 32 neurons which compressed information before
making the final predictions for both per-protein tasks, i.e.,
the prediction of subcellular localization and the differentia-
tion between membrane-bound and water-soluble proteins,
simultaneously (multi-task learning).

2.6 Hardware

HPC hardware is advancing both through infrastructure of
supercomputers, such as Fugaku [57], Summit [1] or the
SuperMUC-NG [58], and through its components, such as
TPU pods [2], specifically designed to ease large scale neural
network training for users. Concurrent software improve-
ments in form of more efficient libraries such as Horovod [6]
allow executing general purpose code on large distributed
clusters with minor code changes. In this section we give
details on the hardware used for training language models
on large protein sequence databases.

ORNL Summit & Rhea: The Oak Ridge National
Laboratory (ORNL) provides several clusters for researchers
who need computational resources not provided by research
facilities such as universities. Here, we used Summit and
Rhea. Summit was used to train the deep learning models,
while Rhea was used for the pre-processing of data sets
including the distributed generation of tensorflow records.

Summit is the world’s second fastest computer, consist-
ing of approximately 4618 nodes. Each node has two IBM
POWERS processors and six NVIDIA Volta V100 with 16GB
of memory each [1]]. Every POWERY processor is connected
via dual NVLINK bricks, each capable of a 25GB/s transfer
rate in both directions. A single node has 0.5 TB of DDR4
main memory and 1.6TB of non-volatile memory that can
be used as a burst buffer. Summit is divided into racks
with each rack having 18 nodes. In all of our experiments
we reserved 936 nodes for training. As having nodes on
the same rack decreases the communication overhead, we
reserved entire racks.

The smaller cluster (Rhea) contains two partitions: Rhea
and GPU. The Rhea partition has 512 node, each with 128

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2021.3095381, IEEE

Transactions on Pattern Analysis and Machine Intelligence

IEEE TRANS PATTERN ANALYSIS & MACHINE INTELLIGENCE, VOL. 14, NO. 8, AUGUST 2021 6

GB of memory and two Intel® Xeon® E5-2650. The GPU
partition has only 9 nodes, each with 1 TB of memory and
two Intel® Xeon® E5-2695. Reha reduced the time needed
for creating tensorflow records for the BFD dataset from
7.5 months (!) to fewer than two days, by converting the
original sequential script to distributed processing using
MPI. The generation script used two nodes of the GPU
partition, with a total of 112 parallel threads.

Google TPU Pod: In 2016, Google introduced tensor
processing unit (TPU) as its application-specific integrated
circuit optimized for training neural networks. TPUs can be
accessed through Google Cloud. Training the protein LMs
used both older TPU generation (V2) with 256 cores, and the
latest TPU generation (V3) with 512 and 1024 cores. These
cores are divided into hosts with each host having access to
8 cores. Consequently, we had access to 32, 64 and 128 hosts
for V2/V3-256, V3-512 and V3-1024, and each core had 8
GiB and 16 GiB of high-bandwidth memory for V2 and V3.
Training on the TPUs required access to a virtual machine
on Google Cloud and storage on Google Bucket [59].

5

o 4 —
o
'8 3
g +ProtTXL
3 5 =ProtBert
<
5]
)
(]
“ o

0

1(6) 2(12) 936 (5616)

Number of Nodes (and GPUs)

Fig. 2: Large Scale Dataset Training: The figure shows the overhead
of increasing the number of nodes/gpus for both Prot TXL (blue; low)
and ProtBert (red; high). The overhead increases slightly from 1 to 2
nodes but remains constant even when scaling up to 936 nodes with
a total of 5616 GPUs. Having a low overhead means the model has
a near-linear scale-up across thousands of GPUs, upper-bounded by
the theoretical scale-up.

2.7 Software

Summit integrates several pre-configured modules which
include the most popular libraries and tools required for
simulation, deep learning, distributed training and other
purposes. We used the IBM Watson Machine Learning mod-
ule versions 1.6.0 and 1.6.2 for our deep learning training.
In contrast to this, the Google Cloud server, which we used
for the TPU Pod training, had to be configured manually
because only the operating system was installed.

Pytorch was used to train ProtTXL, tensorflow to train
ProtBert, ProtAlbert, ProtXLNet, ProtElectra and ProtT5.
Both libraries used the Horovod framework [6] to train the
models on distributed clusters such as Summit. Horovod
supports distributed GPU training with minimal change
in the code. It supports different backends including MPI,
NCCL and IBM PowerAlI distributed deep learning (DDL).
We tested all three backends and found DDL to be the fastest
for our training purpose on Summit. The time needed to

finish a single batch with ProtTXL-BFD increased from one
to two nodes due to the communication overhead (Fig. @
After two nodes the communication overhead plateaued,
even when scaling up to 936 nodes with 5616 GPUs. Summit
has integrated DDL in their Watson Machine Learning mod-
ule which comes with most DDL libraries including pytorch,
tensorflow, apex, DDL and horovod. However, Summit has
only a license for using DDL up to 954 nodes. Contrary to
Summit, training on TPU Pods did not require any changes
in the Tensorflow code to use either a single TPU host or to
distribute workload among multiple TPU hosts.

Mixed precision allows to fit larger models and batch
sizes into GPU memory by using 16-bit precision only or
a mix of 16-bit and 32-bit precision. Nvidia’s APEX library
[60] was used for mixed precision training of ProtTXL, be-
cause APEX supports pytorch. As ProtTXL training became
instable when training with 16 Bit precision, we switched
to almost half precision training (more details in SOM [
Software). We did not use mixed-precision for models
trained on TPUs.

Another optimization technique/library crucial for our
training on Summit was IBM’s large model support (LMS)
[61]. Similar to gradient checkpointing [62]], LMS virtually
extends the GPU memory by outsourcing parts of the model
from GPU to main memory. This allows training models
larger than the GPU memory. The obvious drawback of LMS
is the increase in training time due to shuttling data between
CPU and GPU and back. However, the reduced memory
consumption of the model allows to increase the batch size,
potentially compensating for the communication overhead.
ProtTXL was used to evaluate the effect of Pytorch’s imple-
mentation of LMS while ProtBert was trained for a few steps
BFD using Summit to evaluate tensorflow’s implementation
of LMS. Training ProtBert for a few steps was sufficient to
assess the effect of LMS on batch-size, model size as well
as an estimate of training time. In the end, we used LMS
only for ProtTXL to strike a balance between model size
and training time. The number of LM parameters could be
increased by about 15.6% for ProtTXL-BFD and to 6.6% for
ProtBert (SOM Fig. . Additionally, we could increase
the batch size by 700% for ProtTXL-BFD (SOM Figures
and [10d). The NV-Link between CPU and GPU on Summit-
nodes, reduced the training time for ProtTXL by 60%while
it increased by 72% for ProtBert (SOM Fig. [T0d).

3 RESULTS

Section 3.1 established that the protein LMs (pLMs) learned
to distinguish between different types of proteins by pro-
jecting high-dimensional embeddings onto 2D using t-SNE
[39]]. Section 3.2 showed that pLM embeddings succeeded
as exclusive input for supervised training to predict protein
features on the per-residue/token-level (secondary struc-
ture) and on the per-protein/sentence-level (location and
membrane /non-membrane). In fact, predictions based on
embeddings from single protein sequences were competi-
tive with, or even surpassed, top methods relying on infor-
mation from multiple alignments (MSAs). The last section
(3.3) established that the on par performance will create
substantially lower costs in terms of computing, energy, or
CO2 consumption for every future protein prediction.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2021.3095381, IEEE

Transactions on Pattern Analysis and Machine Intelligence

IEEE TRANS PATTERN ANALYSIS & MACHINE INTELLIGENCE, VOL. 14, NO. 8, AUGUST 2021 7

‘F
v ¥
E .S 'f y
X
"g £ v ” %= g
= : # i
b= o & v v
=2 o
+ % "
B 5
+< Ll i}
e + i L ':«(
: v
o
I .
Yol i 5 ' *
- u . ;
] ¥ A r o7
8 A = v W
= " v .

A Hydrophobic (aromatic) 4 Special cases

hobic (aliphati ® All alpha
v Hydrophobic (aliphatic) e Small (<130 Dalton) @ All beta
+Positive ® Medium

Negative @ Big (>150 Dalton)

® Polar neutral

A Amino acids

B Structure: SCOPe

® Eukaryota @ Archaea
® Bacteria

@ Multi-domain

Membrane, cell surface Viruses

® Alpha & beta (alb) @ Small proteins
Alpha & beta (a+b)

C Lineage: Kingdoms

Fig. 3: Protein LMs learned constraints. t-SNE projections visualized information extracted by the unsupervised protein LMs (here best-
performing ProtT5-XL-U50; upper row: before training (Random), and lower row: after pre-training on BFD & UniRef50. (A) The left-most
column highlights single amino acids by biophysical features. (B) The middle column annotates protein structural class (taken from SCOPe).
(C) The right-most column distinguishes proteins according to the kingdom of life in which it is native. Although the random projections on
top may suggest some adequacy of the clusters, the trained models shown on the lower row clearly stood out. Incidentally, the comparison
of the two also highlighted the potential pitfalls of using t-SNE projections from many dimensions onto 2D: although random, the human
might see some correct patterns even in the top row. Most impressive might be the fine-grained distinctions of biophysical features of amino
acids (A), however, more surprising are the classifications of entire proteins according to structural class (B) and organism (C). For these,
we created embeddings through global average pooling over the representations extracted from the last layer of ProtT5-U50 (average over

protein length, i.e. per-protein embeddings; Fig. .

