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ABSTRACT

The selection of initial parameter values for gradient-based optimization of deep
neural networks is one of the most impactful hyperparameter choices in deep
learning systems, affecting both convergence times and model performance. Yet
despite significant empirical and theoretical analysis, relatively little has been
proved about the concrete effects of different initialization schemes. In this work,
we analyze the effect of initialization in deep linear networks, and provide for the
first time a rigorous proof that drawing the initial weights from the orthogonal
group speeds up convergence relative to the standard Gaussian initialization with
iid weights. We show that for deep networks, the width needed for efficient con-
vergence to a global minimum with orthogonal initializations is independent of the
depth, whereas the width needed for efficient convergence with Gaussian initial-
izations scales linearly in the depth. Our results demonstrate how the benefits of a
good initialization can persist throughout learning, suggesting an explanation for
the recent empirical successes found by initializing very deep non-linear networks
according to the principle of dynamical isometry.

1 INTRODUCTION

Through their myriad successful applications across a wide range of disciplines, it is now well es-
tablished that deep neural networks possess an unprecedented ability to model complex real-world
datasets, and in many cases they can do so with minimal overfitting. Indeed, the list of practi-
cal achievements of deep learning has grown at an astonishing rate, and includes models capable
of human-level performance in tasks such as image recognition (Krizhevsky et al., 2012), speech
recognition (Hinton et al., 2012), and machine translation (Wu et al., 2016).

Yet to each of these deep learning triumphs corresponds a large engineering effort to produce such
a high-performing model. Part of the practical difficulty in designing good models stems from a
proliferation of hyperparameters and a poor understanding of the general guidelines for their selec-
tion. Given a candidate network architecture, some of the most impactful hyperparameters are those
governing the choice of the model’s initial weights. Although considerable study has been devoted
to the selection of initial weights, relatively little has been proved about how these choices affect
important quantities such as rate of convergence of gradient descent.

In this work, we examine the effect of initialization on the rate of convergence of gradient descent in
deep linear networks. We provide for the first time a rigorous proof that drawing the initial weights
from the orthogonal group speeds up convergence relative to the standard Gaussian initialization
with iid weights. In particular, we show that for deep networks, the width needed for efficient
convergence for orthogonal initializations is independent of the depth, whereas the width needed for
efficient convergence of Gaussian networks scales linearly in the depth.

Orthogonal weight initializations have been the subject of a significant amount of prior theoretical
and empirical investigation. For example, in a line of work focusing on dynamical isometry, it
was found that orthogonal weights can speed up convergence for deep linear networks (Saxe et al.,
2014; Advani & Saxe, 2017) and for deep non-linear networks (Pennington et al., 2018; Xiao et al.,
2018; Gilboa et al., 2019; Chen et al., 2018; Pennington et al., 2017; Tarnowski et al., 2019; Ling
& Qiu, 2019) when they operate in the linear regime. In the context of recurrent neural networks,
orthogonality can help improve the system’s stability. A main limitation of prior work is that it
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has focused almost exclusively on model’s properties at initialization. In contrast, our analysis
focuses on the benefit of orthogonal initialization on the entire training process, thereby establishing
a provable benefit for optimization.

The paper is organized as follows. After reviewing related work in Section 2 and establishing some
preliminaries in Section 3, we present our main positive result on efficient convergence from orthog-
onal initialization in Section 4. In Section 5, we show that Gaussian initialization leads to exponen-
tially long convergence time if the width is too small compared with the depth. In Section 6, we
perform experiments to support our theoretical results.

2 RELATED WORK

Deep linear networks. Despite the simplicity of their input-output maps, deep linear networks de-
fine high-dimensional non-convex optimization landscapes whose properties closely reflect those of
their non-linear counterparts. For this reason, deep linear networks have been the subject of exten-
sive theoretical analysis. A line of work (Kawaguchi, 2016; Hardt & Ma, 2016; Lu & Kawaguchi,
2017; Yun et al., 2017; Zhou & Liang, 2018; Laurent & von Brecht, 2018) studied the landscape
properties of deep linear networks. Although it was established that all local minima are global
under certain assumptions, these properties alone are still not sufficient to guarantee global conver-
gence or to provide a concrete rate of convergence for gradient-based optimization algorithms.

Another line of work directly analyzed the trajectory taken by gradient descent and established
conditions that guarantee convergence to global minimum (Bartlett et al., 2018; Arora et al., 2018;
Du & Hu, 2019). Most relevant to our work is the result of Du & Hu (2019), which shows that
if the width of hidden layers is larger than the depth, gradient descent with Gaussian initialization
can efficiently converge to a global minimum. Our result establishes that for Gaussian initialization,
this linear dependence between width and depth is necessary, while for orthogonal initialization, the
width can be independent of depth. Our negative result for Gaussian initialization also significantly
generalizes the result of Shamir (2018), who proved a similar negative result for 1-dimensional linear
networks.

Orthogonal weight initializations. Orthogonal weight initializations have also found significant
success in non-linear networks. In the context of feedforward models, the spectral properties of
a network’s input-output Jacobian have been empirically linked to convergence speed (Saxe et al.,
2014; Pennington et al., 2017; 2018; Xiao et al., 2018). It was found that when this spectrum
concentrates around 1 at initialization, a property dubbed dynamical isometry, convergence times
improved by orders of magnitude. The conditions for attaining dynamical isometry in the infinite-
width limit were established by Pennington et al. (2017; 2018) and basically require that input-output
map to be approximately linear and for the weight matrices to be orthogonal. Therefore the training
time benefits of dynamical isometry are likely rooted in the benefits of orthogonality for deep linear
networks, which we establish in this work.

Orthogonal matrices are also frequently used in the context of recurrent neural networks, for which
the stability of the state-to-state transition operator is determined by the spectrum of its Jaco-
bian (Haber & Ruthotto, 2017; Laurent & von Brecht, 2016). Orthogonal matrices can improve
the conditioning, leading to an ability to learn over long time horizons (Le et al., 2015; Henaff et al.,
2016; Chen et al., 2018; Gilboa et al., 2019). While the benefits of orthogonality can be quite large at
initialization, little is known about whether or in what contexts these benefits persist during training,
a scenario that has lead to the development of efficient methods of constraining the optimization to
the orthogonal group (Wisdom et al., 2016; Vorontsov et al., 2017; Mhammedi et al., 2017). Al-
though we do not study the recurrent setting in this work, an extension of our analysis might help
determine when orthogonality is beneficial in that setting.
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3 PRELIMINARIES

3.1 NOTATION

Let [n] = {1, 2, . . . , n}. Denote by Id the d × d identity matrix, and by I an identity matrix when
its dimension is clear from context. Denote by N (µ, σ2) the Gaussian distribution with mean µ and
variance σ2, and by χ2

k the chi-squared distribution with k degrees of freedom.

