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Abstract

We introduce a model for provable data possession (PDP) that allows a client that has stored
data at an untrusted server to verify that the server possesses the original data without retrieving
it. The model generates probabilistic proofs of possession by sampling random sets of blocks
from the server, which drastically reduces I/O costs. The client maintains a constant amount
of metadata to verify the proof. The challenge/response protocol transmits a small, constant
amount of data, which minimizes network communication. Thus, the PDP model for remote
data checking supports large data sets in widely-distributed storage systems.

We present two provably-secure PDP schemes that are more efficient than previous solutions,
even when compared with schemes that achieve weaker guarantees. In particular, the overhead
at the server is low (or even constant), as opposed to linear in the size of the data. Experiments
using our implementation verify the practicality of PDP and reveal that the performance of
PDP is bounded by disk I/O and not by cryptographic computation.

1 Introduction

Verifying the authenticity of data has emerged as a critical issue in storing data on untrusted
servers. It arises in peer-to-peer storage systems [29, 35], network file systems [30, 26], long-term
archives [32], web-service object stores [48], and database systems [31]. Such systems prevent
storage servers from misrepresenting or modifying data by providing authenticity checks when
accessing data.

However, archival storage requires guarantees about the authenticity of data on storage, namely
that storage servers possess data. It is insufficient to detect that data have been modified or deleted
when accessing the data, because it may be too late to recover lost or damaged data. Archival
storage servers retain tremendous amounts of data, little of which are accessed. They also hold
data for long periods of time during which there may be exposure to data loss from administration
errors as the physical implementation of storage evolves, e.g., backup and restore, data migration
to new systems, and changing memberships in peer-to-peer systems.

Archival network storage presents unique performance demands. Given that file data are large
and are stored at remote sites, accessing an entire file is expensive in I/O costs to the storage
server and in transmitting the file across a network. Reading an entire archive, even periodically,
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greatly limits the scalability of network stores. (The growth in storage capacity has far outstripped
the growth in storage access times and bandwidth [44]). Furthermore, I/O incurred to establish
data possession interferes with on-demand bandwidth to store and retrieve data. We conclude that
clients need to be able to verify that a server has retained file data without retrieving the data from
the server and without having the server access the entire file.

Previous solutions do not meet these requirements for proving data possession. Some schemes
[20] provide a weaker guarantee by enforcing storage complexity : The server has to store an amount
of data at least as large as the client’s data, but not necessarily the same exact data. Moreover, all
previous techniques require the server to access the entire file, which is not feasible when dealing
with large amounts of data.

We define a model for provable data possession (PDP) that provides probabilistic proof that a
third party stores a file. The model is unique in that it allows the server to access small portions of
the file in generating the proof; all other techniques must access the entire file. Within this model,
we give the first provably-secure scheme for remote data checking. The client stores a small O(1)
amount of metadata to verify the server’s proof. Also, the scheme uses O(1) bandwidth1. The
challenge and the response are each slightly more than 1 Kilobit. We also present a more efficient
version of this scheme that proves data possession using a single modular exponentiation at the
server, even though it provides a weaker guarantee.

Both schemes use homomorphic verifiable tags. Because of the homomorphic property, tags
computed for multiple file blocks can be combined into a single value. The client pre-computes
tags for each block of a file and then stores the file and its tags with a server. At a later time,
the client can verify that the server possesses the file by generating a random challenge against a
randomly selected set of file blocks. Using the queried blocks and their corresponding tags, the
server generates a proof of possession. The client is thus convinced of data possession, without
actually having to retrieve file blocks.

The efficient PDP scheme is the fundamental construct underlying an archival introspection
system that we are developing for the long-term preservation of Astronomy data. We are taking
possession of multi-terabyte Astronomy databases at a University library in order to preserve the
information long after the research projects and instruments used to collect the data are gone. The
database will be replicated at multiple sites. Sites include resource-sharing partners that exchange
storage capacity to achieve reliability and scale. As such, the system is subject to freeloading in
which partners attempt to use storage resources and contribute none of their own [20]. The location
and physical implementation of these replicas are managed independently by each partner and will
evolve over time. Partners may even outsource storage to third-party storage server providers [23].
Efficient PDP schemes will ensure that the computational requirements of remote data checking
do not unduly burden the remote storage sites.