3.1

Embeddings extract constraints about protein function and
structure learned by the protein LMs during self-supervised
pre-training on raw (unlabeled) protein sequences. t-SNE
plots [39] visualized this information by projecting the em-
beddings onto 2D and by overlaying annotations (labels)
of structural, functional or evolutionary features. Using
attention maps, we analyzed the DNA-binding zinc-finger
motif well conserved in evolution in more detail.

Capturing biophysical features of amino acids. Apply-
ing t-SNE to the uncontextualized token embedding layer
visualized information extracted by the pLMs for individual
amino acids independent of their context (residues next
to it). As previously established for another pLM [53], the
t-SNE projections (e.g. ProtT5-XL-U50 SOM Fig. [144] or
ProtBert-BFD SOM Fig. suggested that all pLMs cap-
tured essential biophysical amino acid features, including
charge, polarity, size, hydrophobicity, even to the level of
aliphatic (JAILMV]) vs. aromatic ((WFY]).

We compared the embedding projection with a ran-
domly initialized model of identical architecture to ascertain
that the observed effects did not originate from coincidental
signals originating from projecting high-dimensional data

Step 1: Protein LMs learn without labels

(Fig. or some inductive bias of neural networks [63].
The random projection clearly did not carry biophysical
information, while the embeddings projection did.

Capturing protein structure classes. We averaged over
the length-dimension of the representations derived from
the last layer of each pLM (Fig. [1) to derive fixed size repre-
sentations for each protein and superposed structural class
from SCOPe [40]. ProtBert-BFD and especially ProtT5-XL-
U50 embeddings visually separated the proteins best (SOM
Figs. [T419). Although sequence length was not explicitly
encoded and our pooling squeezed proteins into a fixed
vector size, all pLMs separated small from long proteins
(brown, e.g. ProtT5-XL-U50 SOM Fig.[T4D). All models also
distinguished between water-soluble and transmembrane
proteins (light blue, e.g. ProtT5-XL-U50 SOM Fig. and,
to some extent, between proteins according to their sec-
ondary structure composition(e.g. all-alpha (dark blue) vs.
all-beta (dark green) ProtT5-XL-U50 Fig.[T4D). While having
much higher entropy, even the random model clustered
small proteins from long proteins (brown, Fig.[3B).

Capturing domains of life and viruses. The analysis
distinguished three domains of life: archaea, bacteria, and
eukarya, along with viruses - typically not considered as

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2021.3095381, IEEE

Transactions on Pattern Analysis and Machine Intelligence

IEEE TRANS PATTERN ANALYSIS & MACHINE INTELLIGENCE, VOL. 14, NO. 8, AUGUST 2021 8

life. We used the same proteins and per-protein pooling
as above for SCOPe. All pLMs captured some organism-
specific aspects (e.g. ProtT5-XL-U50 SOM Fig.[14E). Eukarya
and bacteria clustered better than viruses and archaea. Com-
paring different pLMs revealed the same trend as for protein
structure classes: ProtTXL (SOM and ProtBert (SOM
produced higher entropy clusters, while ProtAlbert
(SOM [17E), ProtXLNet (SOM [I8E), ProtBERT-BFD (SOM
Fig. and ProtT5-XL-U50 (SOM Fig. produced
visually easier separable clusters.

Capturing protein function in conserved motifs. A
similar overall per-protein analysis as for structural classes
and domains of life also suggested some clustering accord-
ing to protein function as proxied by enzymatic activity
(EC-numbers [64] and subcellular location (SOM pLMs
unsupervised). We focused in more detail on the attention
mechanism [65] at the core of each Transformer model [10]
providing some limited understanding [66], [67]. We visu-
alized [68] the attention weights of ProtAlbert to analyze
the structural motif of a zinc-finger binding domain (SOM
Fig. crucial for DNA- and RNA-binding and conserved
across diverse organisms. Some of the attention heads of
ProtAlbert (SOM Fig. [11} line thickness resembles attention
weight) focused mostly on the four residues involved in
zinc-binding (residues highlighted in the left part of SOM
Fig.[11) which is essential for function.

3.2 Step 2: pLMs competitive as input to predict

The acid test to prove that pLM embeddings extracted
important constraints is to exclusively use embeddings
as input to supervised training. We proxied this through
predictions on two different levels, namely on the
per-residue or token level (secondary structure) and on the
per-protein or sentence level through pooling over entire
proteins (location, and classification into membrane/non-
membrane proteins). The pLMs remained unchanged, i.e.
both approaches (per-residue/per-protein) used only em-
beddings derived from the hidden state of the last attention
layer of each pLM (Fig. [), i.e.,, pLMs were only used as
static feature extractors.

3.2.1 Per-residue secondary structure prediction

To ease comparability, we evaluated all models on stan-
dard performance measures (Q3/Q8: three/eight-state per-
residue accuracy, i.e. percentage of residues predicted cor-
rectly in either of the 3/8 secondary structure states) and
on standard data sets (CASP12, TS115, CB513). To increase
the validity, we added a novel, non-redundant test set
(dubbed NEW364). For simplicity, we only presented values
for Q3 on CASP12 and NEW364 (TS115 and CB513 contain
substantial redundancy; Q8 results brought little novelty;
SOM Tables [7} [6). As error estimates failed to capture the
performance variation between NEW364 and CASP12, we
used CASP12 as lower- and NEW364 as upper-limit.
Comparing supervised architectures: We input embed-
dings from ProtBERT-BFD into four different supervised
models (Methods): logistic regression (LogReg), FNN,
CNN and LSTM. LogReg provided an advanced baseline
(Q3(LogReg)=74.3-79.3, lower number for set CASP12, up-
per for set NEW364; SOM Table [f). LSTMs and CNN’s per-
formed alike and better than LogReg (Q3(CNN)=76.1-81.1%

vs. Q3(LSTM)76.1-80.9%). In the following, we focused on
the more energy-efficient CNNs.

Comparing pLMs: Trained on UniRef100 (Table [I), Prot-
Bert outperformed other models trained on the same corpus
(SOM Tables [7] [6). For ProtTXL and ProtBert, we could
analyze the influence of database size upon performance:
10-times larger BFD (Table[T) helped ProtBert slightly (AQ3:
+1.1%) but made ProtTXL worse (AQ3: -0.6%; SOM Tables
[7}[6). The gain was larger when fine-tuning the two ProtT5
versions (XL and XXL) by first training on BFD and then
refining on UniRef50. Consistently, all models fine-tuned on
UniRef50 outperformed those trained only on BFD (Fig. 4
SOM Tables [7} [6). Although these gains were consistently
numerically higher, the statistical significance remained
within the 68% confidence interval (maximal difference:
1.1% compared to one standard error of +0.5%).

P B CASP12
80 WNEW364 (siderr: 0 5%)

P ﬁ?‘gj‘&%ﬁ%ﬁ% * fargs BFD pre-training
e 80
T 80 ot
3 40° s
2 ¥ 20
_‘5 85 E Il i ™ s
2 1 I | -

238 [| N
o
3 75 5
g 7 70
& 65 -
¢ I
> A
A “\vd\be' fb
0N
R 0NS
Q€ &

no LM/ MSA input
gvolutionary information

Fig. 4: Per-residue (token-level) performance for secondary structure
prediction: CASP12 (red) and NEW364 (blue) constitute two test
sets. Protein LMs trained here are shown in the left panel of the
figure. Additions of BFD mark pre-training on the largest database
BFD, U50 mark pre-training with BFD and refining with UniRef50.
We included protein LMs described elsewhere (marked as: protein
LMs others, namely ESM-1b [67], DeepProtVec and DeepSeqVec
|56]). All embeddings were input to the same CNN architecture.
Two approaches used amino acids instead of embeddings as input
(marked as: no LMs: DeepOneHot [56] - one-hot encoding - and
DeepBLOSUMS62 [56] - input BLOSUMG62 |69] substitution matrix),
as well as, to the current state-of-the-art (SOA) method NetSurfP-2.0
|15], and Jpred4 |70], RaptorX [71], |72|, Spider3 [73]. The rightmost
four methods use MSA as input (marked as: MSA input evolutionary
information). While only rotT5-XL-U50 reached the SOA without
using MSAs, several protein LMs outperformed other methods using
MSA. All protein LMs other than the context-free DeepProtVec im-
proved significantly over methods using only amino acid information
as input. One interpretation of the difference between the two data
sets is that CASP12 provided a lower and NEW364 an upper limit.
The top row shows the complete range from 0-100, while the lower
row zooms into the range of differences relevant here.