Denote by ‖·‖ the ℓ2 norm of a vector or the spectral norm of a matrix. Denote by ‖·‖F the Frobe-
nius norm of a matrix. For a symmetric matrix A, let λmax(A) and λmin(A) be its maximum and
minimum eigenvalues, and let λi(A) be its i-th largest eigenvalue. For a matrix B ∈ R

m×n, let
σi(B) be its i-th largest singular value (i = 1, 2, . . . ,min{m,n}), and let σmax(B) = σ1(B),
σmin(B) = σmin{m,n}(B). Denote by vec (A) be the vectorization of a matrix A in column-first

order. The Kronecker product between two matrices A ∈ R
m1×n1 and B ∈ R

m2×n2 is defined as

A⊗B =







a1,1B · · · a1,n1
B

...
. . .

...
am1,1B · · · am1,n1

B






∈ R

m1m2×n1n2 ,

where ai,j is the element in the (i, j)-th entry of A.

We use the standard O(·), Ω(·) and Θ(·) notation to hide universal constant factors. We also use C
to represent a sufficiently large universal constant whose specific value can differ from line to line.

3.2 PROBLEM SETUP

Suppose that there are n training examples {(xk, yk)}nk=1 ⊂ R
dx × R

dy . Denote by X =
(x1, . . . , xn) ∈ R

dx×n the input data matrix and by Y = (y1, . . . , yn) ∈ R
dy×n the target ma-

trix. Consider an L-layer linear neural network with weight matrices W1, . . . ,WL, which given an
input x ∈ R

dx computes

f(x;W1, . . . ,WL) = αWLWL−1 · · ·W1x, (1)

where Wi ∈ R
di×di−1(i = 1, . . . , L), d0 = dx, dL = dy , and α is a normalization constant which

will be specified later according to the initialization scheme. We study the problem of training the
deep linear network by minimizing the ℓ2 loss over training data:

ℓ(W1, . . . ,WL) =
1

2

n
∑

k=1

‖f(xk;W1, . . . ,WL)− yk‖2 =
1

2
‖αWL · · ·W1X − Y ‖2F . (2)

The algorithm we consider to minimize the objective (2) is gradient descent with random initializa-
tion, which first randomly samples the initial weight matrices {Wi(0)}Li=1 from a certain distribu-
tion, and then updates the weights using gradient descent: for time t = 0, 1, 2, . . .,

Wi(t+ 1) = Wi(t)− η
∂ℓ

∂Wi
(W1(t), . . . ,WL(t)), i ∈ [L], (3)

where η > 0 is the learning rate.

For convenience, we denote Wj:i = WjWj−1 · · ·Wi (1 ≤ i ≤ j ≤ L) and Wi−1:i = I (i ∈ [L]).
The time index t is used on any variable that depends on W1, . . . ,WL to represent its value at time
t, e.g., Wj:i(t) = Wj(t) · · ·Wi(t), ℓ(t) = ℓ(W1(t), . . . ,WL(t)), etc.

4 EFFICIENT CONVERGENCE USING ORTHOGONAL INITIALIZATION

In this section we present our main positive result for orthogonal initialization. We show that orthog-
onal initialization enables efficient convergence of gradient descent to a global minimum provided
that the hidden width is not too small.

In order to properly define orthogonal weights, we let the widths of all hidden layers be equal:
d1 = d2 = · · · = dL−1 = m, and let m ≥ max{dx, dy}. Note that all intermediate matrices
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W2, . . . ,WL−1 are m×m square matrices, and W1 ∈ R
m×dx ,WL ∈ R

dy×m. We sample each ini-
tial weight matrix Wi(0) independently from a uniform distribution over scaled orthogonal matrices
satisfying

W⊤
1 (0)W1(0) = mIdx ,

W⊤
i (0)Wi(0) = Wi(0)W

⊤
i (0) = mIm, 2 ≤ i ≤ L− 1,

WL(0)W
⊤
L (0) = mIdy

.

(4)

In accordance with such initialization, the scaling factor α in (1) is set as α = 1√
mL−1dy

, which

ensures E
[

‖f(x;WL(0), . . . ,W1(0))‖2
]

= ‖x‖2 for any x ∈ R
dx .1 The same scaling factor was

adopted in Du & Hu (2019), which preserves the expectation of the squared ℓ2 norm of any input.

Let W ∗ ∈ argminW∈R
dy×dx ‖WX − Y ‖F and ℓ∗ = 1

2 ‖W ∗X − Y ‖2F . Then ℓ∗ is the minimum

value for the objective (2). Denote r = rank(X), κ = λmax(X
⊤X)

λr(X⊤X)
, and r̃ =

‖X‖2
F

‖X‖2 .2 Our main

theorem in this section is the following:

Theorem 4.1. Suppose

m ≥ C · r̃κ2
(

dy(1 + ‖W ∗‖2) + log(r/δ)
)

and m ≥ dx, (5)

for some δ ∈ (0, 1) and a sufficiently large universal constant C > 0. Set the learning rate η ≤
dy

2L‖X‖2 . Then with probability at least 1− δ over the random initialization, we have

ℓ(0)− ℓ∗ ≤ O

(

1 +
log(r/δ)

dy
+ ‖W ∗‖2

)

‖X‖2F ,

ℓ(t)− ℓ∗ ≤
(

1− 1

2
ηLλr(X

⊤X)/dy

)t

(ℓ(0)− ℓ∗), t = 0, 1, 2, . . . ,

where ℓ(t) is the objective value at iteration t.

Notably, in Theorem 4.1, the width m need not depend on the depth L. This is in sharp contrast

with the result of Du & Hu (2019) for Gaussian initialization, which requires m ≥ Ω̃(Lrκ3dy). It
turns out that a near-linear dependence between m and L is necessary for Gaussian initialization to
have efficient convergence, as we will show in Section 5. Therefore the requirement in Du & Hu
(2019) is nearly tight in terms of the dependence on L. These results together rigorously establish
the benefit of orthogonal initialization in optimizing very deep linear networks.