We implemented our more efficient scheme (E-PDP) and two other remote data checking proto-
cols and evaluated their performance. Experiments show that probabilistic possession guarantees
make it practical to verify possession of large data sets. With sampling, E-PDP verifies a 64MB
file in about 0.4 seconds as compared to 1.8 seconds without sampling. Further, I/O bounds the
performance of E-PDP; it generates proofs as quickly as the disk produces data. Finally, E-PDP is
185 times faster than the previous secure protocol on 768 KB files.

1Storage overhead and network overhead are constant in the size of the file, but depend on the chosen security
parameter.
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Figure 1: Protocol for provable data possession.

Contributions. In this paper we:

formally define protocols for provable data possession (PDP) that provide probabilistic proof
that a third party stores a file.

introduce the first provably-secure and practical PDP schemes that guarantee data possession.

implement one of our PDP schemes and show experimentally that probabilistic possession
guarantees make it practical to verify possession of large data sets.

Our PDP schemes provide data format independence, which is a relevant feature in practical
deployments (more details on this in the remarks of Section 4.3), and put no restriction on the
number of times the client can challenge the server to prove data possession. Also, a variant of our
main PDP scheme offers public verifiability (described in Section 4.3).

Note. A preliminary version of this paper that appears in the proceedings of CCS 2007 [3] contained
an error in the security proof: We erroneously made an assumption that does not hold when the
parameter e is public2. As a result, we have simplified the scheme and e is now part of the secret
key. Keeping e secret affects only the public verifiability feature, which is no longer provided by
our main PDP scheme. This feature allows anyone, not just the data owner, to challenge the server
for data possession. However, we show how to achieve public verifiability by simply restricting the
size of file blocks (see the end of Section 4.3).

Paper Organization. The rest of the paper is organized as follows. In Section 2, we describe a
framework for provable data possession, emphasizing the features and parameters that are relevant
for PDP. Section 3 overviews related work. In Section 4, we introduce homomorphic verifiable tags,
followed by definitions for PDP schemes and then we give our constructions (S-PDP and E-PDP).
We support our theoretical claims with experiments that show the practicality of our schemes in
Section 5 and conclude in Section 6.

2 Provable Data Possession (PDP)

We describe a framework for provable data possession. This provides background for related
work and for the specific description of our schemes. A PDP protocol (Fig. 1) checks that an
outsourced storage site retains a file, which consists of a collection of n blocks. The client C (data
owner) pre-processes the file, generating a piece of metadata that is stored locally, transmits the file

2We assumed that gcd(e, |M∗ − M |) = 1 with overwhelming probability. However, this turned out to be false
when e is public.
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[20] [20]-Wagner [17, 19] [41] [40] S-PDP E-PDP

(MHT-SC) (B-PDP)

Data possession No No Yes Yes Yes
∗

Yes Yes

Supports sampling No No No No No
†

Yes Yes

Type of guarantee deterministic
probabilistic /

probabilistic
deterministic

Server block access O(n) O(log n) O(n) O(n) O(n) O(1) O(1)

Server computation O(n) O(1) O(n) O(1) O(n) O(1) O(1)

Client computation O(1) O(1) O(1) O(1) O(1) O(1) O(1)

Communication O(1) O(log n) O(1) O(1) O(n) O(1) O(1)

Client storage O(1) O(1) O(1) O(n) O(1) O(1) O(1)

Table 1: Features and parameters (per challenge) of various PDP schemes when the server misbehaves by
deleting a fraction of an n-block file (e.g., 1% of n). The server and client computation is expressed as the
total cost of performing modular exponentiation operations. For simplicity, the security parameter is not
included as a factor for the relevant costs.
∗ No security proof is given for this scheme, so assurance of data possession is not confirmed.
† The client can ask proof for select symbols inside a block, but cannot sample across blocks.

to the server S, and may delete its local copy. The server stores the file and responds to challenges
issued by the client. Storage at the server is in Ω(n) and storage at the client is in O(1), conforming
to our notion of an outsourced storage relationship.