Embeddings reached state-of-the-art (SOA): All models
(ProtTXL, ProtBert, ProtAlbert, ProtXLNet, ProtElectra,
ProtT5) and all databases (BFD, UniRef50/UniRef100) tested
improved significantly over context-free feature extractors
such as word2vec-based approaches (DeepProtVec in Fig.]
and SOM Table [f). Both ProtTXL versions fell short com-
pared to an existing ELMo/LSTM-based solution (DeepSe-

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2021.3095381, IEEE

Transactions on Pattern Analysis and Machine Intelligence

IEEE TRANS PATTERN ANALYSIS & MACHINE INTELLIGENCE, VOL. 14, NO. 8, AUGUST 2021 9

qVec [56]) while all other Transformer-models outperformed
DeepSeqVec. Embeddings extracted from another large
Transformer (ESMB-1b [67]), improved over all our non-
ProtT5 models (Fig.] and SOM Table [6)). Most solutions
using only embeddings as input were outperformed by
the top SOA method NetSurfP-2.0 [15] using evolutionary
information (Fig. d]and SOM Tables[7} [f). However, ProtT5-
XL-U50 reached nearly identical performance without ever
using multiple sequence alignments (MSA). Analyzing the
average Q3 per protein of both models for set NEW364 in
more detail (SOM Fig.[12), revealed that 57% of the proteins
were predicted with higher Q3 by ProtT5-XL-U50 (CASP12
was too small for such a differential analysis).

I ProtT5-XL-U50 I NetSurfP-2.0
100

90

80

70

Q3

60

50

-

40 +

+

30
1 <=10
Neff threshold

=10

Fig. 5: Effect of MSA size. We used our new test set (NEW364) to
analyze the effect of the size of an MSA upon secondary structure
prediction (Q3) for the two top methods (both reaching Q3=84.3%):
NetSurfP-2.0 (using MSA) and ProtT5-XL-U50 (not using MSA). As
proxy for MSA size served Neff, the number of effective sequences |74]
(clustered at 62% PIDE): leftmost bars: MSAs with Neff=1, middle:
Neff& < 10, right: Neff>10. As expected ProtT5-XL-U50 tended
to reach higher levels than NetSurfP-2.0 for smaller families. Less
expected was the almost on par performance for larger families.

pLMs shone for small families: The size of protein families
followed the expected power-law/Zipf-distribution (few
families have many members, most have fewer [75]). To
simplify: families with fewer members carry less evolu-
tionary information (EI) than those with more. One proxy
for this is the number of effective sequences (Neff), ie.,
the number of proteins in an MSA clustered at 62% PIDE
[74], [76]. We analyzed the effect of Neff by comparing
NetSurfP-2.0 (using MSAs/EI) to ProtT5-XL-US50 (not using
MSAs) through four subsets of NEW364 applying different
Neff thresholds, ie., the subset of proteins without any
hit (Neff=1 with 12 proteins), fewer than 10 hits (Neff <
10 with 49 proteins) and Neff>10 (314 proteins) (Fig.
details on MSA in SOM). ProtT5XL-U50 improved most
over NetSurfP-2.0 for the smallest families (Neff=1).

More samples better performance: despite substantial dif-
ferences, all pLMs exhibited a similar trend: performance
correlated with the number of samples presented to train
(pre-train). We computed the number of samples as the product

of the number of steps and the global batch size (Fig. [6}
Spearman’s p=0.62). In particular, comparing the two largest
models (ProtT5-XL and ProtT5-XXL) suggested more pre-
training steps to be more beneficial than bigger models.

- 7.5 , BERT-BFD
W R=0.62
=
T5-XL-US0

% 7.0 Electra
=1 “BFD
= i + T5-XXL-U50
% 6.5 BERT T5-XXL-BFD
E + Albert
=
E 6.0 XLNet
o TXL +
= +
S
= 55

72 74 76 78 80 82 84

Q3(NEW364)

Fig. 6: Number of pre-training correlated with performance. We
plotted 3-state secondary structure prediction performance (Q3) on
NEW364 for all pLMs trained here against the number of samples
seen during pre-training (training steps times global batch-size in K).
For simplicity, we dropped the "Prot" prefix from all models. Despite
the vastly different pLMs, the high Spearman’s p of 0.62 indicated a
common trend: more pre-training samples: better prediction.

3.2.2 Per-protein location & membrane prediction

To investigate per-protein (sentence-level) predictions of
protein function, we trained FNNs on subcellular location
(also referred to as cellular compartment) in ten classes and
on the binary classification of membrane vs. non-membrane
(also referred to as globular) proteins. Levels of ten-state (Q10
for location) and two-state (Q2 for membrane/globular)
measured performance. Toward this end, we pooled over
the entire protein (Fig.[T).

Mean-pooling performed best: Using ProtBERT-BFD em-
beddings, we compared four different pooling strategies
for collapsing per-residue (token-level) embeddings, the
dimensions of which differ for proteins of different length,
into representations of fixed length. These were min-, max-
, and mean-pooling, as well as, the concatenation of those
three (concat). The first two (min/max) performed almost
fourteen percentage points worse for location (Q10) and
about three for membrane/other (Q2) compared to the
others (mean/concat, SOM Table [8). While mean-pooling
and concat performed similarly for the classification task
(membrane/other), mean-pooling outperformed concat for
location by about ten percentage points (SOM Table [§). In
the following, we used only mean-pooling to benchmark
the per-protein/sentence-level predictions.

Comparison of pLMs: the per-protein prediction of loca-
tion largely confirmed the trend observed for per-residue
secondary str: All pLMs introduced here (marked by * in
SOM Table) clearly outperformed the un-contextualized
word2vec-based approaches (DeepProtVec; Fig. |7} SOM Ta-
ble EI) Except for ProtTXL and ProtXLNet, all transform-
ers trained here outperformed the previous ELMo/LSTM-
based solution (DeepSeqVec). Increasing the corpus for pre-
training the pLMs 10-fold appeared inconsequential (Prot*
vs. Prot*-BFD in Fig. []] and SOM Table [J). In contrast,

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2021.3095381, IEEE

Transactions on Pattern Analysis and Machine Intelligence

IEEE TRANS PATTERN ANALYSIS & MACHINE INTELLIGENCE, VOL. 14, NO. 8, AUGUST 2021 10

fine-tuning ProtT5 models already trained on BFD using
UniRef50 improved (Prot*/Prot*-BFD vs. Prot*-U50 in Fig.
[/ and SOM Table [9). Although most embedding-based
approaches were outperformed by the SOA using MSAs
(DeepLoc), both best ProtT5 models outperformed DeepLoc
without MSAs: Q10, Fig.[7]and SOM Table [0}

Similar for membrane/other: Results for the classification
into membrane/other (Q2; SOM Table EI), largely confirmed
those obtained for location (Q10) and secondary struc-
ture (Q3/Q8): (1) ProtT5 pLMs fine-tuned on UniRef50
performed best without MSAs, (2) the 10-fold larger pre-
training BFD had no noticeable effect, (3) our best pLMs
outperformed existing transformer pLMs (ESM-1b) (Fig.
E[). In contrast to location and secondary structure, addi-
tionally pre-training on UniRef50 appeared not to increase
performance (SOM Table [J) and both ProtT5 remained 1-2
percentage points below DeepLoc.

M Q10 localization
B Q2 membrane/other
* large BED pf‘E -(rammg

—60

| E 20

85

80

75

70

65

.l = 60

>f5’
«w«ﬁ?’f&f e ﬁ

Azglmllillll
il

Per-protein accuracy
(sentence-level pooling

@ D = -~ o @
(=]

QXM%‘O Q$€u ,E;ﬁﬁ‘_ﬁ;# ‘i; & Qx (s)
\Q\ oy « S
Q Q@\q‘\q@ < prutsln LMs \F‘m no LM / MSA input

protein LMs this work others o MSA' evolutionary information

Fig. 7: Per-protein (sentence-level) performance: The prediction of
location in 10 states (lower bars in cyan: Q10: percentage of proteins
with 1 of 10 classes correctly predicted) and the classification of
membrane/other (higher bars in magenta: Q2: percentage of proteins
correctly classified in either of two classes). Embeddings were derived
from pLMs by mean-pooling, i.e. averaging over the length of the
entire protein (Fig. . Abbreviations as in Table El except for one
method using neither pLMs nor MSA (no LM no MSA: DeepLoc-
BLOSUMS62 [16]), and two methods using MSAs (MSA input evo-
lutionary information): the current state-of-the-art (SOA) method
(performance marked by horizontal thin lines in magenta and cyan)
DeepLoc , and LocTree2 [77]. Almost all pLMs outperformed
LocTree2 and a version of DeepLoc not using MSAs (DeepLoc-
BLOSUMG62). Only, ProtT5-XXL-U50 and ProtT5-XL-U50 outper-
formed the SOA. A recent method optimized location prediction
from ProtT5 embeddings through a light-attention mechanism; it
clearly outperformed the SOA without using MSAs (LA _ProtT5 &
LA _ProtT5-U50) The top row shows the complete range from 0-
100, while the lower row zooms into the range of observed differences.