If we set the learning rate optimally according to Theorem 4.1 to η = Θ(
dy

L‖X‖2 ), we obtain that

ℓ(t) − ℓ∗ decreases by a ratio of 1 − Θ(κ−1) after every iteration. This matches the convergence

rate of gradient descent on the (1-layer) linear regression problem min
W∈R

dy×dx

1
2 ‖WX − Y ‖2F .

4.1 PROOF OF THEOREM 4.1

The proof uses the high-level framework from Du & Hu (2019), which tracks the evolution of the
network’s output during optimization. This evolution is closely related to a time-varying positive
semidefinite (PSD) matrix (defined in (7)), and the proof relies on carefully upper and lower bound-
ing the eigenvalues of this matrix throughout training, which in turn implies the desired convergence
result.

First, we can make the following simplifying assumption without loss of generality. See Appendix
B in Du & Hu (2019) for justification.

Assumption 4.1. (Without loss of generality) X ∈ R
dx×r, rank(X) = r, Y = W ∗X , and ℓ∗ = 0.

1We have E
[

‖f(x;WL(0), . . . ,W1(0))‖
2
]

= α2
E
[

x⊤W⊤
1 (0) · · ·W⊤

L (0)WL(0) · · ·W1(0)x
]

. Note that

by our choice (4) we have E
[

W⊤

L (0)WL(0)
]

= dyIm and W⊤

i (0)Wi(0) = mI (1 ≤ i ≤ L− 1), so we have

E
[

‖f(x;WL(0), . . . ,W1(0))‖
2
]

= α2mL−1dy ‖x‖
2 = ‖x‖2.

2r̃ is known as the stable rank of X , which is always no more than the rank.
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Now we briefly review Du & Hu (2019)’s framework. The key idea is to look at the network’s
output, defined as

U = αWL:1X ∈ R
dy×n.

We also write U(t) = αWL:1(t)X as the output at time t. Note that ℓ(t) = 1
2 ‖U(t)− Y ‖2F .

According to the gradient descent update rule, we write

WL:1(t+ 1) =
∏

i

(

Wi(t)− η
∂ℓ

∂Wi
(t)

)

= WL:1(t)−
L
∑

i=1

ηWL:i+1(t)
∂ℓ

∂Wi
(t)Wi−1:1(t) + E(t),

where E(t) contains all the high-order terms (i.e., those with η2 or higher). With this definition, the
evolution of U(t) can be written as the following equation:

vec (U(t+ 1)− U(t)) = −ηP (t) · vec (U(t)− Y ) + α · vec (E(t)X) , (6)

where

P (t) = α2
L
∑

i=1

[ (

(Wi−1:1(t)X)
⊤
(Wi−1:1(t)X)

)

⊗
(

WL:i+1(t)W
⊤
L:i+1(t)

)

]

. (7)

Notice that P (t) is always PSD since it is the sum of L PSD matrices. Therefore, in order to establish
convergence, we only need to (i) show that the higher-order term E(t) is small and (ii) prove upper
and lower bounds on P (t)’s eigenvalues. For the second task, it suffices to control the singular
values of Wi−1:1(t) and WL:i+1(t) (i ∈ [L]).3 Under orthogonal initialization, these matrices are
perfectly isometric at initialization, and we will show that they stay close to isometry during training,
thus enabling efficient convergence.

The following lemma summarizes some properties at initialization.

Lemma 4.2. At initialization, we have

σmax(Wj:i(0)) = σmin(Wj:i(0)) = m
j−i+1

2 , ∀1 ≤ i ≤ j ≤ L, (i, j) 6= (1, L). (8)

Furthermore, with probability at least 1− δ, the loss at initialization satisfies

ℓ(0) ≤ O

(

1 +
log(r/δ)

dy
+ ‖W ∗‖2

)

‖X‖2F . (9)

Proof sketch. The spectral property (8) follows directly from (4).

To prove (9), we essentially need to upper bound the magnitude of the network’s initial output. This
turns out to be equivalent to studying the magnitude of the projection of a vector onto a random low-
dimensional subspace, which we can bound using standard concentration inequalities. The details
are given in Appendix A.1.

Now we proceed to prove Theorem 4.1. We define B = O
(

1 + log(r/δ)
dy

+ ‖W ∗‖2
)

‖X‖2F which

is the upper bound on ℓ(0) from (9). Conditioned on (9) being satisfied, we will use induction on t
to prove the following three properties A(t), B(t) and C(t) for all t = 0, 1, . . .:

• A(t): ℓ(t) ≤
(

1− 1
2ηLσ

2
min(X)/dy

)t
ℓ(0) ≤

(

1− 1
2ηLσ

2
min(X)/dy

)t
B.

• B(t): σmax(Wj:i(t)) ≤ 1.1m
j−i+1

2 , σmin(Wj:i(t)) ≥ 0.9m
j−i+1

2 , ∀1 ≤ i ≤ j ≤
L, (i, j) 6= (1, L).

• C(t): ‖Wi(t)−Wi(0)‖F ≤ 8
√

Bdy‖X‖
Lσ2

min
(X)

, ∀1 ≤ i ≤ L.

A(0) and B(0) are true according to Lemma 4.2, and C(0) is trivially true. In order to prove A(t),
B(t) and C(t) for all t, we will prove the following claims for all t ≥ 0:

3Note that for symmetric matrices A and B, the set of eigenvalues of A ⊗ B is the set of products of an
eigenvalue of A and an eigenvalue of B.
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Claim 4.3. A(0), . . . ,A(t),B(0), . . . ,B(t) =⇒ C(t+ 1).

Claim 4.4. C(t) =⇒ B(t).
Claim 4.5. A(t),B(t) =⇒ A(t+ 1).

The proofs of these claims are given in Appendix A. Notice that we finish the proof of Theorem 4.1
once we prove A(t) for all t ≥ 0.

5 EXPONENTIAL CURSE OF GAUSSIAN INITIALIZATION

In this section, we show that gradient descent with Gaussian random initialization necessarily suf-
fers from a running time that scales exponentially with the depth of the network, unless the width
becomes nearly linear in the depth. Since we mostly focus on the dependence of width and running
time on depth, we will assume the depth L to be sufficiently large.