As part of pre-processing, the client may alter the file to be stored at the server. The client
may expand the file or include additional metadata to be stored at the server. Before deleting its
local copy of the file, the client may execute a data possession challenge to make sure the server
has successfully stored the file. Clients may encrypt a file prior to out-sourcing the storage. For
our purposes, encryption is an orthogonal issue; the “file” may consist of encrypted data and our
metadata does not include encryption keys.

At a later time, the client issues a challenge to the server to establish that the server has retained
the file. The client requests that the server compute a function of the stored file, which it sends
back to the client. Using its local metadata, the client verifies the response.

Threat model. The server S must answer challenges from the client C; failure to do so represents
a data loss. However, the server is not trusted: Even though the file is totally or partially missing,
the server may try to convince the client that it possesses the file. The server’s motivation for
misbehavior can be diverse and includes reclaiming storage by discarding data that has not been
or is rarely accessed (for monetary reasons), or hiding a data loss incident (due to management
errors, hardware failure, compromise by outside or inside attacks etc). The goal of a PDP scheme
that achieves probabilistic proof of data possession is to detect server misbehavior when the server
has deleted a fraction of the file.

Requirements and Parameters. The important performance parameters of a PDP scheme
include:

Computation complexity: The computational cost to pre-process a file (at C), to generate a
proof of possession (at S) and to verify such a proof (at C);

Block access complexity: The number of file blocks accessed to generate a proof of possession
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(at S);

Communication complexity: The amount of data transferred (between C and S).

For a scalable solution, the amount of computation and block accesses at the server should be
minimized, because the server may be involved in concurrent interactions with many clients. We
stress that in order to minimize bandwidth, an efficient PDPscheme cannot consist of retrieving
entire file blocks. While relevant, the computation complexity at the client is of less importance,
even though our schemes minimize that as well.

To meet these performance goals, our PDP schemes sample the server’s storage, accessing
a random subset of blocks. In doing so, the PDP schemes provide a probabilistic guarantee of
possession; a deterministic guarantee cannot be provided without accessing all blocks. In fact, as
a special case of our PDP scheme, the client may ask proof for all the file blocks, making the data
possession guarantee deterministic. Sampling proves data possession with high probability based on
accessing few blocks in the file, which radically alters the performance of proving data possession.
Interestingly, when the server deletes a fraction of the file, the client can detect server misbehavior
with high probability by asking proof for a constant amount of blocks, independently of the total
number of file blocks. As an example, for a file with n = 10, 000 blocks, if S has deleted 1% of the
blocks, then C can detect server misbehavior with probability greater than 99% by asking proof
of possession for only 460 randomly selected blocks (representing 4.6% of n). For more details see
Section 5.1.

We list the features of our PDP schemes (S-PDP and E-PDP) in Table 1. We also include a
comparison of related techniques [20], [17, 19](B-PDP), [41] and [40]. The scheme [20]-Wagner
(MHT-SC) refers to the variant suggested by David Wagner [20], based on Merkle hash trees. Both
schemes in [20] do not provide a data possession guarantee, but only enforce storage complexity.
Indeed, as noted by Golle et al. [20], the server could pass the verification procedure by using (and
storing) a different file, which is at least as big as the original one. We emphasize that PDP schemes
that offer an inherently deterministic guarantee by accessing all the blocks of the file ([20, 17, 19])
cannot offer both sampling across blocks and constant storage on the client; fundamental changes
would be required in these schemes in order to avoid storing O(n) metadata on the client. The
scheme in [40] allows the client to request proof of possession of segments from each file block.
However, the server’s response includes one “signature” per each block, which makes its size linear
with respect to the number of blocks.

A “strawman” solution. We notice that if one is willing to allow the server to send entire file
blocks back to the client as proof of possession, then a simple solution is possible. Initially, the
client computes a message authentication code (MAC) for each file block and stores the MACs at
the server. Later, to obtain a probabilistic proof of data possession, the client retrieves a number
of randomly selected file blocks and their corresponding MACs. However, this solution requires
an arbitrarily large amount of bandwidth, which is linear with respect to the number of queried
blocks. In contrast, our solutions have constant network communication.

