
Provable Bounds for Learning Some Deep Representations

Sanjeev Arora ARORA@CS.PRINCETON.EDU

Princeton University, Computer Science Department and Center for Computational Intractability, Princeton 08540, USA

Aditya Bhaskara BHASKARA@CS.PRINCETON.EDU

Google Research, New York, NY 10011, USA

Rong Ge RONGGE@MICROSOFT.COM

Microsoft Research, Cambridge, MA 02142, USA

Tengyu Ma TENGYU@CS.PRINCETON.EDU

Princeton University, Computer Science Department and Center for Computational Intractability, Princeton 08540, USA

Abstract
We give algorithms with provable guarantees that
learn a class of deep nets in the generative model
view popularized by Hinton and others. Our gen-
erative model is an n node multilayer network
that has degree at most nγ for some γ < 1 and
each edge has a random edge weight in [−1, 1].
Our algorithm learns almost all networks in this
class with polynomial running time. The sample
complexity is quadratic or cubic depending upon
the details of the model.

The algorithm uses layerwise learning. It is
based upon a novel idea of observing correla-
tions among features and using these to infer the
underlying edge structure via a global graph re-
covery procedure. The analysis of the algorithm
reveals interesting structure of neural nets with
random edge weights.

1. Introduction
Can we provide theoretical explanation for the practical
success of deep nets? Like many other ML tasks, learn-
ing deep neural nets is NP-hard, and in fact seems “badly
NP-hard” because of many layers of hidden variables con-
nected by nonlinear operations. Usually one imagines that
NP-hardness is not a barrier to provable algorithms in ML
because the inputs to the learner are drawn from some sim-
ple distribution and are not worst-case. This hope was
recently borne out in case of generative models such as

Proceedings of the 31 st International Conference on Machine
Learning, Beijing, China, 2014. JMLR: W&CP volume 32. Copy-
right 2014 by the author(s).

HMMs, Gaussian Mixtures, LDA etc., for which learn-
ing algorithms with provable guarantees were given (Hsu
et al., 2012; Moitra & Valiant, 2010; Hsu & Kakade, 2013;
Arora et al., 2012; Anandkumar et al., 2012). However,
supervised learning of neural nets even on random inputs
still seems as hard as cracking cryptographic schemes: this
holds for depth-5 neural nets (Jackson et al., 2002) and even
ANDs of thresholds (a simple depth two network) (Klivans
& Sherstov, 2009).

However, modern deep nets are not “ just” neural nets (see
the survey (Bengio, 2009)). Instead, the net (or a related
net) run in reverse from top to bottom is also seen as a a
generative model for the input distribution. Hinton pro-
moted this viewpoint, and suggested modeling each level
as a Restricted Boltzmann Machine (RBM), which is “ re-
versible” in this sense. Vincent et al. (Vincent et al., 2008)
suggested modeling each level as a denoising autoencoder,
consisting of a pair of encoder-decoder functions (see Def-
inition 1). These viewpoints allow unsupervised, and lay-
erwise learning in contrast to the supervised learning view-
point in classical backpropagation. The bottom layer (be-
tween observed variables and first layer of hidden vari-
ables) is learnt in unsupervised fashion using the provided
data. This gives values for the first layer of hidden vari-
ables, which are used as the data to learn the next layer,
and so on. The final net thus learnt is also a good generative
model for the distribution of the observed layer. In practice
the unsupervised phase is usually used for pretraining, and
is followed by supervised training1.

This viewpoint of reversible deep nets is more promising

1Recent work, e.g., (Krizhevsky et al., 2012) suggests that
classical backpropagation does well even without unsupervised
pretraining, though the authors suggest that unsupervised pre-
training should help further.

Provable Bounds for Learning Deep Representations

for theoretical work and naturally suggests the following
problem: Given samples from a sparsely connected neural
network whose each layer is a denoising autoencoder, can
the net (and hence its reverse) be learnt in polynomial time
with low sample complexity? Many barriers present them-
selves in solving such a question. There is no known math-
ematical condition that describes when a layer in a neural
net is a denoising autoencoder. Furthermore, learning even
a a single layer sparse denoising autoencoder seems much
harder than learning sparse-used overcomplete dictionar-
ies —which correspond to a single hidden layer with lin-
ear operations— and even for this much simpler problem
there were no provable bounds at all until the very recent
manuscript (Arora et al., 2013)2.

The current paper presents an interesting family of de-
noising autoencoders —namely, a sparse network whose
weights are randomly chosen in [−1, 1]; see Section 2 for
details—as well as new algorithms to provably learn almost
all models in this family with low time and sample com-
plexity; see Theorem 1. The algorithm outputs a network
whose generative behavior is statistically (in `1 norm) in-
distinguishable from the ground truth net. (If the weights
are discrete, say in {−1, 1} then it exactly learns the ground
truth net.)

Along the way we exhibit interesting properties of such
randomly-generated neural nets. (a) Each pair of adja-
cent layers constitutes a denoising autoencoder whp see
Lemma 2. In other words, the decoder (i.e., sparse neural
net with random weights) assumed in the generative model
has an associated encoder which is actually the same net
run in reverse but with different thresholds at the nodes.
(b) The reverse computation is stable to dropouts and noise.
(c) The distribution generated by a two-layer net cannot be
represented by any single layer neural net (see Section 8),
which in turn suggests that a random t-layer network can-
not be represented by any t/2-level neural net3.