3.3 Fast and reliable predictions from embeddings

We compared the time needed to generate representations
for EI/MSA-based prediction methods and pLMs by gener-
ating MSAs and embeddings for each protein in the human
proteome (20,353 proteins with median length of 415). We
used the fastest method available, namely MMseqs2 [45],

with parameters established by NetSurfP-2.0 to generate
MSAs (SOM for more details). MMseqs2 was about 16
to 28-times slower than the fastest pLMs (ProtElectra and
ProtBert), and about 4 to 6-times slower than our best
model (ProtT5-XL; Fig. [8| ProtT5-XL, required on average
0.12 seconds to generate embeddings for a human protein,
completing the entire human proteome (all proteins in an
organism) in only 40 minutes.

We also investigated the cross-effect of sequence length
and batch-size (SOM Table on the inference speed of
different pLMs. When using a single Nvidia Quadro RTX
8000 with half precision on varying batch-sizes (1,16,32)
as well as sequence lengths (128, 256, 512), ProtBert and
ProtElectra provided the fastest inference with an average
of 0.007 seconds per protein when using a batch size of 32,
followed by ProtT5-XL and ProtAlbert (0.025s). The batch-
size of most pLMs could have been increased on the same
hardware but was limited to allow a direct comparison
between all models, due to large memory requirements for
ProtT5-XXL. The script for running this benchmark is freely
available as part of our github repository.

Evolutionary
Information (EI)

Language
Modelling (LM)
300

«El
“ 1M

200

Time [m]

100

,i&
\8)@

:.\S) 25 & 85@
& & %eo‘ &S
Q&

Fig. 8: Inference Speed Comparison: The time required to generate
protein representations for the human proteome (20.353 proteins) is
compared using either our protein LMs or mmseqs2 (protein sequence
search tool used to generate evolutionary information; NetSurfP-
2.0 parameters are used). Here, we used mmseqs2 (red bar) to
search each protein in the human proteome against two large protein
database (UniRef90 and UniRef100 with 113M and 216M proteins,
respectively). Only embedding or search time is reported, i.e. no pre-
processing or pre-training was measured. mmseqs2 was run on an
Intel Skylake Gold 6248 processor with 40 threads, SSD and 377GB
main memory, while protein LMs were run on a single Nvidia Quadro
RTX 8000 with 48GB memory using half precision and dynamic
batch size depending on sequence length (blue bar).

4 DISCUSSION
4.1

HPC Supercomputers such as Summit and Google’s
cloud TPU Pod , combined with optimized libraries such
as IBM’s DDL [7] and Horovod [6] set the stage for training
LMs with billions of free parameters on terabytes of data in
hours or days. Increasing model size improves performance

Substantial computing resources needed to cope

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2021.3095381, IEEE

Transactions on Pattern Analysis and Machine Intelligence

IEEE TRANS PATTERN ANALYSIS & MACHINE INTELLIGENCE, VOL. 14, NO. 8, AUGUST 2021 11

for some NLP applications [12], although the massive data
challenges the communication between thousands of nodes
and divergence between large batches during training. Here,
we presented some solutions to overcome these challenges
for training protein LMs (pLMs) by fully utilizing 20% of
Summit for TransformerXL [51], one TPU Pod V3-512 for
Bert [49|, Electra [48], Albert [50] and XLNet [11], and a
mix of TPU Pod V3-256, V3-512, and V3-1024 for ProtT5-XL
and ProtT5-XXL [47]. This implied the parallel use of 5616
GPUs on Summit or 256/512/1024 TPU cores on a TPU
Pod, while avoiding training divergence with specialized
optimizers such as LAMB [55] up to a global batch size of
44K samples (here: protein sequences).

4.2 Training pLMs longer most important

Mostly, we proxied the relevance of information extracted
by pre-trained pLMs through the performance of the subse-
quent supervised tasks trained exclusively on embeddings
from pre-trained pLMs. Using pLMs only as static feature
extractors, we considered the pLM to improve (or to be better)
when the supervised task using embeddings from this pLM
as input reached higher performance.

BED - biggest data to pre-train: We trained our pLMs on the
largest protein database ever used for this purpose, namely
BFD [33]], more than an order of magnitude larger than
the standard UniProt [23]. Although bigger did not equate
better supervised performance, several pLMs improved
through pre-training on more data (UniRefl00 vs BFD,
Table [T). Nevertheless, the performance increase appeared
small given the 10-fold larger data set (e.g. AQ3(ProtBert-
BFD/UniProt)=1.3%). In contrast, the pre-training protocol
by which we first trained on the larger but more noisy (more
mistakes in sequences) and redundant BFD and then contin-
ued pre-training using the smaller, less redundant UniRef50,
improved performance significantly for both ProtT5 ver-
sions (AQ3(ProtT5-XL-BFD/U50)=2.8% and AQ3(ProtT5-
XXL-BFD/U50)=1.4%). The improvement through refined
pre-training for ProtT5-XL (3B parameters) exceeded that for
ProtT5-XXL (11B parameters), presumably, because it saw
more samples when continuing pre-training for a similar
amount of time (limited by resources).

This highlighted a remarkable trend common across the
wide diversity of pLMs and data sets: the performance
of supervised downstream tasks using embeddings from
pre-trained pLMs increased with the number of samples
presented during pre-training (Fig. [6f Spearman’s p=0.62).
We could not observe a similarly consistent trend for model
size. However, this might be attributed to some trade-off:
training for more steps might require models with sufficient
capacity to absorb the information of the corpus. For in-
stance, while ProtBERT-BFD (420M parameters) saw around
27B proteins during pre-training, it fell short compared to
ProtT5-XL-BFD (3B parameters) which saw only around 5B
proteins (Figs. @ SOM Tables [6} [7). This finding aligned
with results from NLP suggesting that larger models absorb
information faster and need less training to achieve similar
performance [79]. However, the comparison between, e.g.,
ProtT5-XL and ProtT5-XXL suggested a possible cap to this
trend, as larger models see fewer samples in the same
amount of computing power. The clear correlation between

performance and samples combined with the need for suffi-
cient model size spotlighted the crucial role of substantial
computing resources (HPC, TPUs, and GPUs): big data
needs large models need loads of computational resources.

4.3 pLMs learned global constraints

Some rudimentary information about how proteins are
formed, shaped, and function has been learned by the pLMs
during pre-training: all our pLMs (ProtT5, ProtBert, Pro-
tElectra, ProtAlbert, ProtTXL, ProtXLNet) extracted valu-
able information as revealed by visualizing embeddings
without further supervised training on labeled data. The
comparisons to randomly initialized pLMs highlighted two
other aspects. Firstly, how easy it is to incorrectly imagine
patterns when projecting from high-dimensional spaces into
2D: although the random pLMs contained no informa-
tion, some annotations might have suggested the opposite
(Fig. |3| top row untrained). Secondly, the pLMs extracted
important global constraints about protein structure and
function (lower row in Fig. 3). These span from the most
local (individual token level) biophysical features of amino
acid building blocks (e.g. hydrophobicity, charge, and size,
Fig. , over global classifications into structural classes
(Fig. BB), to the macroscopic domains of life (Fig. [3C).
Global structural (e.g. overall secondary structure content,
Fig. and biochemical (e.g. transmembrane, SOM Fig.
properties appeared most distinctive. In contrast, local
features relying on short motifs were less separated (EC-
numbers: Fig. location: Fig. but still clustered, e.g.,
for secreted/extracellular proteins or hydrolases.

On a more fine-grained level, the visual analysis of the
attention mechanism at the core of each Transformer, con-
firmed the pLMs to have even picked up more subtle signals
of short functional motifs. Specifically, a few attention heads
of ProtAlbert zoomed into the four residues most important
to coordinate zinc-binding (SOM Fig. [11). Although limited
in scope [66], such an analysis provided some explanation
about the inner workings of Transformers not needing
large sets of experimental annotations (labels). On top, the
resulting interpretations of the AI/ML might be less biased
than experimental annotations. For instance, databases with
annotations of protein function such as Swiss-Prot [80] and
of protein structure such as PDB [44] are extremely biased
by today’s experiments [75], [81], [82].

4.4 pLMs top without MSAs - Al without El

The t-SNE and UMAP analyses revealed the pLMs to have
extracted some understanding of the language of life. As pre-
diction is the acid test for understanding, we extracted
the pLM embeddings as input to predicting aspects of
protein structure. Overall, the results confirmed [56] that
evolutionary information (EI, i.e. methods using multi-
ple sequence alignments MSAs) significantly outperformed
most pLMs not using such information, except for ProtT5-
XL (on all per-residue and per-protein tasks, Figs.
and SOM Tables [/} [6}). ProtT5-XL eliminated this gap
from embeddings-only input: on some tasks/data sets, it
outperformed the current state-of-the-art (SOA) MSA-based
method, on others it remained slightly behind. Newer pLMs

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2021.3095381, IEEE

Transactions on Pattern Analysis and Machine Intelligence

IEEE TRANS PATTERN ANALYSIS & MACHINE INTELLIGENCE, VOL. 14, NO. 8, AUGUST 2021 12

using context improved over both previous pLM-based ap-
proaches [56] (8-9 percentage points in Q3), other trans-
formers [53|] (2-4 percentage points in Q3), and over non-
contextualized word2vec-type approaches [83], [84] (18-22
percentage points in Q3).