3 Related Work

Deswarte et al. [17] and Filho et al. [19] provide techniques to verify that a remote server
stores a file using RSA-based hash functions. Unlike other hash-based approaches, it allows a client
to perform multiple challenges using the same metadata. In this protocol, communication and
client storage complexity are both O(1). The limitation of the algorithm lies in the computational
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complexity at the server, which must exponentiate the entire file, accessing all of the file’s blocks.
Further, RSA over the entire file is extremely slow — 20 seconds per Megabyte for 1024-bit keys
on a 3.0 GHz processor [19]. In fact, these limitations led us to study algorithms that allowed for
sub-file access (sampling). We implement this protocol for comparison with our PDP scheme and
refer to it as B-PDP (basic PDP). A description of B-PDP is provided in Appendix B. Shah et al.
[42] use a similar technique for third-party auditing of data stored at online service providers and
put forth some of the challenges associated with auditing online storage services.

Schwarz and Miller [40] propose a scheme that allows a client to verify the storage of m/n
erasure-coded data across multiple sites even if sites collude. The data possession guarantee is
achieved using a special construct, called an “algebraic signature”: A function that fingerprints a
block and has the property that the signature of the parity block equals the parity of the signatures
of the data blocks. The parameters of the scheme limit its applicability: The file access and
computation complexity at the server and the communication complexity are all linear in the
number of file blocks (n) per challenge. Additionally, the security of the scheme is not proven and
remains in question.

Sebe et al. [41] give a protocol for remote file integrity checking, based on the Diffie-Hellman
problem in ZN . The client has to store N bits per block, where N is the size of an RSA modulus,
so the total storage on the client is O(n) (which does not conform to our notion of an outsourced
storage relationship). Indeed, the authors state that this solution only makes sense if the size of a
block is much larger than N . Moreover, the protocol requires the server to access the entire file.
Similar techniques were proposed by Yamamoto et al. [47], in the context of checking data integrity
through batch verification of homomorphic hash functions.

Homomorphic hash functions have been used in source authentication, e.g., to verify data trans-
fer in a pay-for-bandwidth content distribution network. Krohn et al. [28] provide the best example
and give a good review of other applications of homomorphic hashing. They use homomorphism
to compose multiple blocks inputs into a single value. However, this protocol can only compose
specific subsets of blocks, based on erasure coding. Source authentication techniques do not apply
to provable data possession.

Related to provable data possession is the enforcement of storage complexity, which shows that
a server retains an amount of information at least as large as the file received from the client; the
server does not necessarily retain the original file. To the best of our knowledge, Golle et al. [20]
were the first to propose a scheme that enforces storage complexity, based on a new assumption
(n-Power Decisional Diffie-Hellman). Their scheme considers a different setting that involves three
parties and provides two additional features (binding and concealing) that resemble commitment
schemes. Golle et al. also briefly mention a scheme suggested by David Wagner, based on Merkle
hash trees, which lowers the computational requirements for the server at the expense of increased
communication. We implement Wagner’s suggestion for comparison with our PDP scheme and
refer to it as MHT-SC. A description of MHT-SC is provided in Appendix B.

Oprea et al. [39] propose a scheme based on tweakable block ciphers that allows a client to detect
the modification of data blocks by an untrusted server. The scheme does not require additional
storage at the server and if the client’s data has low entropy then the client only needs to keep a
relatively low amount of state. However, verification requires the entire file to be retrieved, which
means that the server file access and communication complexity are both linear with the file size per
challenge. The scheme is targeted for data retrieval. It is impractical for verifying data possession.

Memory checking protocols [12, 37] verify that all reads and writes to a remote memory behave
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identically to reads and writes to a local memory. PDP is a restricted form of memory checking in
that memory checking verifies every read and write generated from a program at any granularity.
Due to this restriction, memory checking is much more difficult and expensive than proving data
possession. Related to PDP, Naor and Rothblum introduced the problem of sub-linear authentica-
tion [37], verifying that a file stored on a remote server has not been significantly corrupted. They
show that the existence of one-way functions is an essential condition for efficient online checking.