Note that properties (a) to (c) are assumed in modern
deep net work (e.g., reversibility is called “weight ty-
ing”) whereas they provably hold for our random genera-
tive model, which is perhaps some theoretical validation of
those assumptions.

Context. Recent theoretical papers have analysed multi-
level models with hidden features, including SVMs (Cho

2The parameter choices in that manuscript make it less inter-
esting in context of deep learning, since the hidden layer is re-
quired to have no more than

√
n nonzeros where n is the size of

the observed layer —in other words, the observed vector must be
highly compressible.

3Formally proving this for t > 3 is difficult however since
showing limitations of even 2-layer neural nets is a major open
problem in computational complexity theory. Some deep learning
papers mistakenly cite an old paper for such a result, but the result
that actually exists is far weaker.

& Saul, 2009; Livni et al., 2013). However, none solves
the task of recovering a ground-truth neural network as we
do.

Though real-life neural nets are not random, our consid-
eration of random deep networks makes sense for obtain-
ing theoretical results. Sparse denoising autoencoders are
reminiscent of other objects such as error-correcting codes,
compressed sensing matrices, etc. which were all first
analysed in the random case. As mentioned, provable re-
construction of the hidden layer (i.e., input encoding) in
a known single layer neural net already seems a nonlin-
ear generalization of compressed sensing, whereas even
the usual (linear) version of compressed sensing seems
possible only if the adjacency matrix has “random-like”
properties (low coherence or restricted isometry or loss-
less expansion). In fact our result that a single layer of
our generative model is a sparse denoising autoencoder
can be seen as an analog of the fact that random matrices
are good for compressed sensing/sparse reconstruction (see
Donoho (Donoho, 2006) for general matrices and Berinde
et al. (Berinde et al., 2008) for sparse matrices). Of course,
in compressed sensing the matrix of edge weights is known
whereas here it has to be learnt, which is the main contribu-
tion of our work. Furthermore, we show that our algorithm
for learning a single layer of weights can be extended to do
layerwise learning of the entire network.

Does our algorithm yield new approaches in practice? We
discuss this possibility after sketching our algorithm in the
next section.

2. Definitions and Results
Our generative model (“ground truth”) has ` hidden layers
of vectors of binary variables h(`), h(`−1), .., h(1) (where
h(`) is the top layer) and an observed layer y (sometimes
denoted by h(0)) at bottom (see Figure 1). Each layer has n
nodes4. The weighted graph between layers i and i + 1 is
denoted byGi = (Ui, Vi, Ei,Wi). Values at Ui correspond
to (h(i+1)), and those of Vi to h(i), set Ei consists of edges
between them and Wi is the weighted adjacency matrix.
The degree of this graph is d = nγ , and all edge weights
are in [−1, 1].

The samples are generated by propagating down the net-
work to the observations. First sample the top layer h(`),
where the set of nodes that are 1 is picked uniformly among
all sets of size ρ`n. We call ρ` the sparsity of top level (sim-
ilarly ρi will approximately denote the sparsity of level i).
For i = ` down to 2, each node in layer i − 1 computes a
weighted sum of its neighbors in layer i, and becomes 1 iff
that sum strictly exceeds 0. We will use sgn(x) to denote

4In the full version of the paper we allow them to have differ-
ent number of nodes

Provable Bounds for Learning Deep Representations

the threshold function that is 1 if x > 0 and 0 else. (Ap-
plying sgn() to a vector involves applying it component-
wise.) Thus the network computes as follows: h(i−1) =
sgn(Wi−1h

(i)) for all i > 1 and y = h(0) = W0h
(1) (i.e.,

no threshold at the observed layer).

y

h(`−1)

h(1)

h(`)

random neural net G`−1

random linear function G0 y = W0h
(1)

h(`−1) = sgn(W`−1h(`))

(observed layer)

random neural nets h(i−1) = sgn(Wi−1h(i))

Figure 1. Example of a deep network

Random deep net model: We assume that in the ground
truth network, the edges between layers are chosen ran-
domly subject to expected degree d being5 nγ , where γ <
1/(`+1), and each edge e ∈ Ei carries a weight that is cho-
sen randomly in [−1, 1]. This is our modelR(`, ρ`, {Gi}).
We also consider —because it leads to a simpler and more
efficient learner—a model where edge weights are random
in {±1} instead of [−1, 1]; this is called D(`, ρ`, {Gi}).
Recall that ρ` > 0 is such that the 0/1 vector input at the
top layer has 1’s in a random subset of ρ`n nodes.

It can be seen that since the network is random of degree
d, applying a ρ`n-sparse vector at the top layer is likely to
produce the following density of 1’s (approximately) at the
successive layers: ρ`d/2, ρ`(d/2)2, etc.. We assume the
density of last layer ρ`d`/2` = O(1). This way the density
at the last-but-one layer is o(1), and the last layer is real-
valued and dense.

Now we state our main result. Note that 1/ρ` is at most n.