The performance differences between two data sets
(CASP12 and NEW364) highlighted another problem. While
it is clear that we need to reduce redundancy within the
evaluation set and between it and all development sets, it
is less clear how to exactly do this. In focusing on CASP12
and NEW364, we approached two different assumptions.
CASP12 mostly measures how well predictions will be for
proteins with unseen structures. A comprehensive rigorous
realization of data sets following this perspective has re-
cently been published [85]. NEW364, on the other hand,
builds on the assumption that the maximal redundancy is
defined by sequence similar to protein in the PDB. In this sense,
we interpreted results for CASP12 as a lower and those for
NEW364 as an upper limit. The NEW364 comparisons also
highlighted the importance to constantly create up-to-date
data sets with enough non-redundant proteins never used
for development by any of the methods assessed.

pLMs so powerful to render simple baseline effective: While
pre-training pLMs is computationally costly, training super-
vised models using embeddings as input requires much less
energy. For instance, the logistic regression trained on top of
ProtBERT-BFD was already competitive with substantially
more complex CNNs or LSTMs in predicting secondary
structure (SOM Table [5). In another example, a parameter-
free nearest neighbor lookup using distances from pLM
embeddings sufficed to outperform homology-based infer-
ence for predicting protein function [86]. This suggested
that pLMs are particularly suitable when so few experi-
mental annotations (labels) are available that the complexity
of modern deep learning becomes prohibitive. In fact, all
supervised solutions presented here that reached the SOA
were much less complex (fewer free parameters) than the
El-based methods they reached. We focused on the devel-
opment of pLMs using performance on supervised tasks
to rank without optimizing particular supervised solutions.
Others have already begun surmounting El-based methods
by custom-designing pLM-based solutions [78] possibly
even through end-to-end systems [30]], [87]. Such solutions
can even compete when MSAs are absolutely essential, e.g.
for predicting effects of single amino acid variants (SAVs)
[88]l.

Bi-directionality crucial for pLMs: In NLP uni-directional
(auto-regressive) and bi-directional (auto-encoding) models
perform on par [12], [89]. In contrast, the bi-directional
context appeared crucial to model aspects of the language
of life. While auto-encoding models such as Albert [50]
utilize context to both sides during loss calculation, auto-
regressive models such as TransformerXL [51]] consider only
context to one side. Performance increased substantially
from uni-directional ProtTXL to bi-directional ProtXLNet
(Fig.[d, SOM Tables|6} [7). This might be compensated for by
first pre-training on sequences and their reverse and then
concatenating the output of uni-directional LMs applied on
both directions. While this does not allow the LM to use
bi-directional context during training, it allows supervised
networks to combine context derived independently from

both sides. For instance, ELMo [8] concatenates the em-
beddings derived from a forward and a backward LSTM.
The protein LM version of ELMo (SeqVec) outperformed
the uni-directional ProtTXL but not the bi-directional Pro-
tXLNet. The difference in model size (SeqVec=93M vs. Pro-
tXLNet=409M) and in pre-training data (SeqVec=30M vs.
ProtAlbert=224M) might explain some of this effect. Nev-
ertheless, pure uni-directionality as used in TransformerXL
appeared detrimental for modeling protein sequences.

4.5 Have pLMs reached a ceiling?

Short answer: clearly not. For instance, since first submitting
this work (July 2020), the mark has been pushed substan-
tially higher. More generally, adopting techniques from NLP
to proteins opens new opportunities to extract information
from proteins in a self-supervised, data-driven way. New
protein representations may complement existing solutions,
most successful when combining evolutionary informatiorﬂ
and machine learning [21], [22], [31], [90]. Here we showed
for the first time that pLM embeddings input to relatively
simple supervised learning models can reach similar levels
of performance without using EI and without optimizing
the supervised training pipeline much. However, the gain
in inference speed for pLMs compared to traditional so-
lutions using EI/MSAs is so significant that large-scale
predictions become, for the first time since 30 years, feasible
on commodity hardware. For instance, the best-performing
model ProtT5-XL-U50 can run on a Nvidia TitanV with
12GB vRAM. Nevertheless, given the pLMs described here
and elsewhere [34], [52], 53, [56], [91], [92], [93], we
might expect an upper limit for what pLMs can learn
through masked language modeling (or auto-regressive pre-
training). This work could establish three findings. (1) Less
noisy and less redundant corpora (e.g. UniRef50) improved
over larger but more noisy and redundant corpora (e.g.
BFD). (2) In our perspective of limited resources, it was most
important to use the resources for long-enough training
because the number of samples seen during pre-training
correlated with the prediction performance of downstream
tasks. Ultimately, this seemed to originate from a trade-off
between sufficient model size and sample throughput. (3)
The bi-directional outperformed the uni-directional models
tested. However, given the advances of protein LMs over
the course of the reviewing of this work, we have seen no
evidence for having reached a limit for pLMs, yet.

Many open questions: Answers to the following ques-
tions might advance the status-quo. (1) Would the addi-
tion of auxiliary tasks such as next-sentence or sentence-
order prediction offered by BERT or Albert suit protein
sequences? A suggestion might be incorporating structure
information [94] or evolutionary relations [92], [95]. (2)
Might the efficiency of training transformer pLMs improve
through sparse transformers [96] or attention optimized
with locality-sensitive hashing (LSH) [97] as introduced
recently by the Reformer model [98] or more recent work of
linear Transformers [99]? (3) Which data set, pre-processing,

7. Throughout this work, we used evolutionary information (EI) as
synonymous for using multiple sequence alignments (MSAs). Whether
pLMs do not implicitly extract EI will have to be proven in separate
publications.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2021.3095381, IEEE

Transactions on Pattern Analysis and Machine Intelligence

IEEE TRANS PATTERN ANALYSIS & MACHINE INTELLIGENCE, VOL. 14, NO. 8, AUGUST 2021 13

redundancy reduction and training batch sampling should
be used to improve? (4) How much will it improve to
tailor the supervised training pipeline to particular tasks?
We treated secondary structure or location prediction more
as proxies to showcase the success of protein LMs than as an
independent end. (5) Will the combination of EI and AI [95]
bring the best protein predictions of the future, or will the
advantages of single-protein predictions (speed, precision)
win out? In fact, single-protein predictions also have the
advantage of being more precise in that they do not provide
some implicit average over a protein family.

Overall, our results established that the combination of
HPC solutions for training protein LMs and subsequent
training of supervised prediction methods scaled up to the
largest data sets ever used in the field. Only the combination
of these different domains conclusively demonstrated that
pLMs reach up to or even above the performance of the
best methods in the field combining EI and Al without ever
exploiting multiple sequence alignments.

5 CONCLUSION

Here, we introduced many novel protein language models
(pLMs) and proved that embeddings extracted from the
last pLM layers captured constraints relevant for protein
structure and function. Although neither the usage of the
largest ever database (BFD) to pre-train pLMs, nor that of
very large models generated the most informative embed-
dings. Instead, pre-training sufficiently long on consider-
able diversity made a difference, and more recent pLMs
performed best. Using embeddings as exclusive input to
relatively small-size CNN/FNN models without much op-
timization yielded methods competitive in predicting sec-
ondary structure, sub-cellular location and in classifying
proteins into membrane/other. In fact, for the first time, new
small-size supervised solutions based on pLM embedding
input reached levels of performance challenging the state-
of-the-art (SOA) methods based on evolutionary informa-
tion (EI) taken form multiple sequence alignment (MSA)
input. In contrast, the models presented here never used
MSAs. This will save immense expenses when routinely
applying embedding-based protein predictions to large data
sets, but it also opens a path toward protein-specific rather
than family-averaged predictions. Ultimately, joining the
strengths of three different, yet complementary, fields (HPC,
NLP and computational biology) affected the advance. Self-
supervised pre-training combined with transfer-learning
tapped into the gold-mines of unlabeled data opening the
door for completely novel perspectives (and solutions) on
existing problems.

6 AVAILABILITY

We made all protein LMs trained here publicly avail-
able at our ProtTrans repository 'https://github.com/
agemagician/ProtTrans//'. This repository also holds
jupyter python notebooks with various tutorials, e.g., on
how to extract embeddings or visualize attention using
freely available online resources (Google Colab). Addi-
tionally, secondary structure predictions for ProtT5-XL-U50
are available through the PredictProtein [25] webserver:
'https:/ /predictprotein.org /|

Acknowledgments

The authors thank primarily Tim Karl (TUM) and Jian Kong
(TUM) for invaluable help with hard- and software; Inga
Weise and Aline Schmidt (both TUM) for support with
many other aspects of this work; Florian Matthes (TUM)
for his generous support and encouragement. Thanks for
crucial support and feedback from NVIDIA, in particular to
Ulrich Michaelis, Ada Sedova, Geetika Gupta, Axel Koehler,
Frederic Pariente, Jonathan Lefman, and Thomas Bradley.
Thanks to many at ORNL without whom no aspect of
this work could have been realized; particular thanks to
John Gounley, Hong-Jun Yoon, Georgia Tourassi, Bill, Brian,
Jungi, Graham and Verénica (ORNL Summit). Furthermore,
special thanks to Jack Wells (ORNL) for opening the door
to kicking off this project. From IBM, we thank Nicolas
Castet and Bryant Nelson for their help to fix issues and
enhance the performance of IBM PowerAl. From Google,
we are deeply grateful to Jamie Kinney, Alex Schroeder,
Nicole DeSantis, Andrew Stein, Vishal Mishra, Eleazar Or-
tiz, Nora Limbourg, Cristian Mezzanotte and all TFRC Team
for helping to setup a project on Google Cloud and solv-
ing Google cloud issues. No ProtTrans model were easily
publicly available without support from the Hugging Face
team; including Patrick von Platen, Julien Chaumond, and
Clement Delangue. Special thanks to Konstantin Weiflenow
for helping with grant writing and providing early results
for the structure prediction task. Furthermore, thanks to
both Adam Roberts and Colin Raffel for help with the T5
model. We are grateful to the editor and the anonymous
reviewers for essential criticism, especially, for suggesting
to compare t-SNEs to randomly initialized models.