Recall that we want to minimize the objective ℓ(W1, . . . ,WL) =
1
2 ‖αWL:1X − Y ‖2F by gradient

descent. We assume Y = W ∗X for some W ∗ ∈ R
dy×dx , so that the optimal objective value is 0.

For convenience, we assume ‖X‖F = Θ(1) and ‖Y ‖F = Θ(1).

Suppose that at layer i ∈ [L], every entry of Wi(0) is sampled from N (0, σ2
i ), and all weights in the

network are independent. We set the scaling factor α such that the initial output of the network does
not blow up exponentially (in expectation):

E

[

‖f(x;W1(0), . . . ,WL(0))‖2
]

≤ LO(1) · ‖x‖2 , ∀x ∈ R
dx . (10)

Note that E
[

‖f(x;W1(0), . . . ,WL(0))‖2
]

= α2
∏L

i=1(diσ
2
i ) ‖x‖2. Thus (10) means

α2
L
∏

i=1

(diσ
2
i ) ≤ LO(1).

We also assume that the magnitude of initialization at each layer cannot vanish with depth:

diσ
2
i ≥ 1

LO(1)
, ∀i ∈ [L]. (11)

Note that the assumptions (10) and (11) are just sanity checks to rule out the obvious pathological
cases – they are easily satisfied by all the commonly used initialization schemes in practice.

Now we formally state our main theorem in this section.

Theorem 5.1. Suppose max{d0, d1, . . . , dL} ≤ O(L1−γ) for some universal constant 0 < γ ≤ 1.
Then there exists a universal constant c > 0 such that, if gradient descent is run with learning
rate η ≤ ecL

γ

, then with probability at least 0.9 over the random initialization, for the first eΩ(Lγ)

iterations, the objective value is stuck between 0.4 ‖Y ‖2F and 0.6 ‖Y ‖2F .

Theorem 5.1 establishes that efficient convergence from Gaussian initialization is impossible for
large depth unless the width becomes nearly linear in depth. This nearly linear dependence is the
best we can hope for, since Du & Hu (2019) proved a positive result when the width is larger than
linear in depth. Therefore, a phase transition from untrainable to trainable happens at the point when
the width and depth has a nearly linear relation. Furthermore, Theorem 5.1 generalizes the result of
Shamir (2018), which only treats the special case of d0 = · · · = dL = 1.

5.1 PROOF OF THEOREM 5.1

For convenience, we define a scaled version of Wi: let Ai = Wi/(
√
diσi) and β = α

∏L
i=1(

√
diσi).

Then we know β ≤ LO(1) and αWL:1 = βAL:1, where Aj:i = Aj · · ·Ai.

We first give a simple upper bound on ‖Aj:i(0)‖ for all 1 ≤ i ≤ j ≤ L.

Lemma 5.2. With probability at least 1− δ, we have ‖Aj:i(0)‖ ≤ O
(

L3

δ

)

for all 1 ≤ i ≤ j ≤ L.

6



Published as a conference paper at ICLR 2020

The proof of Lemma 5.2 is given in Appendix B.1. It simply uses Markov inequality and union
bound.

Furthermore, a key property at initialization is that if j − i is large enough, ‖Aj:i(0)‖ will become
exponentially small.

Lemma 5.3. With probability at least 1− e−Ω(Lγ), for all 1 ≤ i ≤ j ≤ L such that j − i ≥ L
10 , we

have ‖Aj:i(0)‖ ≤ e−Ω(Lγ).

Proof. We first consider a fixed pair (i, j) such that j − i ≥ L
10 . In order to bound ‖Aj:i(0)‖, we

first take an arbitrary unit vector v ∈ R
di−1 and bound ‖Aj:i(0)v‖. We can write ‖Aj:i(0)v‖2 =

∏j
k=i Zk, where Zk = ‖Ak:i(0)v‖2

‖Ak−1:i(0)v‖2 . Note that for any nonzero v′ ∈ R
dk−1 independent of Ak(0),

the distribution of dk · ‖Ak(0)v
′‖2

‖v′‖2 is χ2
dk

. Therefore, Zi, . . . , Zj are independent, and dkZk ∼ χ2
dk

(k = i, i + 1, . . . , j). Recall the expression for the moments of chi-squared random variables:

E
[

Zλ
k

]

= 2λΓ(dk/2+λ)

dλ
kΓ(dk/2)

(∀λ > 0). Taking λ = 1
2 and using the bound

Γ(a+ 1
2
)

Γ(a) ≤
√
a− 0.1 (∀a ≥ 1

2 )

(Qi & Luo, 2012), we get E
[√

Zk

]

≤
√

2(dk/2−0.1)
dk

=
√

1− 0.2
dk

≤ 1− 0.1
dk

. Therefore we have

E

[
√

∏j

k=i
Zk

]

≤
∏j

k=i

(

1− 0.1

dk

)

≤
(

1− 0.1

O(L1−γ)

)j−i+1

≤
(

1− Ω(Lγ−1)
)

L
10 = e−Ω(Lγ).

Choose a sufficiently small constant c′ > 0. By Markov inequality we have

Pr

[

√

∏j
k=i Zk > e−c′Lγ

]

≤ ec
′Lγ

E

[

√

∏j
k=i Zk

]

≤ ec
′Lγ

e−Ω(Lγ) = e−Ω(Lγ). Therefore we

have shown that for any fixed unit vector v ∈ R
di−1 , with probability at least 1− e−Ω(Lγ) we have

‖Aj:i(0)v‖ ≤ e−Ω(Lγ).

Next, we use this to bound ‖Aj:i(0)‖ via an ǫ-net argument. We partition the index set [di−1]

into [di−1] = S1 ∪ S2 ∪ · · · ∪ Sq such that |Sl| ≤ Lγ/2 (∀l ∈ [q]) and q = O( di−1

Lγ/2 ). For each

l ∈ [q], let Nl be a 1
2 -net for all the unit vectors in R

di−1 with support in Sl. Note that we can

choose Nl such that |Nl| = eO(|Sl|) = eO(Lγ/2). Taking a union bound over ∪q
l=1Nl, we know

that ‖Aj:i(0)v‖ ≤ e−Ω(Lγ) ‖v‖ simultaneously for all v ∈ ∪q
l=1Nl with probability at least 1 −

(
∑q

l=1 |Nl|) e−Ω(Lγ) ≥ 1− q · eO(Lγ/2)e−Ω(Lγ) = 1− e−Ω(Lγ).