Similar to PDP, Juels and Kaliski introduce the notion of proof of retrievability (POR) [25],
which allows a server to convince a client that it can retrieve a file that was previously stored at the
server. The main POR scheme uses disguised blocks (called sentinels) hidden among regular file
blocks in order to detect data modification by the server. Although comparable in scope with PDP,
their POR scheme can only be applied to encrypted files and can handle only a limited number
of queries, which has to be fixed a priori. In contrast, our PDP schemes can be applied to (large)
public databases (e.g., digital libraries, astronomy/medical/legal repositories, archives, etc.) other
than encrypted ones and put no restriction on the number of challenges that can be executed.

An alternative to checking remote storage is to make data resistant to undetectable deletion
through entanglement [45, 2], which encodes data to create dependencies among unrelated data
throughout the storage system. Thus, deleting any data reveals itself as it deletes other unrelated
data throughout the system.

Our homomorphic verifiable tags are related with the concept of homomorphic signatures in-
troduced by Johnson et al. [24]. As pointed out by the same authors, fully-additive homomorphic
signature schemes cannot be secure; our homomorphic verifiable tags are able to achieve a form
of message homomorphism under addition because of their special structure that uses one-time
indices.

The PDP solutions that we present are the first schemes that securely prove the possession of
data on an untrusted server and are computationally efficient, i.e., require a constant number of
modular exponentiations and have constant I/O complexity. This makes our PDP solutions the
first schemes suitable for implementation in large data systems.

4 Provable Data Possession Schemes

4.1 Preliminaries

The client C wants to store on the server S a file F which is a finite ordered collection of n
blocks: F = (m1, . . . ,mn).
We denote the output x of an algorithm A by x← A. We denote by |x| the absolute value of x.

Homomorphic Verifiable Tags (HVTs). We introduce the concept of a homomorphic verifiable
tag that will be used as a building block for our PDP schemes.

Given a message m (corresponding to a file block), we denote by Tm its homomorphic verifiable
tag. The tags will be stored on the server together with the file F. Homomorphic verifiable tags
act as verification metadata for the file blocks and, besides being unforgeable, they also have the
following properties:

Blockless verification: Using HVTs the server can construct a proof that allows the client to verify
if the server possesses certain file blocks, even when the client does not have access to the actual
file blocks.
Homomorphic tags: Given two values Tmi

and Tmj
, anyone can combine them into a value Tmi+mj

corresponding to the sum of the messages mi +mj.
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In our construction, an HVT is a pair of values (Ti,m, Wi), where Wi is a random value obtained
from an index i and Ti,m is stored at the server. The index i can be seen as a one-time index
because it is never reused for computing tags (a simple way to ensure that every tag uses a different
index i is to use a global counter for i). The random value Wi is generated by concatenating the
index i to a secret value, which ensures that Wi is different and unpredictable each time a tag is
computed. HVTs and their corresponding proofs have a fixed constant size and are (much) smaller
than the actual file blocks.

We emphasize that techniques based on aggregate signatures [13], multi-signatures [33, 38],
batch RSA [18], batch verification of RSA [22, 4], condensed RSA [36], etc. would all fail to provide
blockless verification, which is needed by our PDP scheme. Indeed, the client has to have the ability
to verify the tags on specific file blocks even though he does not possess any of those blocks.

4.2 Definitions

We start with the precise definition of a provable data possession scheme, followed by a security
definition that captures the data possession property.

Definition 4.1 (Provable Data Possession Scheme (PDP)) A PDP scheme is a collection
of four polynomial-time algorithms (KeyGen,TagBlock,GenProof,CheckProof) such that:

KeyGen(1k)→ (pk, sk) is a probabilistic key generation algorithm that is run by the client to setup
the scheme. It takes a security parameter k as input, and returns a pair of matching public and
secret keys (pk, sk).

TagBlock(pk, sk,m)→ Tm is a (possibly probabilistic) algorithm run by the client to generate the
verification metadata. It takes as inputs a public key pk, a secret key sk and a file block m,
and returns the verification metadata Tm.

GenProof(pk, F, chal,Σ)→ V is run by the server in order to generate a proof of possession. It
takes as inputs a public key pk, an ordered collection F of blocks, a challenge chal and an
ordered collection Σ which is the verification metadata corresponding to the blocks in F. It
returns a proof of possession V for the blocks in F that are determined by the challenge chal.