This work was supported by a grant from Software
Campus 2.0 (TUM) through the German Ministry for Re-
search and Education (BMBF), a grant from the Alexander
von Humboldt foundation through the German Ministry for
Research and Education (BMBF), and by a grant from the
Deutsche Forschungsgemeinschaft (DFG-GZ: RO1320/4-1).
We gratefully acknowledge the support of NVIDIA with
the donation of 2 Titan GPUs used for the development
phase. We also thank the Leibniz Rechenzentrum (LRZ) for
providing access to DGX-1(V100) for the testing phase. Mar-
tin Steinegger acknowledges support from the National Re-
search Foundation of Korea grant [2019R1A6A1A10073437,
NRF-2020M3A9G7103933]; New Faculty Startup Fund and
the Creative-Pioneering Researchers Program through Seoul
National University.

Last not least, this research used resources of the Oak
Ridge National Laboratory (ORNL) Leadership Computing
Facility, which is a DOE Office of Science User Facility sup-
ported under Contract DE-AC05-000R22725, and resources
of TPU pods under TensorFlow Research Cloud grant. Fur-
thermore, the Rostlab gladly acknowledges support from
Google Cloud and Google Cloud Research Credits program
to fund this project under Covid19 HPC Consortium grant.

REFERENCES

[1] J. Wells, B. Bland et al., “ Announcing Supercomputer Summit,” Oak
Ridge National Lab. (ORNL), Oak Ridge, TN (United States), Tech.
Rep., Jun. 2016.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://github.com/agemagician/ProtTrans/
https://github.com/agemagician/ProtTrans/
https://predictprotein.org/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2021.3095381, IEEE

Transactions on Pattern Analysis and Machine Intelligence

IEEE TRANS PATTERN ANALYSIS & MACHINE INTELLIGENCE, VOL. 14, NO. 8, AUGUST 2021 14

[2] N. P. Jouppi, C. Young et al., “In-Datacenter Performance Analysis
of a Tensor Processing Unit,” in Proceedings of the 44th Annual
International Symposium on Computer Architecture, ser. ISCA "17.
Toronto, ON, Canada: Association for Computing Machinery, Jun.
2017, pp. 1-12.

M. Abadi, A. Agarwal ef al., “TensorFlow: Large-Scale Machine

Learning on Heterogeneous Distributed Systems,” arXiv:1603.04467

[cs], Mar. 2016.

A. Paszke, S. Gross et al., “PyTorch: An Imperative Style, High-

Performance Deep Learning Library,” in Advances in Neural Infor-

mation Processing Systems 32, H. Wallach, H. Larochelle et al., Eds.

Curran Associates, Inc., 2019, pp. 8026-8037.

D. Kirk, “NVIDIA cuda software and gpu parallel computing

architecture,” in Proceedings of the 6th International Symposium on

Memory Management, ser. ISMM ’07. Montreal, Quebec, Canada:

Association for Computing Machinery, Oct. 2007, pp. 103-104.

[6] A. Sergeev and M. Del Balso, “Horovod: Fast and easy distributed
deep learning in TensorFlow,” arXiv:1802.05799 [cs, stat], Feb. 2018.

[7] M. Cho, U. Finkler et al., “PowerAl DDL,” arXiv:1708.02188 [cs],
Aug. 2017.

[8] M. E. Peters, M. Neumann et al., “Deep contextualized word repre-
sentations,” arXiv:1802.05365 [cs], Mar. 2018.

[9] J. Howard and S. Ruder, “Universal Language Model Fine-tuning
for Text Classification,” arXiv:1801.06146 [cs, stat], May 2018.

[10] A. Vaswani, N. Shazeer et al., “Attention is all you need,” in
Advances in Neural Information Processing Systems, 2017, pp. 5998-
6008.

[11] Z. Yang, Z. Dai et al., “XLNet: Generalized Autoregressive Pre-
training for Language Understanding,” arXiv:1906.08237 [cs], Jan.
2020.

[12] M. Shoeybi, M. Patwary et al., “Megatron-LM: Training Multi-
Billion Parameter Language Models Using Model Parallelism,”
arXiv:1909.08053 [cs], Mar. 2020.

[13] C. B. Anfinsen and E. Haber, “Studies on the reduction and re-
formation of protein disulfide bonds,” Journal of Biological Chemistry,
vol. 236, no. 5, pp. 1361-1363, 1961.

[14] B. Rost and C. Sander, “Bridging the protein sequence-structure
gap by structure predictions,” Annual Review of Biophysics and
Biomolecular Structure, vol. 25, pp. 113-136, 1996.

[15] M. S. Klausen, M. C. Jespersen et al., “NetSurfP-2.0:
Improved prediction of protein structural features by in-
tegrated deep learning,” Proteins: Structure, Function, and
Bioinformatics, vol. 87, no. 6, pp. 520-527, 2019, _eprint:
https:/ /onlinelibrary.wiley.com/doi/pdf/10.1002/ prot.25674.

[16] J.]J. Almagro Armenteros, C. K. Senderby et al., “DeepLoc: Pre-
diction of protein subcellular localization using deep learning,”
Bioinformatics, vol. 33, no. 21, pp. 3387-3395, Nov. 2017.

[17] J. Yang, 1. Anishchenko et al., “Improved protein structure pre-
diction using predicted interresidue orientations,” Proceedings of the
National Academy of Sciences, vol. 117, no. 3, pp. 1496-1503, Jan. 2020.

[18] A. Kulandaisamy, J. Zaucha et al., “Pred-MutHTP: Prediction of
disease-causing and neutral mutations in human transmembrane
proteins,” Human Mutation, vol. 41, no. 3, pp. 581-590, 2020, _eprint:
https:/ /onlinelibrary.wiley.com/doi/pdf/10.1002 /humu.23961.

3

[

[4

—_

[5

—_

[19] M. Schelling, T. A. Hopf, and B. Rost, “Evolutionary
couplings and sequence variation effect predict protein
binding sites,” Proteins: Structure, Function, and Bioin-

formatics, vol. 86, no. 10, pp. 1064-1074, 2018, _eprint:
https:/ /onlinelibrary.wiley.com/doi/pdf/10.1002/prot.25585.

[20] M. Bernhofer, E. Kloppmann et al., “TMSEG: Novel predic-
tion of transmembrane helices,” Proteins: Structure, Function, and
Bioinformatics, vol. 84, no. 11, pp. 1706-1716, 2016, _eprint:
https:/ /onlinelibrary.wiley.com/doi/pdf/10.1002/prot.25155.

[21] B.Rost and C. Sander, “Improved prediction of protein secondary
structure by use of sequence profiles and neural networks,” Pro-
ceedings of the National Academy of Sciences, vol. 90, pp. 7558-7562,
1993.

[22] ——, “Prediction of protein secondary structure at better than 70%
accuracy,” Journal of Molecular Biology, vol. 232, pp. 584-599, 1993.

[23] T. U. Consortium, “UniProt: A worldwide hub of protein knowl-
edge,” Nucleic Acids Research, vol. 47, no. D1, pp. D506-D515, Jan.
2019.

[24] M. Steinegger, M. Mirdita, and]. Soding, “Protein-level assembly
increases protein sequence recovery from metagenomic samples
manyfold,” Nature methods, vol. 16, no. 7, pp. 603-606, 2019.

[25] M. Bernhofer, C. Dallago et al., “Predictprotein-predicting protein
structure and function for 29 years,” Nucleic Acids Research, 2021.

[26] P. Radivojac, Z. Obradovic et al., “Protein flexibility and intrinsic
disorder,” Protein Science, vol. 13, no. 1, pp. 71-80, 2004, _eprint:
https:/ /onlinelibrary.wiley.com/doi/pdf/10.1110/ps.03128904.

[27] N. Perdigao, J. Heinrich et al., “Unexpected features of the dark
proteome,” Proceedings of the National Academy of Sciences, vol. 112,
no. 52, pp. 15898-15903, 2015.

[28] T. A. Hopf, L. J. Colwell et al., “Three-dimensional structures of
membrane proteins from genomic sequencing,” Cell, vol. 149, no. 7,
pp- 1607-1621, 2012.