Theorem 1 When degree d = nγ for 0 < γ ≤ 0.2,
density ρ`(d/2)` = C for some large constant C6,
the network model D(`, ρ`, {Gi}) can be learnt7 using
O(log n/ρ2`) samples andO(n2`) time. The network model
R(`, ρ`, {Gi}) can be learnt in polynomial time and using
O(n3`2 log n/η2) samples 8.

5In the full version we allow degrees to be different for differ-
ent layers.

6Notice that this number is roughly the expected number of
features that are on and influence a particular observed variable.
When C is a large constant the output has sparsity close to 1.

7The algorithm outputs a network that is equivalent to the
ground truth up to permutation of hidden variables

8Here the learning algorithm outputs a network; the distribu-
tion generated by this output for all but the last layer is within
total variation distance η to the true distribution.

Algorithmic ideas. We are unable to analyse existing al-
gorithms. Instead, we give new learning algorithms that
exploit the very same structure that makes these random
networks interesting in the first place i.e., each layer is a
denoising autoencoder. The crux of the algorithm is a new
twist on the old Hebbian rule (Hebb, 1949) that “Things
that fire together wire together.” In the setting of layerwise
learning, this is adapted as follows: “Nodes in the same
layer that fire together a lot are likely to be connected (with
positive weight) to the same node at the higher layer.” The
algorithm consists of looking for such pairwise (or 3-wise)
correlations and putting together this information globally.
The global procedure boils down to the graph-theoretic
problem of reconstructing a bipartite graph given pairs of
nodes that share a common neighbor (see Section 6). This
is a variant of the GRAPH SQUARE ROOT problem which
is NP-complete on worst-case instances but solvable for
sparse random (or random-like) graphs.

Note that existing neural net algorithms (to the extent that
they are Hebbian) can also be seen as leveraging corre-
lations. But putting together this information is done via
the language of nonconvex optimization (i.e., an objective
function with suitable penalty terms). Our ground truth
network is indeed a particular local optimum in any rea-
sonable formulation. It would be interesting to show that
existing algorithms provably find the ground truth in poly-
nomial time but currently this seems difficult.

Can our new ideas be useful in practice? We think that
using a global reconstruction procedure that leverages lo-
cal correlations seems promising, especially if it avoids
nonconvex optimization. Our proof currently needs that
the hidden layers are sparse, and the edge structure of the
ground truth network is “random like” (in the sense that
two distinct features at a level tend to affect fairly disjoint
sets of features at the next level). We need this assumption
both for inferring correlations and the reconstruction step.

Finally, note that random neural nets do seem useful in
so-called reservoir computing, and more structured neu-
ral nets with random edge weights are also interesting in
feature learning (Saxe et al., 2011). So perhaps they do
provide useful representational power on real data. Such
empirical study is left for future work.

Throughout, we need well-known properties of random
graphs with expected degree d, such as the fact that they
are expanders (Hoory et al., 2006); these properties appear
in the supplementary material. The most important one,
unique neighbors property, appears in the next Section.

3. Each layer is a Denoising Auto-encoder
As mentioned earlier, modern deep nets research often as-
sumes that the net (or at least some layers in it) should

Provable Bounds for Learning Deep Representations

approximately preserve information, and even allows easy
going back/forth between representations in two adjacent
layers (what we earlier called “reversibility”). Below, y de-
notes the lower layer and h the higher (hidden) layer. Pop-
ular choices of s include logistic function, soft max, etc.;
we use a simple threshold function in our model.

Definition 1 (DENOISING AUTOENCODER) An autoen-
coder consists of a decoding function D(h) = s(Wh + b)
and an encoding function E(y) = s(W ′y + b′) where
W,W ′ are linear transformations, b, b′ are fixed vectors
and s is a nonlinear function that acts identically on each
coordinate. The autoencoder is denoising ifE(D(h)+ξ) =
h with high probability where h is drawn from the distribu-
tion of the hidden layer, ξ is a noise vector drawn from
the noise distribution, and D(h) + ξ is a shorthand for
“D(h) corrupted with noise ξ.” The autoencoder is said to
use weight tying if W ′ = WT .

In empirical work the denoising autoencoder property is
only implicitly imposed on the deep net by minimizing the
reconstruction error ||y − D(E(y + ξ))||, where ξ is the
noise vector. Our definition is slightly different but is ac-
tually stronger since y is exactly D(h) according to the
generative model. Our definition implies the existence of
an encoder E that makes the penalty term exactly zero.
We show that in our ground truth net (whether from model
D(`, ρ`, {Gi}) orR(`, ρ`, {Gi})) every graph Gi whp sat-
isfies this definition, and with weight-tying.

We show a single-layer random network is a denoising au-
toencoder if the input layer is a random ρn sparse vector,
and the output layer has density ρd/2 < 1/20.

Lemma 2 If ρd < 0.1 (i.e., the bottom layer is also fairly
sparse) then the single-layer network G(U, V,E,W) in
D(`, ρ`, {Gi}) or R(`, ρ`, {Gi}) is a denoising autoen-
coder with high probability (over the choice of the random
graph and weights), where the noise flips every output bit
independently with probability 0.1. It uses weight tying.

The proof of this lemma highly relies on a property of ran-
dom graph, called the strong unique-neighbor property.