Now, for any u ∈ R
di−1 , we write it as u =

∑q
l=1 alul where al is a scalar and ul is a unit

vector supported on Sl. By the definition of 1
2 -net, for each l ∈ [q] there exists vl ∈ Nl such that

‖vl − ul‖ ≤ 1
2 . We know that ‖Aj:i(0)vl‖ ≤ e−Ω(Lγ) ‖vl‖ for all l ∈ [q]. Let v =

∑q
l=1 alvl. We

have

‖Aj:i(0)v‖ ≤
∑q

l=1
|al| · ‖Aj:i(0)vl‖ ≤

∑q

l=1
|al| · e−Ω(Lγ) ‖vl‖ ≤ e−Ω(Lγ)

√

q ·
∑q

l=1
a2l ‖vl‖

2

=
√
qe−Ω(Lγ) ‖v‖ = e−Ω(Lγ) ‖v‖ .

Note that ‖u− v‖ = ‖∑q
l=1 al(ul − vl)‖ =

√

∑q
l=1 a

2
l ‖ul − vl‖2 ≤

√

1
4

∑q
l=1 a

2
l = 1

2 ‖u‖,

which implies ‖v‖ ≤ 3
2 ‖u‖. Therefore we have

‖Aj:i(0)u‖ ≤ ‖Aj:i(0)v‖+ ‖Aj:i(0)(u− v)‖ ≤ e−Ω(Lγ) ‖v‖+ ‖Aj:i(0)‖ · ‖u− v‖

≤ e−Ω(Lγ) · 3
2
‖u‖+ ‖Aj:i(0)‖ ·

1

2
‖u‖ = e−Ω(Lγ) ‖u‖+ ‖Aj:i(0)‖ ·

1

2
‖u‖ .

The above inequality is valid for any u ∈ R
di−1 . Thus we can take the unit vector u that maximizes

‖Aj:i(0)u‖. This gives us ‖Aj:i(0)‖ ≤ e−Ω(Lγ)+ 1
2 ‖Aj:i(0)‖, which implies ‖Aj:i(0)‖ ≤ e−Ω(Lγ).

Finally, we take a union bound over all possible (i, j). The failure probaility is at most L2e−Ω(Lγ) =
e−Ω(Lγ).
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The following lemma shows that the properties in Lemmas 5.2 and 5.3 are still to some extent
preserved after applying small perturbations on all the weight matrices.

Lemma 5.4. Suppose that the initial weights satisfy ‖Aj:i(0)‖ ≤ O(L3) for all 1 ≤ i ≤ j ≤ L,

and ‖Aj:i(0)‖ ≤ e−c1L
γ

if j − i ≥ L
10 , where c1 > 0 is a universal constant. Then for another set

of matrices A1, . . . , AL satisfying ‖Ai −Ai(0)‖ ≤ e−0.6c1L
γ

for all i ∈ [L], we must have

‖Aj:i‖ ≤ O(L3), ∀1 ≤ i ≤ j ≤ L,

‖Aj:i‖ ≤ O
(

e−c1L
γ
)

, ∀1 ≤ i ≤ j ≤ L, j − i ≥ L

4
.

(12)

Proof. It suffices to show that the difference Aj:i − Aj:i(0) is tiny. Let ∆i = Ai − Ai(0).
We have Aj:i = (Aj(0) + ∆j) · · · (Ai+1(0) + ∆i+1)(Ai(0) + ∆i). Expanding this product,
except for the one term corresponding to Aj:i(0), every other term has the form Aj:(ks+1)(0) ·
∆ks · A(ks−1):(ks−1+1)(0) · ∆ks−1

· · ·∆k1
· A(k1−1):i(0), where i ≤ k1 < · · · < ks ≤ j.

By assumption, each ∆k has spectral norm e−0.6c1L
γ

, and each Aj′:i′(0) has spectral norm

O(L3), so we have
∥

∥Aj:(ks+1)(0) ·∆ks
·A(ks−1):(ks−1+1)(0) ·∆ks−1

· · ·∆k1
·A(k1−1):i(0)

∥

∥ ≤
(

e−0.6c1L
γ)s (

O(L3)
)s+1

. Therefore we have

‖Aj:i −Aj:i(0)‖ ≤
j−i+1
∑

s=1

(

j − i+ 1

s

)

(

e−0.6c1L
γ
)s
(

O(L3)
)s+1

≤
j−i+1
∑

s=1

Ls
(

e−0.6c1L
γ
)s
(

O(L3)
)s+1 ≤ O(L3)

∞
∑

s=1

(

O(L4)e−0.6c1L
γ
)s

≤ O(L3)

∞
∑

s=1

(1/2)s = O(L3),

which implies ‖Aj:i‖ ≤ O(L3) for all 1 ≤ i ≤ j ≤ L.

The proof of the second part of the lemma is postponed to Appendix B.2.

As a consequence of Lemma 5.4, we can control the objective value and the gradient at any point
sufficiently close to the random initialization.

Lemma 5.5. For a set of weight matrices W1, . . . ,WL with Ai = Wi/(
√
diσi) that satisfy (12), the

objective and the gradient satisfy

0.4 ‖Y ‖2F < ℓ(W1, . . . ,WL) < 0.6 ‖Y ‖2F ,

‖∇Wiℓ(W1, . . . ,WL)‖ ≤ (
√

diσi)
−1e−0.9c1L

γ

, ∀i ∈ [L].

The proof of Lemma 5.5 is given in Appendix B.3.

Finally, we can finish the proof of Theorem 5.1 using the above lemmas.

Proof of Theorem 5.1. From Lemmas 5.2 and 5.3, we know that with probability at least 0.9, we
have (i) ‖Aj:i(0)‖ ≤ O(L3) for all 1 ≤ i ≤ j ≤ L, and (ii) ‖Aj:i(0)‖ ≤ e−c1L

γ

if (i, j) further

satisfies j − i ≥ L
10 . Here c1 > 0 is a universal constant. From now on we are conditioned on these

properties being satisfied. We suppose that the learning rate η is at most e0.2c1L
γ

.