[29] B. Rost and A. Valencia, “Pitfalls of protein sequence analysis,”
Current Opinion in Biotechnology, vol. 7, no. 4, pp. 457461, 1996.
[30] J. John, E. Richard et al., “High accuracy protein structure
prediction using deep learning,” in Fourteenth Critical Assessment
of Techniques for Protein Structure Prediction (Abstract Book),
2020. [Online]. Available: $https://predictioncenter.org/caspl4/

doc/CASP14_Abstracts.pdf$

[31] B. Rost and C. Sander, “Combining evolutionary information and
neural networks to predict protein secondary structure,” Proteins:
Structure, Function, and Genetics, vol. 19, pp. 55-72, 1994.

[32] B.E.Suzek, Y. Wang et al., “UniRef clusters: A comprehensive and
scalable alternative for improving sequence similarity searches,”
Bioinformatics, vol. 31, no. 6, pp. 926-932, Mar. 2015.

[33] M. Steinegger and J. Soding, “Clustering huge protein sequence
sets in linear time,” Nature Communications, vol. 9, no. 1, pp. 1-8,
Jun. 2018.

[34] A. Madani, B. McCann et al., “ProGen: Language Modeling for
Protein Generation,” bioRxiv, p. 2020.03.07.982272, Mar. 2020.

[35] E. Asgari, A. C. McHardy, and M. R. Mofrad, “Probabilis-
tic variable-length segmentation of protein sequences for dis-
criminative motif discovery (dimotif) and sequence embedding
(protvecx),” Scientific reports, vol. 9, no. 1, pp. 1-16, 2019.

[36] L. Coin, A. Bateman, and R. Durbin, “Enhanced protein domain
discovery by using language modeling techniques from speech
recognition,” Proceedings of the National Academy of Sciences, vol. 100,
no. 8, pp. 4516-4520, 2003.

[37] C. Chelba, T. Mikolov et al., “One Billion Word Bench-
mark for Measuring Progress in Statistical Language Modeling,”
arXiv:1312.3005 [cs], Mar. 2014.

[38] M. M. Lin and A. H. Zewail, “Hydrophobic forces and the
length limit of foldable protein domains,” Proceedings of the National
Academy of Sciences, vol. 109, no. 25, pp. 9851-9856, 2012.

[39] L.van der Maaten and G. Hinton, “Visualizing Data using t-SNE,”
Journal of Machine Learning Research, vol. 9, no. Nov, pp. 2579-2605,
2008.

[40] J.-M. Chandonia, N. K. Fox, and S. E. Brenner, “SCOPe: Classi-
fication of large macromolecular structures in the structural clas-
sification of proteins—extended database,” Nucleic Acids Research,
vol. 47, no. D1, pp. D475-D481, Jan. 2019.

[41] Y. Yang, J. Gao ef al., “Sixty-five years of the long march in
protein secondary structure prediction: The final stretch?” Briefings
in bioinformatics, vol. 19, no. 3, pp. 482494, 2018.

[42] J. A. Cuff and G. J. Barton, “Evaluation and improvement of multi-
ple sequence methods for protein secondary structure prediction,”
Proteins: Structure, Function, and Bioinformatics, vol. 34, no. 4, pp.
508-519, 1999.

[43] L. A. Abriata, G. E. Tamo et al., “Assessment of hard target
modeling in CASP12 reveals an emerging role of alignment-based
contact prediction methods,” Proteins: Structure, Function, and Bioin-
formatics, vol. 86, pp. 97-112, 2018.

[44] H. M. Berman, J. Westbrook et al., “The Protein Data Bank,” Nucleic
Acids Research, vol. 28, no. 1, pp. 235-242, Jan. 2000.

[45] M. Steinegger and]. S6ding, “Mmseqs2 enables sensitive protein
sequence searching for the analysis of massive data sets,” Nature
biotechnology, vol. 35, no. 11, pp. 1026-1028, 2017.

[46] G. Wang and R. L. Dunbrack Jr, “PISCES: A protein sequence
culling server,” Bioinformatics, vol. 19, no. 12, pp. 1589-1591, 2003.

[47] C. Raffel, N. Shazeer et al., “Exploring the limits of transfer
learning with a unified text-to-text transformer,” arXiv preprint
arXiv:1910.10683, 2019.

[48] K. Clark, M.-T. Luong ef al., “Electra: Pre-training text en-
coders as discriminators rather than generators,” arXiv preprint
arXiv:2003.10555, 2020.

[49] J. Devlin, M.-W. Chang et al, “BERT: Pre-training of
Deep Bidirectional Transformers for Language Understanding,”
arXiv:1810.04805 [cs], May 2019.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

$https://predictioncenter.org/casp14/doc/CASP14_Abstracts.pdf$
$https://predictioncenter.org/casp14/doc/CASP14_Abstracts.pdf$

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2021.3095381, IEEE

Transactions on Pattern Analysis and Machine Intelligence

IEEE TRANS PATTERN ANALYSIS & MACHINE INTELLIGENCE, VOL. 14, NO. 8, AUGUST 2021 15

[50] Z.Lan, M. Chen ef al., “ALBERT: A Lite BERT for Self-supervised
Learning of Language Representations,” arXiv:1909.11942 [cs], Feb.
2020.

[51] Z.Dai, Z. Yang et al., “Transformer-XL: Attentive Language Mod-
els Beyond a Fixed-Length Context,” arXiv:1901.02860 [cs, stat], Jun.
2019.

[52] R. Rao, N. Bhattacharya et al., “Evaluating Protein Transfer Learn-
ing with TAPE,” in Advances in Neural Information Processing Systems
32, H. Wallach, H. Larochelle et al., Eds. Curran Associates, Inc.,
2019, pp. 9689-9701.

[53] A. Rives, S. Goyal et al., “Biological structure and function emerge
from scaling unsupervised learning to 250 million protein se-
quences,” bioRxiv, p. 622803, May 2019.

[54] A.Nambiar, M. E. Heflin et al., “Transforming the language of life:
Transformer neural networks for protein prediction tasks,” BioRxiv,
2020.

[55] Y. You, J. Li et al., “Large Batch Optimization for Deep Learning:
Training BERT in 76 minutes,” in International Conference on Learning
Representations, Sep. 2019.

[56] M. Heinzinger, A. Elnaggar et al., “Modeling aspects of the lan-
guage of life through transfer-learning protein sequences,” BMC
Bioinformatics, vol. 20, no. 1, p. 723, Dec. 2019.

[57] E. Limited, “Press release announcing Supercomputer Fugaku,”
RIKEN, Tech. Rep., Dec. 2019.

[58] N. Hammer, F. Jamitzky et al., “Extreme Scale-out Super-
MUC Phase 2 - lessons learned,” arXiv:1609.01507 [astro-ph,
physics:physics], Sep. 2016.

[59] “Google TPU,” https://cloud.google.com/tpu/docs/system-
architecture, Jun. 2020.

[60] “Nvidia Apex,” https://github.com/NVIDIA /apex, Mar. 2020.
[61] T. D. Le, H. Imai et al., “TFLMS: Large Model Support in Tensor-
Flow by Graph Rewriting,” arXiv:1807.02037 [cs, stat], Oct. 2019.
[62]]J. Feng and D. Huang, “Optimal Gradient Checkpoint Search for
Arbitrary Computation Graphs,” arXiv:1808.00079 [cs, stat], Sep.

2019.

[63] K. Jarrett, K. Kavukcuoglu et al., “What is the best multi-stage
architecture for object recognition?” in 2009 IEEE 12th international
conference on computer vision. IEEE, 2009, pp. 2146-2153.

[64] A.Bairoch, “The ENZYME database in 2000,” Nucleic acids research,
vol. 28, no. 1, pp. 304-305, 2000.

[65] D.Bahdanau, K. Cho, and Y. Bengio, “Neural Machine Translation
by Jointly Learning to Align and Translate,” arXiv:1409.0473 [cs,
stat], May 2016.

[66] S. Vashishth, S. Upadhyay et al., “Attention interpretability across
nlp tasks,” arXiv preprint arXiv:1909.11218, 2019.

[67] R. M. Rao, J. Meier et al, “Transformer protein language
models are unsupervised structure learners,” bioRxiv, 2020.
[Online]. Available: https://www.biorxiv.org/content/10.1101/
2020.12.15.422761v1

[68]]. Vig, “A multiscale visualization of attention in the transformer
model,” 2019.

[69] S. Henikoff and]J. G. Henikoff, “Amino acid substitution matrices
from protein blocks.” Proceedings of the National Academy of Sciences,
vol. 89, no. 22, pp. 10915-10919, Nov. 1992. [Online]. Available:
http:/ /www.pnas.org/cgi/doi/10.1073/pnas.89.22.10915

[70] A. Drozdetskiy, C. Cole et al., “Jpred4: a protein secondary struc-
ture prediction server,” Nucleic acids research, vol. 43, no. W1, pp.
W389-W394, 2015.

[71] S. Wang, W. Li et al., “Raptorx-property: a web server for protein
structure property prediction,” Nucleic acids research, vol. 44, no. W1,
pp- W430-W435, 2016.

[72] S. Wang, J. Peng et al., “Protein secondary structure prediction
using deep convolutional neural fields,” Scientific reports, vol. 6, p.
18962, 2016.