For any node u ∈ U , let F (u) be its neighbors in V ; for any
subset S ⊂ U , let UF (u, S) be the set of unique neighbors
of u with respect to S, i.e.,

UF (u, S) , {v ∈ V : v ∈ F (u), v 6∈ F (S \ {u})}

Property 1 In a bipartite graph G(U, V,E,W), a node
u ∈ U has (1 − ε)-unique neighbor property (UNP) with
respect to S if∑

v∈UF(u,S)

|W (u, v)| ≥ (1− ε)
∑

v∈F (u)

|W (u, v)| (1)

The set S has (1 − ε)-strong UNP if every node in U has
(1− ε)-UNP with respect to S.

Note that we don’t need this property to hold for all sets of
size ρn (which is possible if ρd is much smaller). However,
for any fixed set S of size ρn, this property holds with high
probability over the randomness of the graph.

Now we sketch the proof for Lemma 2 (details are in full
version) when the edge weights are in {−1, 1}.
First, the decoder definition is implicit in our generative
model: y = sgn(Wh). (That is, b = ~0 in the autoencoder
definition.) Let the encoder be E(y) = sgn(WT y + b′)
for b′ = 0.2d × ~1.In other words, the same bipartite graph
and different thresholds can transform an assignment on the
lower level to the one at the higher level.

To prove this consider the strong unique-neighbor property
of the network. For the set of nodes that are 1 at the higher
level, a majority of their neighbors at the lower level are
unique neighbors.The unique neighbors with positive edges
will always be 1 because there are no −1 edges that can
cancel the +1 edge (similarly the unique neighbors with
negative edges will always be 0). Thus by looking at the
set of nodes that are 1 at the lower level, one can infer the
correct 0/1 assignment to the higher level by doing a sim-
ple threshold of say 0.2d at each node in the higher layer.

4. Learning a single layer network
Our algorithm, outlined below (Algorithm 1), learns the
network layer by layer starting from the bottom. We now
focus on learning a single-layer network, which as we
noted amounts to learning nonlinear dictionaries with ran-
dom dictionary elements. The algorithm illustrates how we
leverage the sparsity and the randomness of the edges, and
use pairwise or 3-wise correlations combined with Recov-
erGraph procedure of Section 6.

Algorithm 1 High Level Algorithm
Input: samples y’s generated by a deep network de-

scribed in Section 2
Output: the network/encoder and decoder functions

1: for i = 1 TO l do
2: Construct correlation graph using samples of h(i−1)

3: Call RecoverGraph to learn the positive edges E+
i

4: Use PartialEncoder to encode all h(i−1) to h(i)

5: Use LearnGraph/LearnDecoder to learn the
graph/decoder between layer i and i− 1.

6: end for

For simplicity we describe the algorithm when edge
weights are {−1, 1}, and sketch the differences for real-
valued weights at the end of this section.

Provable Bounds for Learning Deep Representations

As before we use ρ to denote the sparsity of the hidden
layer. Say two nodes in the observed layer are related if
they have a common neighbor in the hidden layer to which
they are attached via a +1 edge. The algorithm first tries
to identify all related nodes, then use this information to
learn all the positive edges. With positive edges we show
it is already possible to recover the hidden variables. Fi-
nally given both hidden variables and observed variables
the algorithm finds all negative edges.

STEP 1: Construct correlation graph: This step uses a new
twist on the Hebbian rule to identify correlated nodes.9

Algorithm 2 PairwiseGraph
Input: N = O(log n/ρ) samples of y = sgn(Wh),
Output: Ĝ on vertices V , u, v connected if related

for each u, v in the output layer do
if ≥ ρN/3 samples have yu = yv = 1 then

connect u and v in Ĝ
end if

end for

Claim In a random sample of the output layer, related pairs
u, v are both 1 with probability at least 0.9ρ, while unre-
lated pairs are both 1 with probability at most (ρd)2.

(Proof Sketch): First consider a related pair u, v, and let
z be a vertex with +1 edges to u, v. Let S be the set of
neighbors of u, v excluding z. The size of S cannot be
much larger than 2d. Under the choice of parameters, we
know ρd � 1, so the event hS = ~0 conditioned on hz =
1 has probability at least 0.9. Hence the probability of u
and v being both 1 is at least 0.9ρ. Conversely, if u, v are
unrelated then for both u, v to be 1 there must be nodes y
and z such that hy = hz = 1, and are connected to u and v
respectively via +1 edges. The probability of this event is
at most (ρd)2 by union bound.

Thus, if (ρd)2 < 0.1ρ, using O(log n/ρ2) samples we can
estimate the correlation of all pairs accurately enough, and
hence recover all related pairs whp.

STEP 2: Use RecoverGraph procedure to find all edges that
have weight +1. (See Section 6 for details.)

STEP 3: Using the +1 edges to encode all the samples y.

Algorithm 3 PartialEncoder
Input: positive edges E+, y = sgn(Wh), threshold θ
Output: the hidden variable h

Let M be the indicator matrix of E+ (Mi,j = 1 iff
(i, j) ∈ E+)
return h = sgn(MT y − θ~1)

9The lowermost (real valued) layer is treated slightly differ-
ently – see Section 7.

Although we have only recovered the positive edges, we
can use PARTIALENCODER algorithm to get h given y!

Lemma 3 If support of h satisfies 11/12-strong unique
neighbor property, and y = sgn(Wh), then Algorithm 3
outputs h with θ = 0.3d.