We say that a set of weight matrices W1, . . . ,WL are in the “initial neighborhood” if
‖Ai −Ai(0)‖ ≤ e−0.6c1L

γ

for all i ∈ [L]. From Lemmas 5.4 and 5.5 we know that in the “ini-

tial neighborhood” the objective value is always between 0.4 ‖Y ‖2F and 0.6 ‖Y ‖2F . Therefore we
have to escape the “initial neighborhood” in order to get the objective value out of this interval.

Now we calculate how many iterations are necessary to escape the “initial neighborhood.”
According to Lemma 5.5, inside the “initial neighborhood” each Wi can move at most
η(
√
diσi)

−1e−0.9c1L
γ

in one iteration by definition of the gradient descent algorithm. In order to

leave the “initial neighborhood,” some Wi must satisfy ‖Wi −Wi(0)‖ =
√
diσi ‖Ai −Ai(0)‖ >√

diσie
−0.6c1L

γ

. In order to move this amount, the number of iterations has to be at least√
diσie

−0.6c1L
γ

η(
√
diσi)−1e−0.9c1Lγ

=
diσ

2
i e

0.3c1L
γ

η
≥ 1

LO(1)
· e

0.3c1L
γ

e0.2c1Lγ ≥ eΩ(Lγ).

This finishes the proof.
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Figure 1: log ℓ(t)
ℓ(0) at t = 1258 and t = 10000, for different depth-width configurations and different

initialization schemes. Darker color means smaller loss.

6 EXPERIMENTS

In this section, we provide empirical evidence to support the results in Sections 4 and 5. To study
how depth and width affect convergence speed of gradient descent under orthogonal and Gaussian
initialization schemes, we train a family of linear networks with their widths ranging from 10 to
1000 and depths from 1 to 700, on a fixed synthetic dataset (X,Y ).4 Each network is trained using
gradient descent staring from both Gaussian and orthogonal initializations. In Figure 1, We lay out

the logarithm of the relative training loss
ℓ(t)
ℓ(0) , using heap-maps, at steps t = 1258 and t = 10000.

In each heat-map, each point represents the relative training loss of one experiment; the darker the
color, the smaller the loss. Figure 1 clearly demonstrates a sharp transition from untrainable to
trainable (i.e., from red to black) when we increase the width of the network:

• for Gaussian initialization, this transition occurs across a contour characterized by a linear
relation between width and depth;

• for orthogonal initialization, the transition occurs at a width that is approximately indepen-
dent of the depth.

These observations excellently verify our theory developed in Sections 4 and 5.

To have a closer look into the training dynamics, we also plot “relative loss v.s. training time” for a
variety of depth-width configurations. See Figure 2. There again we can clearly see that orthogonal
initialization enables fast training at small width (independent of depth), and that the required width
for Gaussian initialization depends on depth.

4We choose X ∈ R
1024×16 and W ∗ ∈ R

10×1024, and set Y = W ∗X . Entries in X and W ∗ are drawn
i.i.d. from N (0, 1).
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Figure 2: Relative loss v.s. training time. For each plot, we vary width from 50 (yellow) to 1200
(purple). Solid and dashed lines represent Gaussian (GS) and orthogonal (OT) initializations.

7 CONCLUSION

In this work, we studied the effect of the initialization parameter values of deep linear neural net-
works on the convergence time of gradient descent. We found that when the initial weights are iid
Gaussian, the convergence time grows exponentially in the depth unless the width is at least as large
as the depth. In contrast, when the initial weight matrices are drawn from the orthogonal group,
the width needed to guarantee efficient convergence is in fact independent of the depth. These re-
sults establish for the first time a concrete proof that orthogonal initialization is superior to Gaussian
initialization in terms of convergence time.
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A PROOFS FOR SECTION 4

A.1 PROOF OF LEMMA 4.2

Proof of Lemma 4.2. We only need to prove (9). We first upper bound the magnitude of the net-
work’s initial output on any given input x ∈ R

dx . Let z = 1√
mL−1

WL−1:1(0) · x ∈ R
m. Then we

have ‖z‖ = ‖x‖, and f(x;W1(0), . . . ,WL(0)) = 1√
dy

WL(0) · z =
√

m
dy

· 1√
m
WL(0) · z. Note

that 1√
m
WL(0) · z is the (signed) projection of z onto a random subspace in R

m of dimension dy .

Therefore

∥

∥

∥

1√
m
WL(0) · z

∥

∥

∥

2

/ ‖z‖2 has the same distribution as
g2
1+···+g2

dy

g2
1
+···+g2

m
, where g1, . . . , gm are

i.i.d. samples from N (0, 1). By the standard tail bounds for chi-squared distributions we have

Pr

[

g21 + · · ·+ g2dy
≤ dy + 2

√

dy log(1/δ′) + 2 log(1/δ′)

]

≥ 1− δ′,

Pr
[

g21 + · · ·+ g2m ≥ m− 2
√

m log(1/δ′)
]

≥ 1− δ′.

Let δ′ = δ
2r . Note that m > C · log(r/δ). We know that with probability at least 1− δ

r we have

∥

∥

∥

∥

1√
m
WL(0) · z

∥

∥

∥

∥

2

/ ‖z‖2 ≤ dy + 2
√

dy log(2r/δ) + 2 log(2r/δ)

m− 2
√

m log(2r/δ)
=

O(dy + log(r/δ))

Ω(m)
,

which implies

‖f(x;W1(0), . . . ,WL(0))‖2 =
m

dy

∥

∥

∥

∥

1√
m
WL(0) · z

∥

∥

∥

∥

2

=
m

dy
·O
(

dy + log(r/δ)

m

)

‖z‖2

= O

(

1 +
log(r/δ)

dy

)

‖x‖2 .
(13)

Finally, taking a union bound, we know that with probability at least 1− δ, the inequality (13) holds
for every x ∈ {x1, . . . , xr}, which implies

ℓ(0) =
1

2

r
∑

k=1

‖f(xk;W1(0), . . . ,WL(0))− yk‖2 ≤
r
∑

k=1

(

‖f(xk;W1(0), . . . ,WL(0))‖2 + ‖yk‖2
)

≤ O

(

1 +
log(r/δ)

dy

) r
∑

k=1

‖xk‖2 +
r
∑

k=1

‖yk‖2 = O

(

1 +
log(r/δ)

dy

)

‖X‖2F + ‖Y ‖2F

≤ O

(

1 +
log(r/δ)

dy
+ ‖W ∗‖2

)

‖X‖2F .