[73] R. Heffernan, Y. Yang et al., “Capturing non-local interactions by
long short-term memory bidirectional recurrent neural networks
for improving prediction of protein secondary structure, backbone
angles, contact numbers and solvent accessibility,” Bioinformatics,
vol. 33, no. 18, pp. 2842-2849, 2017.

[74] D. S. Marks, L. J. Colwell et al., “Protein 3D Structure Computed
from Evolutionary Sequence Variation,” PLOS ONE, vol. 6, no. 12,
p. €28766, Dec. 2011.

[75] B. H. Dessalilly, R. Nair et al., “Psi-2: structural genomics to cover
protein domain family space,” Structure, vol. 17, no. 6, pp. 869-881,
2009.

[76] T. Kosciolek and D. T. Jones, “Accurate contact predictions using
covariation techniques and machine learning,” Proteins: Structure,
Function, and Bioinformatics, vol. 84, pp. 145-151, 2016.

[77] T. Goldberg, T. Hamp, and B. Rost, “LocTree2 predicts localization
for all domains of life,” Bioinformatics, vol. 28, no. 18, pp. i458-i465,
Sep. 2012.

[78] H.Stark, C. Dallago et al., “Light attention predicts protein location
from the language of life,” bioRxiv, 2021.

[79] T. B. Brown, B. Mann et al., “Language models are few-shot
learners,” arXiv preprint arXiv:2005.14165, 2020.

[80] A. Bairoch and B. Boeckmann, “The swiss-prot protein sequence
data bank,” Nucleic acids research, vol. 19, no. Suppl, p. 2247, 1991.

[81] P. Radivojac, Z. Obradovic et al., “Protein flexibility and intrinsic
disorder,” Protein Science, vol. 13, no. 1, pp. 71-80, 2004.

[82] A.Schafferhans, S. I. O’Donoghue et al., “Dark proteins important
for cellular function,” Proteomics, vol. 18, no. 21-22, p. 1800227, 2018.

[83] T. Mikolov, I. Sutskever et al., “Distributed Representations of
Words and Phrases and their Compositionality,” arXiv:1310.4546
[cs, stat], Oct. 2013.

[84] E. Asgari and M. R. Mofrad, “Continuous distributed represen-
tation of biological sequences for deep proteomics and genomics,”
PloS one, vol. 10, no. 11, 2015.

[85] M. AlQuraishi, “Proteinnet: a standardized data set for machine
learning of protein structure,” BMC bioinformatics, vol. 20, no. 1, pp.
1-10, 2019.

[86] M. Littmann, M. Heinzinger ef al., “Embeddings from deep learn-
ing transfer go annotations beyond homology,” Scientific reports,
vol. 11, no. 1, pp. 1-14, 2021.

[87] M. AlQuraishi, “End-to-End Differentiable Learning of Protein
Structure,” Cell Systems, vol. 8, no. 4, pp. 292-301.e3, Apr. 2019.

[88] C. Marquet, M. Heinzinger et al., “Embeddings from protein
language models predict conservation and variant effects,” Human
Genetics, 2021.

[89] S. Rajbhandari, J. Rasley et al., “ZeRO: Memory Optimization
Towards Training A Trillion Parameter Models,” arXiv:1910.02054
[cs, stat], Oct. 2019.

[90] B. Rost, “PHD: predicting one-dimensional protein structure by
profile based neural networks,” Methods in Enzymology, vol. 266,
pp. 525-539, 1996.

[91] E. C. Alley, G. Khimulya ef al., “Unified rational protein engi-
neering with sequence-based deep representation learning,” Nature
Methods, vol. 16, no. 12, pp. 1315-1322, Dec. 2019.

[92] S. Min, S. Park et al., “Pre-Training of Deep Bidirectional
Protein Sequence Representations with Structural Information,”
arXiv:1912.05625 [cs, q-bio, stat], Feb. 2020.

[93]]J.]. A. Armenteros, A. R. Johansen ef al., “Language modelling for
biological sequences — curated datasets and baselines,” bioRxiv, p.
2020.03.09.983585, Mar. 2020.

[94] T. Bepler and B. Berger, “Learning protein sequence embeddings
using information from structure,” arXiv:1902.08661 [cs, g-bio, stat],
Oct. 2019.

[95] R. Rao, J. Liu et al., “Msa transformer,” bioRxiv, 2021.

[96] R. Child, S. Gray et al., “Generating Long Sequences with Sparse
Transformers,” arXiv:1904.10509 [cs, stat], Apr. 2019.

[97] P. Indyk and R. Motwani, “Approximate nearest neighbors: To-
wards removing the curse of dimensionality,” in Proceedings of the
Thirtieth Annual ACM Symposium on Theory of Computing, 1998, pp.
604-613.

[98] N. Kitaev, L. Kaiser, and A. Levskaya, “Reformer: The Efficient
Transformer,” in International Conference on Learning Representations,
Sep. 2019.

[99] M. Zaheer, G. Guruganesh et al., “Big bird: Transformers for longer
sequences,” arXiv preprint arXiv:2007.14062, 2020.

[100] M. Elrod-Erickson, T. E. Benson, and C. O. Pabo, “High-
resolution structures of variant zif268-dna complexes: implications
for understanding zinc finger—dna recognition,” Structure, vol. 6,
no. 4, pp. 451464, 1998.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://www.biorxiv.org/content/10.1101/2020.12.15.422761v1
https://www.biorxiv.org/content/10.1101/2020.12.15.422761v1
http://www.pnas.org/cgi/doi/10.1073/pnas.89.22.10915

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2021.3095381, IEEE
Transactions on Pattern Analysis and Machine Intelligence

IEEE TRANS PATTERN ANALYSIS & MACHINE INTELLIGENCE, VOL. 14, NO. 8, AUGUST 2021 16

Ahmed Elnaggar is a PhD candidate at the
Technical University of Munich. His main focus of
research is self-supervised learning on various
modalities (Text, Protein, Source code, Images
and speech) using high performance comput-
ing.

Michael Heinzinger is a PhD candidate in the
Rostlab at TUM in Munich/Garching. His re-
cent research focuses on learning, evaluating
and understanding representations for protein
sequences from unlabeled data with the goal
to empower peers with the computational tools
necessary to unravel more fundamental biologi-
cal truths.

Christian Dallago performs research at the in-
terface of Biology, Machine Learning and Soft-
ware Engineering with the goal of improving hu-
man health through intelligent machines.

Ghalia Rehawi is a PhD candidate at Helmholtz
Zentrum Minchen. She completed her Master
of Science (Msc), in the field of informatics, from
the Technical University of Munich. She is inter-
ested in the application of machine and deep
learning techniques in genome and transcrip-
tome analysis.

Yu Wang studied Al at Katholieke Universiteit
Leuven in Belgium. He later moved to Mu-
nich, Germany to join MIPS, Helmholtz Zentrum
Miinchen, where he got his Ph.D. in genomics
and bioinformatics from Technical University Mu-
nich in 2011. He is currently CTO of Med Al
Technology (Wu Xi) Ltd., working on transform-
ing healthcare with Al in China.

Llion Jones is a senior software engineer at
Google and has been at Google for over 9 years.
Started as a YouTube engineer before moving
into machine learning. Was on the original team
of researchers who developed the now popu-
lar Transformer model where he worked on the
initial code base and on the attention visualiza-
tions.

Tom Gibbs manages Developer Relations for
NVIDIA’s Supercomputing Business Unit. His
primary focus areas are Al for Science, the Con-
vergence of Simulation and Experiment, Quan-
tum Computing and Classical Simulation of High
Energy Physics. He has over 40 years of expe-
rience in large scale simulation and modeling
with an emphasis on grand challenge science
problems.

Tamas Feher is an Al developer technology en-
gineer at NVIDIA. His work is focused on ac-
celerating deep learning and machine learning
workloads on GPUs. Tamas holds a PhD from
the University of Greifswald.

Christoph Angerer is a senior manager within
the Autonomous Driving team at NVIDIA.
Christoph’s team is concerned with designing,
implementing, and optimizing Al-based solu-
tions for advanced learning and automation.
Christoph holds a PhD from the ETH Zurich,
Switzerland.

Martin Steinegger is an Assistant Professor in
the biology department at the Seoul National
University. His group develops novel computa-
tional methods that combine big data algorithms
and machine learning to gain insights into unex-
plored microbial communities.

Debsindhu Bhowmik is a Computational Sci-
entist in the Computational Sciences & Engi-
neering Division and Health Data Sciences In-
stitute at Oak Ridge National Laboratory. His
current focus is in understanding complex bi-
ological and genetic phenomena and studying
disordered systems by implementing new gen-
eration large scale simulation blended with Deep
learning and scattering techniques.

Burkhard Rost chairs Comp Biol & Bioinformat-
ics at TUM Munich. He rooted the leap through
combining evolutionary information and machine
learning and the launch of PredictProtein as first
Internet prediction server. Over 30 years, the
Rostlab contributed influential methods for pro-
tein prediction, headed the International Society
for Computational Biology (ISCB) and has been
dedicated to teaching and raising diversity and
gender balance.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