This uses the unique neighbor property: for every z with
hz = 1, it has at least 0.4d unique neighbors that are con-
nected with +1 edges. All these neighbors must be 1 so
[(E+)T y]z ≥ 0.4d. On the other hand, for any z with
hz = 0, the unique neighbor property implies that z can
have at most 0.2d positive edges to the +1’s in h. Hence
h = sgn((E+)T y − 0.3d~1).

STEP 4: Recover all weight −1 edges.

Algorithm 4 Learning Graph
Input: positive edges E+, samples of (h, y)
Output: E−

1: R← (U × V) \ E+.
2: for each of the samples (h, y), and each v do
3: Let S be the support of h
4: if yv = 1 and S ∩B+(v) = {u} for some u then
5: For all s ∈ S remove (s, v) from R
6: end if
7: end for
8: return R

Now consider many pairs of (h, y), where h is found using
Step 3. Suppose in some sample, yu = 1 for some u, and
exactly one neighbor of u in the +1 edge graph (which we
know entirely) is in supp(h). Then we can conclude that
for any z with hz = 1, there cannot be a −1 edge (z, u), as
this would cancel out the unique +1 contribution.

Lemma 4 Given O(log n/(ρ2d)) samples of pairs (h, y),
with high probability (over the random graph and the sam-
ples) Algorithm 4 outputs the correct set E−.

To prove this lemma, we just need to bound the probability
of the following events for any non-edge (x, u): hx = 1,
|supp(h) ∩B+(u)| = 1, supp(h) ∩B−(u) = ∅ (B+, B−

are positive and negative parents). These three events are
almost independent, the first has probability ρ, second has
probability ≈ ρd and the third has probability almost 1.

Leveraging 3-wise correlation: The above sketch used
pairwise correlations to recover the +1 weights when ρ�
1/d2. It turns out that using 3-wise correlations allow us to
find correlations under a weaker requirement ρ < 1/d3/2.
Now call three observed nodes u, v, s related if they are
connected to a common node at the hidden layer via +1
edges. Then we can prove a claim analogous to the one
above, which says that for a related triple, the probability

Provable Bounds for Learning Deep Representations

that u, v, s are all 1 is at least 0.9ρ, while the probability for
unrelated triples is roughly at most (ρd)3. Thus as long as
ρ < 0.1/d3/2, it is possible to find related triples correctly.
The RecoverGraph algorithm can be modified to run on 3-
uniform hypergraph consisting of these related triples to
recover the +1 edges.

The end result is the following theorem. This is the algo-
rithm used to get the bounds stated in our main theorem.

Theorem 5 Suppose our generative neural net model with
weights {−1, 1} has a single layer and the assignment
of the hidden layer is a random ρn-sparse vector, with
ρ � 1/d3/2. Then there is an algorithm that runs in
O(n(d3 + n)) time and uses O(log n/ρ2) samples to re-
cover the ground truth with high probability over the ran-
domness of the graph and the samples.

When weights are real numbers. We only sketch this
and leave the details to the full version. Surprisingly, steps
1, 2 and 3 still work. In the proofs, we have only used
the sign of the edge weights – the magnitude of the edge
weights can be arbitrary. This is because the proofs in these
steps relies on the unique neighbor property. If some node
is on (has value 1), then its unique positive neighbors at
the next level will always be on, no matter how small the
positive weights might be. Also notice in PartialEncoder
we are only using the support of E+, but not the weights.

After Step 3 we have turned the problem of unsupervised
learning to a supervised one in which the outputs are just
linear classifiers over the inputs! Thus the weights on the
edges can be learnt to any desired accuracy.

5. Correlations in a Multilayer Network
We now consider multi-layer networks, and show how they
can be learnt layerwise using a slight modification of our
one-layer algorithm at each layer. At a technical level, the
difficulty in the analysis is the following: in single-layer
learning, we assumed that the higher layer’s assignment is a
random ρn-sparse binary vector, however in the multilayer
network, the assignments in intermediate layers do not sat-
isfy this. We will show nonetheless that the the correlations
at intermediate layers are low enough, so our algorithm can
still work. Again for simplicity we describe the algorithm
for the model D(`, ρ`, {Gi}), in which the edge weights
are ±1. Recall that ρi’s are the “expected” number of 1s in
the layer h(i). Because of the unique neighbor property, we
expect roughly ρ`(d/2) fraction of h(`−1) to be 1. Hence
ρi = ρ` · (d/2)`−i.

Lemma 6 Consider a network from D(`, ρ`, {Gi}). With
high probability (over the random graphs between layers)

for any two nodes u, v in layer h(1),

Pr[h(1)u = h(1)v = 1]

{
≥ ρ2/2 if u, v related
≤ ρ2/4 otherwise

(Proof Sketch): Call a node s at the topmost layer an an-
cestor of u if there is a path of length ` − 1 from s to u.
The number of ancestors of a node u is roughly 2`−1ρ1/ρ`.
With good probability there is at most one ancestor of u that
has value 1.Call s a positive ancestor of u, if when only s
is 1 at the topmost layer, the node u is 1. The number of
positive ancestors of u is roughly ρ1/ρ`.