CheckProof(pk, sk, chal,V)→ {“success”, “failure”} is run by the client in order to validate a proof
of possession. It takes as inputs a public key pk, a secret key sk, a challenge chal and a proof
of possession V. It returns whether V is a correct proof of possession for the blocks determined
by chal.

A PDP system can be constructed from a PDP scheme in two phases, Setup and Challenge:

Setup: The client C is in possession of the file F and runs (pk, sk) ← KeyGen(1k), followed by
Tmi
← TagBlock(pk, sk,mi) for all 1 ≤ i ≤ n. C stores the pair (sk,pk). C then sends pk, F

and Σ = (Tm1
, . . . , Tmn

) to S for storage and deletes F and Σ from its local storage.

Challenge: C generates a challenge chal that, among other things, indicates the specific blocks
for which C wants a proof of possession. C then sends chal to S. S runs V ←
GenProof(pk, F, chal,Σ) and sends to C the proof of possession V. Finally, C can check the
validity of the proof V by running CheckProof(pk, sk, chal,V).

In the Setup phase, C computes tags for each file block and stores them together with the file
at S. In the Challenge phase, C requests proof of possession for a subset of the blocks in F. This
phase can be executed an unlimited number of times in order to ascertain whether S still possesses
the selected blocks.
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We state the security for a PDP system using a game that captures the data possession property.
Intuitively, the Data Possession Game captures that an adversary cannot successfully construct a
valid proof without possessing all the blocks corresponding to a given challenge, unless it guesses
all the missing blocks.
Data Possession Game:

Setup: The challenger runs (pk, sk) ← KeyGen(1k), sends pk to the adversary and keeps sk
secret.

Query: The adversary makes tagging queries adaptively: It selects a block m1 and sends it to
the challenger. The challenger computes the verification metadata Tm1

← TagBlock(pk, sk,m1)
and sends it back to the adversary. The adversary continues to query the challenger for the
verification metadata Tm2

, . . . , Tmn
on the blocks of its choice m2, . . . ,mn. As a general rule,

the challenger generates Tmj
for some 1 ≤ j ≤ n, by computing Tmj

← TagBlock(pk, sk,mj).
The adversary then stores all the blocks as an ordered collection F = (m1, . . . ,mn), together
with the corresponding verification metadata Tm1

, . . . , Tmn
.

Challenge: The challenger generates a challenge chal and requests the adversary to provide a
proof of possession for the blocks mi1, . . . ,mic determined by chal, where 1 ≤ ij ≤ n, 1 ≤ j ≤
c, 1 ≤ c ≤ n.

Forge: The adversary computes a proof of possession V for the blocks indicated by chal and
returns V.

If CheckProof(pk, sk, chal,V) = “success”, then the adversary has won the Data Possession Game.

Definition 4.2 A PDP system (Setup,Challenge) built on a PDP scheme (KeyGen,TagBlock,
GenProof,CheckProof) guarantees data possession if for any (probabilistic polynomial-time) ad-
versary A the probability that A wins the Data Possession Game on a set of file blocks is negligibly
close to the probability that the challenger can extract those file blocks by means of a knowledge
extractor E.

In our security definition, the notion of a knowledge extractor is similar with the standard one
introduced in the context of proofs of knowledge [5]. If the adversary is able to win the Data
Possession Game, then E can execute GenProof repeatedly until it extracts the selected blocks. On
the other hand, if E cannot extract the blocks, then the adversary cannot win the game with more
than negligible probability. We refer the reader to [25] for a more generic and extraction-based
security definition for POR and to [37] for the security definition of sub-linear authenticators.

4.3 Efficient and Secure PDP Schemes

In this section we present our PDP constructions: The first (S-PDP) provides a strong data
possession guarantee, while the second (E-PDP) achieves better efficiency at the cost of weakening
the data possession guarantee.

We start by introducing some additional notation used by the constructions. Let p = 2p′ + 1
and q = 2q′ + 1 be safe primes and let N = pq be an RSA modulus. Let g be a generator of
QRN , the unique cyclic subgroup of Z

∗
N of order p′q′ (i.e., QRN is the set of quadratic residues

modulo N). We can obtain g as g = a2, where a
R
← Z

∗
N such that gcd(a ± 1, N) = 1. All

exponentiations are performed moduloN , and for simplicity we sometimes omit writing it explicitly.
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Let h : {0, 1}∗ → QRN be a secure deterministic hash-and-encode function3 that maps strings
uniformly to QRN .