A.2 PROOF OF CLAIM 4.3

Proof of Claim 4.3. Let γ = 1
2Lσ

2
min(X)/dy . From A(0), . . . ,A(t) we have ℓ(s) ≤ (1−ηγ)sB for

all 0 ≤ s ≤ t. The gradient of the objective function (2) is ∂ℓ
∂Wi

= αW⊤
L:i+1(U − Y ) (Wi−1:1X)

⊤
.

Thus we can bound the gradient norm as follows for all 0 ≤ s ≤ t and all i ∈ [L]:
∥

∥

∥

∥

∂ℓ

∂Wi
(s)

∥

∥

∥

∥

F

≤ α ‖WL:i+1(s)‖ ‖U(s)− Y ‖F ‖Wi−1:1(s)‖ ‖X‖

≤ 1
√

mL−1dy
· 1.1mL−i

2 ·
√

2ℓ(s) · 1.1m i−1

2 ‖X‖ ≤ 2
√

(1− ηγ)sB
√

dy
‖X‖ ,

(14)

where we have used B(s). Then for all i ∈ [L] we have:

‖Wi(t+ 1)−Wi(0)‖F ≤
t
∑

s=0

‖Wi(s+ 1)−Wi(s)‖F =

t
∑

s=0

∥

∥

∥

∥

η
∂ℓ

∂Wi
(s)

∥

∥

∥

∥

F
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≤ η

t
∑

s=0

2
√

(1− ηγ)sB
√

dy
‖X‖ ≤ 2η

√
B

√

dy
‖X‖

t−1
∑

s=0

(1− ηγ/2)s ≤ 2η
√
B

√

dy
‖X‖ · 2

ηγ

=
8
√

Bdy ‖X‖
Lσ2

min(X)
.

This proves C(t+ 1).

A.3 PROOF OF CLAIM 4.4

Proof of Claim 4.4. Let R =
8
√

Bdy‖X‖
Lσ2

min
(X)

and ∆i = Wi(t) − Wi(0) (i ∈ [L]). Then C(t) means

‖∆i‖F ≤ R (∀i ∈ [L]).

For 1 ≤ i ≤ j ≤ L, we have

Wj:i(t) = (Wj(0) + ∆j) · · · (Wi(0) + ∆i) .

Expanding this product, each term except Wj:i(0) has the form:

Wj:(ks+1)(0) ·∆ks ·W(ks−1):(ks−1+1)(0) ·∆ks−1
· · ·∆k1

·W(k1−1):i(0), (15)

where i ≤ k1 < · · · < ks ≤ j are locations where terms like ∆kl
are taken out. Note that every

factor in (15) of the form Wj′:i′(0) satisfies ‖Wj′:i′(0)‖ = m
j′−i′+1

2 according to (8). Thus, we can
bound the sum of all terms of the form (15) as

‖Wj:i(t)−Wj:i(0)‖ ≤
j−i+1
∑

s=1

(

j − i+ 1

s

)

Rsm
j−i+1−s

2 = (
√
m+R)j−i+1 − (

√
m)j−i+1

=(
√
m)j−i+1

(

(

1 +R/
√
m
)j−i+1 − 1

)

≤ (
√
m)j−i+1

(

(

1 +R/
√
m
)L − 1

)

≤ 0.1(
√
m)j−i+1.

Here the last step uses m > C(LR)2 which is implied by (5). Combined with (8), this proves
B(t).

A.4 PROOF OF CLAIM 4.5

Proof of Claim 4.5. Recall that we have the dynamics (6) for U(t). In order to establish convergence
from (6) we need to prove upper and lower bounds on the eigenvalues of P (t), as well as show that
the high-order term E(t) is small. We will prove these using B(t).
Using the definition (7) and property B(t), we have

λmax(P (t)) ≤ α2
L
∑

i=1

λmax

(

(Wi−1:1(t)X)
⊤
(Wi−1:1(t)X)

)

· λmax

(

WL:i+1(t)W
⊤
L:i+1(t)

)

≤ 1

mL−1dy

L
∑

i=1

(

1.1m
i−1

2 σmax(X)
)2 (

1.1m
L−i
2

)2

≤ 2Lσ2
max(X)/dy,

λmin(P (t)) ≥ α2
L
∑

i=1

λmin

(

(Wi−1:1(t)X)
⊤
(Wi−1:1(t)X)

)

· λmin

(

WL:i+1(t)W
⊤
L:i+1(t)

)

≥ 1

mL−1dy

L
∑

i=1

(

0.9m
i−1

2 σmin(X)
)2 (

0.9m
L−i
2

)2

≥ 3

5
Lσ2

min(X)/dy.

In the lower bound above, we make use of the following relation on dimensions: m ≥ dx ≥
r, which enables the inequality λmin

(

(Wi−1:1(t)X)
⊤
(Wi−1:1(t)X)

)

= σ2
min (Wi−1:1(t)X) ≥

σ2
min (Wi−1:1(t)) · σ2

min(X).

Next, we will prove the following bound on the high-order term E(t):

1
√

mL−1dy
‖E(t)X‖F ≤ 1

6
ηλmin(Pt) ‖U(t)− Y ‖F .

14
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Recall that E(t) is the sum of all high-order terms in the product

WL:1(t+ 1) =
∏

i

(

Wi(t)− η
∂ℓ

∂Wi
(t)

)

.