The probability that a node u is on is roughly proportional
to the number of positive ancestors. For a pair of nodes, if
they are both 1, either one of their common positive ances-
tor is 1, or both of them have a positive ancestor that is 1.
The probability of the latter is O(ρ21) which by assumption
is much smaller than ρ2.

When u, v share a common positive parent z, the positive
ancestors of z are all common positive ancestors of u, v
(so there are at least ρ2/ρ`). The probability that one of
positive common ancestor is on and no other ancestors are
on is at least ρ2/2.

If u, v do not share a common parent, then the number
of their common positive ancestors depends on how many
“common grandparents” (common neighbors in layer 3)
they have. We show with high probability (over the graph
structure) the number of common positive ancestors is
small. Therefore the probability that both u,v are 1 is small.
�

Once we can identify related pairs by Lemma 6, the Steps
2,3,4 in the single layer algorithm still work. We can learn
the bottom layer graph and get h(2). This argument can be
repeated after ‘peeling off’ the bottom layer, thus allowing
us to learn layer by layer.

6. Graph Recovery
Graph reconstruction consists of recovering a graph given
information about its subgraphs (Bondy & Hemminger,
1977). A prototypical problem is the Graph Square Root
problem, which calls for recovering a graph given all pairs
of nodes whose distance is at most 2. This is NP-hard.

Definition 2 (Graph Recovery) Let G1(U, V,E1) be an
unknown random bipartite graph between |U | = n and
|V | = n nodes where each edge is picked with probability
d/n independently.

Given: Graph G(V,E) where (v1, v2) ∈ E iff v1 and v2
share a common parent inG1 (i.e. ∃u ∈ U where (u, v1) ∈
E1 and (u, v2) ∈ E1).

Goal: Find the bipartite graph G1.

Provable Bounds for Learning Deep Representations

Some of our algorithms (using 3-wise correlations) need
to solve analogous problem where we are given triples of
nodes which are mutually at distance 2 from each other,
which we will not detail for lack of space.

We let F (S) (resp. B(S)) denote the set of neighbors of
S ⊆ U (resp. ⊆ V) inG1. Also Γ(·) gives the set of neigh-
bors in G. Now for the recovery algorithm to work, we
need the following properties (all satisfied whp by random
graph when d3/n� 1):

1. For any v1, v2 ∈ V ,
|(Γ(v1) ∩ Γ(v2))\(F (B(v1) ∩B(v2)))| < d/20.

2. For any u1, u2 ∈ U , |F (u1) ∪ F (u2)| > 1.5d.

3. For any u ∈ U , v ∈ V and v 6∈ F (u),
|Γ(v) ∩ F (u)| < d/20.

4. For any u ∈ U , at least 0.1 fraction of pairs v1, v2 ∈
F (u) does not have a common neighbor other than u.

The first property says “most correlations are generated
by common cause”: all but possibly d/20 of the common
neighbors of v1 and v2 inG, are in fact neighbors of a com-
mon neighbor of v1 and v2 in G1.

The second property says the sets F (u) should not overlap
much. This is clear because the sets are random.

The third property says if a node v is not ‘caused by’ u,
then it is not correlated with too many neighbors of u.

The fourth property says every cause introduces a signifi-
cant number of correlations that are unique to that cause.

In fact, Properties 2-4 are closely related from the unique
neighbor property.

Lemma 7 When graph G1 satisfies Properties 1-4, Algo-
rithm 5 successfully recovers G1 in expected time O(n2).

(Proof Sketch): We first show that when (v1, v2) has more
than one unique common cause, then the condition in the
if statement must be false. This follows from Property
2. We know the set S contains F (B(v1) ∩ B(v2)). If
|B(v1) ∩B(v2)| ≥ 2 then Property 2 says |S| ≥ 1.5d,
which implies the condition in the if statement is false.

Then we show if (v1, v2) has a unique common cause u,
then S′ will be equal to F (u). By Property 1, we know
S = F (u) ∪ T where |T | ≤ d/20. Now, every v in
F (u) is connected to every other node in F (u). Therefore
|Γ(v) ∩ S| ≥ |Γ(v) ∩ F (u)| ≥ 0.8d− 1, and v ∈ S′.
For any node v′ outside F (u), by Property 3 it can only be
connected to d/20 nodes in F (u). Therefore |Γ(v) ∩ S| ≤
|Γ(v) ∩ F (u)| + |T | ≤ d/10. Hence v′ is not in S′. Fol-
lowing these arguments, S′ must be equal to F (u), and the
algorithm successfully learns the edges related to u.

The algorithm will successfully find all nodes u ∈ U be-
cause of Property 4: for every u there are enough number
of edges in G that is only caused by u. When one of them
is sampled, the algorithm successfully learns the node u.

Finally we bound the running time. By Property 4 we know
that the algorithm identifies a new node u ∈ U in at most
10 iterations in expectation. Each iteration takes at most
O(n) time. Therefore the algorithm takes at most O(n2)
time in expectation. �

Algorithm 5 RecoverGraph
Input: G given as in Definition 2
Output: Find the graph G1 as in Definition 2.

repeat
Pick a random edge (v1, v2) ∈ E.
Let S = {v : (v, v1), (v, v2) ∈ E}.
if |S| < 1.3d then
S′ = {v ∈ S : |Γ(v) ∩ S| ≥ 0.8d− 1} {S′ should
be a clique in G}
In G1, create node u, connect u to every v ∈ S′.
Mark all the edges (v1, v2) for v1, v2 ∈ S′.

end if
until all edges are marked

7. Learning the lowermost (real-valued) layer
Note that in our model, the lowest (observed) layer is real-
valued and does not have threshold gates. Thus our earlier
learning algorithm cannot be applied as is. However, we
see that the same paradigm – identifying correlations and
using RecoverGraph – can be used.