Same as (14), we have

∥

∥

∥

∂ℓ
∂Wi

(t)
∥

∥

∥

F
≤ 2

√
ℓ(t)‖X‖√

dy

(∀i ∈ [L]). Then we have

1
√

mL−1dy
‖E(t)X‖F

≤ 1
√

mL−1dy

L
∑

s=2

(

L

s

)

(

η · 2
√

ℓ(t) ‖X‖
√

dy

)s

m
L−s

2 ‖X‖

≤
√

m

dy
‖X‖

L
∑

s=2

Ls

(

η · 2
√

ℓ(t) ‖X‖
√

dy

)s

m− s
2

=

√

m

dy
‖X‖

L
∑

s=2

(

2ηL
√

ℓ(t) ‖X‖
√

mdy

)s

From η ≤ dy

2L‖X‖2 , we have
2ηL

√
ℓ(t)‖X‖√
mdy

≤
√

dy·ℓ(t)√
m‖X‖ . Note that m > C · dyB

‖X‖2 ≥ C · dyℓ(t)

‖X‖2 . Thus

we have

1
√

mL−1dy
‖E(t)X‖F ≤

√

m

dy
‖X‖

(

2ηL
√

ℓ(t) ‖X‖
√

mdy

)2 L−2
∑

s=2

0.5s−2

≤ 2

√

m

dy
‖X‖

(

2ηL
√

ℓ(t) ‖X‖
√

mdy

)2

≤ 2

√

m

dy
‖X‖ · 2ηL

√

ℓ(t) ‖X‖
√

mdy
·
√

dy · ℓ(t)√
m ‖X‖

=
4ηL ‖X‖ · ℓ(t)

√

mdy
.

It suffices to show that the above bound is at most 1
6ηλmin(Pt) ‖U(t)− Y ‖F = 1

6ηλmin(Pt)
√

2ℓ(t).

Since λmin(Pt) ≥ 3
5Lσ

2
min(X)/dy , it suffices to have

4ηL ‖X‖ · ℓ(t)
√

mdy
≤ 1

6
η · 3Lσ

2
min(X)

√

2ℓ(t)

5dy
,

which is true since m > C · dyB‖X‖2

σ4
min

(X)
≥ C · dyℓ(t)‖X‖2

σ4
min

(X)
.

Finally, from (6) and η ≤ dy

2L‖X‖2 ≤ 1
λmax(Pt)

we have

‖U(t+ 1)− Y ‖F = ‖vec (U(t+ 1)− Y )‖

=

∥

∥

∥

∥

∥

(I − ηP (t)) · vec (U(t)− Y ) +
1

√

mL−1dy
vec (E(t)X)

∥

∥

∥

∥

∥

≤ (1− ηλmin(P (t))) ‖vec (U(t)− Y )‖+ 1
√

mL−1dy
‖E(t)X‖F

≤ (1− ηλmin(P (t))) ‖U(t)− Y ‖F +
1

6
ηλmin(Pt) ‖U(t)− Y ‖F

=

(

1− 5

6
ηλmin(P (t))

)

‖U(t)− Y ‖F

≤
(

1− 1

2
ηLσ2

min(X)/dy

)

‖U(t)− Y ‖F .

Therefore ℓ(t+1) ≤
(

1− 1
2ηLσ

2
min(X)/dy

)2
ℓ(t) ≤

(

1− 1
2ηLσ

2
min(X)/dy

)

ℓ(t). Combined with

A(t), this proves A(t+ 1).

15
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B PROOFS FOR SECTION 5

B.1 PROOF OF LEMMA 5.2

Proof of Lemma 5.2. Notice that for any 1 ≤ i ≤ j ≤ L we have E

[

‖Aj:i(0)‖2F
]

= di−1. Then

by Markov inequality we have Pr
[

‖Aj:i(0)‖2F ≥ di−1

δ/L2

]

≤ δ/L2. Taking a union bound, we know

that with probability at least 1 − δ, for all 1 ≤ i ≤ j ≤ L simultaneously we have ‖Aj:i(0)‖ ≤
‖Aj:i(0)‖F ≤ di−1

δ/L2 ≤ O(L3/δ) (note that di−1 ≤ O(L1−γ) = O(L)).

B.2 PROOF OF LEMMA 5.4

Proof of Lemma 5.4 (continued). For the second part of the lemma (j − i ≥ L
4 ), we need to bound

the terms of the form Aj:k+1(0) · ∆k · Ak−1:i(0) more carefully. In fact, if j − i ≥ L
4 , then

max{j − k − 1, k − 1 − i} ≥ L
10 , which by assumption means either Aj:k+1(0) or Ak−1:i(0) has

spectral norm bounded by e−c1L
γ

. This implies ‖Aj:k+1(0) ·∆k ·Ak−1:i(0)‖ ≤ e−c1L
γ

e−0.6c1L
γ ·

O(L3) = e−1.6c1L
γ ·O(L3). Therefore we have

‖Aj:i −Aj:i(0)‖ ≤ (j − i+ 1)e−1.6c1L
γ ·O(L3) +

j−i+1
∑

s=2

(

j − i+ 1

s

)

(

e−0.6c1L
γ
)s
(

O(L3)
)s+1

≤ e−c1L
γ

+

∞
∑

s=2

Ls
(

e−0.6c1L
γ
)s
(

O(L3)
)s+1 ≤ e−c1L

γ

+

∞
∑

s=2

(

e−0.5c1L
γ
)s

= O
(

e−c1L
γ
)

.

This implies ‖Aj:i‖ ≤ O
(

e−c1L
γ)

.

B.3 PROOF OF LEMMA 5.5

Proof of Lemma 5.5. We can bound the network’s output as

‖αWL:1(0)X‖F = ‖βAL:1(0)X‖F ≤ LO(1) · e−Ω(Lγ) ‖X‖F = e−Ω(Lγ).

Thus the objective value ℓ(W1, . . . ,WL) = 1
2 ‖αWL:1(0)X − Y ‖2F must be extremely close to

1
2 ‖Y ‖2F for large L, so 0.4 ‖Y ‖2F < ℓ(W1, . . . ,WL) < 0.6 ‖Y ‖2F .

As for the gradient, for any i ∈ [L] we have

‖∇Wi
ℓ(W1, . . . ,WL)‖ =

∥

∥αW⊤
L:i+1 (αWL:1X − Y )X⊤W⊤

i−1:1

∥

∥

=
∥

∥

∥β/(
√

diσi) ·A⊤
L:i+1 (αWL:1X − Y )X⊤A⊤

i−1:1

∥

∥

∥
≤ LO(1)

√
diσi

‖AL:i+1‖ ·O(1) · ‖Ai−1:1‖ .

Using (12), and noting that either L− i− 1 or i− 1 is greater than L
4 , we have

‖∇Wiℓ(W1, . . . ,WL)‖ ≤ σ−1
i LO(1) ·O

(

e−c1L
γ
)

·O(L3) ≤ (
√

diσi)
−1e−0.9c1L

γ

.
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