The first step is to show that for a random weighted graph
G, the linear decoderD(h) = Wh and the encoderE(y) =
sgn(WT y + b) form a denoising autoencoder with real-
valued outputs, as in Bengio et al. (Bengio et al., 2013).

Lemma 8 If G is a random weighted graph, the encoder
E(y) = sgn(WT y − 0.4d~1) and linear decoder D(h) =
Wh form a denoising autoencoder, for noise vectors γ
which have independent components, each having variance
at most O(d/ log2 n).

The next step is to show a bound on correlations as before.
For simplicity we state it assuming the layer h(1) has a ran-
dom 0/1 assignment of sparsity ρ1. In the full version we
consider the correlations introduced by higher layers as we
did in Section 5.

Theorem 9 When ρ1d = O(1), d = Ω(log2 n), with high
probability over the choice of the weights and the choice of
the graph, for any three nodes u, v, s the assignment y to
the bottom layer satisfies:

1. If u, v and s have no common neighbor, then
|Eh[yuyvys]| ≤ ρ1/3

Provable Bounds for Learning Deep Representations

2. If u, v and s have a unique common neighbor, then
|Eh[yuyvys]| ≥ 2ρ1/3

8. Two layers are more expressive than one
In this section we show that a two-layer network with ±1
weights is more expressive than one layer network with ar-
bitrary weights. A two-layer network (G1, G2) consists of
random graphs G1 and G2 with random ±1 weights on the
edges. Viewed as a generative model, its input is h(3) and
the output is h(1) = sgn(W1 sgn(W2h

(3))). We will show
that a single-layer network even with arbitrary weights and
arbitrary threshold functions must generate a fairly differ-
ent distribution.

Lemma 10 For almost all choices of (G1, G2), the follow-
ing is true. For every one layer network with matrix A
and vector b, if h(3) is chosen to be a random ρ3n-sparse
vector with ρ3d2d1 � 1, the probability (over the choice
of h(3)) is at least Ω(ρ23) that sgn(W1 sgn(W2h

(3))) 6=
sgn(Ah(3) + b).

The idea is that the cancellations possible in the two-layer
network simply cannot all be accomodated in a single-layer
network even using arbitrary weights. More precisely, even
the bit at a single output node v cannot be well-represented
by a simple threshold function.

First, observe that the output at v is determined by values
of d1d2 nodes at the top layer that are its ancestors. It is
not hard to show in the one layer net (A, b), there should
be no edge between v and any node u that is not its an-
cestor. Then consider structure in Figure 2. Assuming all
other parents of v are 0 (which happens with probability
at least 0.9), and focus on the values of (u1, u2, u3, u4).
When these values are (1, 1, 0, 0) and (0, 0, 1, 1), v is off.
When these values are (1, 0, 0, 1) and (0, 1, 1, 0), v is on.
This is impossible for a one layer network because the first
two ask for

∑
Aui,v

+2bv ≤ 0 and the second two ask for∑
Aui,v

+2bv < 0.

h(1)

h(2)

v

+1 -1

+1

u1 u2 u3
h(3)

+1

+1

G2

G1

s s′

u4

-1

Figure 2. Two-layer network(G1, G2)

9. Experiments
We did a basic implementation of our algorithms and ran
experiments on synthetic data. The results show that our
analysis has the right asymptotics, and that the constants
involved are all small. As is to be expected, the most ex-
pensive step is that of finding the negative edges (since the

algorithm is to ‘eliminate non-edges’). However, stopping
the algorithm after a certain number of iterations gives a
reasonable over-estimate for the negative edges.

The following are the details of one experiment: a network
with two hidden layers and one observed layer (` = 2, both
layers use thresholds) with n = 5000, d = 16 and ρ`n = 4;
the weights are random {±1} but we made sure that each
node has exactly 8 positive edges and 8 negative edges. Us-
ing 500, 000 samples, in less than one hour (on a single
2GHz processor) the algorithm correctly learned the first
layer, and the positive edges of the second layer. Learn-
ing the negative edges of second layer (as per our analysis)
requires many more samples. However using 5× 106 sam-
ples, the algorithm makes only 10 errors in learning nega-
tive edges.

10. Conclusions
Many aspects of deep nets are mysterious to theory: re-
versibility, why use denoising autoencoders, why this
highly non-convex problem is solvable, etc. Our paper
gives a first-cut explanation. Worst-case nets seem hard,
and rigorous analysis of interesting subcases can stimu-
late further development: see e.g., the role played in Bayes
nets by rigorous analysis of message-passing on trees and
graphs of low tree-width. We chose to study randomly gen-
erated nets, which makes scientific sense (nonlinear gen-
eralization of random error correcting codes, compressed
sensing etc.), and also has some empirical support, e.g. in
reservoir computing.

The very concept of a denoising autoencoder (with weight
tying) suggests to us a graph with random-like properties.
We would be very interested in an empirical study of the
randomness properties of actual deep nets learnt via super-
vised backprop. (For example, in (Krizhevsky et al., 2012)
the lower layers use convolution, which is decidedly non-
random. But higher layers are learnt by backpropagation
initialized with a complete graph and may end up more
random-like.)

Network randomness is not so crucial in our analysis of
learning a single layer, but crucial for layerwise learning:
the randomness of the graph structure is crucial for con-
trolling (i.e., upper bounding) correlations among features
appearing in the same hidden layer (see Lemma 6). Prov-
able layerwise learning under weaker assumptions would
be very interesting.

Acknowledgements
We would like to thank Yann LeCun, Ankur Moitra,
Sushant Sachdeva, Linpeng Tang for numerous helpful dis-
cussions throughout various stages of this work and anony-
mous reviewers for their helpful feedback and comments.

Provable Bounds for Learning Deep Representations

References
Anandkumar, Anima, Foster, Dean P., Hsu, Daniel,

Kakade, Sham M., and Liu, Yi-Kai. A spectral algorithm
for latent Dirichlet allocation. In Advances in Neural In-
formation Processing Systems 25, 2012.

Arora, Sanjeev., Ge, Rong., and Moitra, Ankur. Learning
topic models – going beyond svd. In IEEE 53rd Annual
Symposium on Foundations of Computer Science, FOCS
2012, New Brunswick NJ, USA, October 20-23, pp. 1–
10, 2012.

Arora, Sanjeev, Ge, Rong, and Moitra, Ankur. New algo-
rithms for learning incoherent and overcomplete dictio-
naries. ArXiv, 1308.6273, 2013.

Bengio, Yoshua. Learning deep architectures for AI. Foun-
dations and Trends in Machine Learning, 2(1):1–127,
2009. Also published as a book. Now Publishers, 2009.

Bengio, Yoshua, Courville, Aaron C., and Vincent, Pas-
cal. Representation learning: A review and new per-
spectives. IEEE Trans. Pattern Anal. Mach. Intell., 35
(8):1798–1828, 2013.

Berinde, R., Gilbert, A.C., Indyk, P., Karloff, H., and
Strauss, M.J. Combining geometry and combinatorics:
a unified approach to sparse signal recovery. In 46th An-
nual Allerton Conference on Communication, Control,
and Computing, pp. 798–805, 2008.

Bondy, J Adrian and Hemminger, Robert L. Graph recon-
structiona survey. Journal of Graph Theory, 1(3):227–
268, 1977.

Cho, Youngmin and Saul, Lawrence. Kernel methods for
deep learning. In Advances in Neural Information Pro-
cessing Systems 22, pp. 342–350. 2009.

Donoho, David L. Compressed sensing. Information The-
ory, IEEE Transactions on, 52(4):1289–1306, 2006.

Hebb, Donald O. The Organization of Behavior: A Neu-
ropsychological Theory. Wiley, new edition edition,
June 1949.

Hoory, Shlomo, Linial, Nathan, and Wigderson, Avi. Ex-
pander graphs and their applications. Bulletin of the
American Mathematical Society, 43(4):439–561, 2006.

Hsu, Daniel and Kakade, Sham M. Learning mixtures of
spherical gaussians: moment methods and spectral de-
compositions. In Proceedings of the 4th conference on
Innovations in Theoretical Computer Science, pp. 11–
20, 2013.

Hsu, Daniel, Kakade, Sham M., and Zhang, Tong. A spec-
tral algorithm for learning hidden Markov models. Jour-
nal of Computer and System Sciences, 78(5):1460–1480,
2012.

Jackson, Jeffrey C, Klivans, Adam R, and Servedio,
Rocco A. Learnability beyond ac0. In Proceedings of
the thiry-fourth annual ACM symposium on Theory of
computing, pp. 776–784. ACM, 2002.

Klivans, Adam R and Sherstov, Alexander A. Crypto-
graphic hardness for learning intersections of halfspaces.
Journal of Computer and System Sciences, 75(1):2–12,
2009.

Krizhevsky, Alex, Sutskever, Ilya, and Hinton, Geoff. Im-
agenet classification with deep convolutional neural net-
works. In Advances in Neural Information Processing
Systems 25, pp. 1106–1114. 2012.

Livni, Roi, Shalev-Shwartz, Shai, and Shamir, Ohad. A
provably efficient algorithm for training deep networks.
ArXiv, 1304.7045, 2013.

Moitra, Ankur and Valiant, Gregory. Settling the polyno-
mial learnability of mixtures of gaussians. In the 51st
Annual Symposium on the Foundations of Computer Sci-
ence (FOCS), 2010.

Saxe, Andrew, Koh, Pang W, Chen, Zhenghao, Bhand,
Maneesh, Suresh, Bipin, and Ng, Andrew. On random
weights and unsupervised feature learning. In Proceed-
ings of the 28th International Conference on Machine
Learning (ICML-11), pp. 1089–1096, 2011.

Vincent, Pascal, Larochelle, Hugo, Bengio, Yoshua, and
Manzagol, Pierre-Antoine. Extracting and composing
robust features with denoising autoencoders. In ICML,
pp. 1096–1103, 2008.