The schemes are based on the KEA1 assumption which was introduced by Damgard in 1991 [14]
and subsequently used by several others, most notably in [21, 6, 7, 27, 15]. In particular, Bellare
and Palacio [6] provided a formulation of KEA1, that we follow and adapt to work in the RSA ring:

KEA1-r (Knowledge of Exponent Assumption): For any adversary A that takes input (N, g, gs)
and returns group elements (C, Y ) such that Y = Cs, there exists an “extractor” Ā which, given
the same inputs as A, returns x such that C = gx.

Recently, KEA1 has been shown to hold in generic groups (i.e., it is secure in the generic
group model) by A. Dent [16] and independently by Abe and Fehr [1]. In private communication,
Yamamoto has informed us that Yamamoto, Fujisaki, and Abe introduced the KEA1 assumption
in the RSA setting in [46]. Their assumption, named NKEA1, is the same as ours, KEA1-r, except
that we restrict g to be a generator of the group of quadratic residues of order p′q′. As noted in
their paper [46], if the order is not known then the extractor returns an x such that C = ±gx.

Later in this section, we also show an alternative strategy which does not rely on the KEA1-r
assumption, at the cost of increased network communication.

S-PDP overview. We first give an overview of our provable data possession scheme that supports
sampling. In the Setup phase, the client computes a homomorphic verifiable tag (Ti,mi

, Wi) for each
block mi of the file. In order to maintain constant storage, the client generates the random values
Wi by concatenating the index i to a secret value v; thus, TagBlock has an extra parameter, i. Each
value Ti,mi

includes information about the index i of the block mi, in the form of a value h(Wi) This
binds the tag on a block to that specific block, and prevents using the tag to obtain a proof for a
different block. These tags are stored on the server together with the file F. The extra storage at
the server is the price to pay for allowing thin clients that only store a small, constant amount of
data, regardless of the file size.

In the Challenge phase, the client asks the server for proof of possession of c file blocks whose
indices are randomly chosen using a pseudo-random permutation keyed with a fresh randomly-
chosen key for each challenge. This prevents the server from anticipating which blocks will be
queried in each challenge. C also generates a fresh (random) challenge gs = gs to ensure that S
does not reuse any values from a previous Challenge phase. The server returns a proof of possession
that consists of two values: T and ρ. T is obtained by combining into a single value the individual
tags Ti,mi

corresponding to each of the requested blocks. ρ is obtained by raising the challenge gs

to a function of the requested blocks. The value T contains information about the indices of the
blocks requested by the client (in the form of the h(Wi) values). C can remove all the h(Wi) values
from T because it has both the key for the pseudo-random permutation (used to determine the
indices of the requested blocks) and the secret value v (used to generate the values Wi). C can then
verify the validity of the server’s proof by checking if a certain relation holds between T and ρ.

S-PDP in detail. Let κ, ℓ, λ be security parameters (λ is a positive integer) and let H be a
cryptographic hash function. In addition, we make use of a pseudo-random function (PRF) f and
a pseudo-random permutation (PRP) π with the following parameters:

3h is computed by squaring the output of the full-domain hash function for the provably secure FDH signature
scheme [8, 9] based on RSA. We refer the reader to [8] for ways to construct an FDH function out of regular hash
functions, such as SHA-1. Alternatively, h can be the deterministic encoding function used in RSA-PSS [10].
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As previously defined, let f be a pseudo-random function, let π be a pseudo-random permutation
and let H be a cryptographic hash function.

KeyGen(1k): Generate pk = (N, g) and sk = (e, d, v), such that ed ≡ 1( mod p′q′), e is a large secret

prime such that e > λ and d > λ , g is a generator of QRN and v
R
← {0, 1}κ. Output (pk, sk).

TagBlock(pk, sk,m, i):

1. Let (N, g) = pk and (d, v) = sk. Generate Wi = v||i. Compute Ti,m = (h(Wi) · g
m)

d
mod N .

2. Output (Ti,m, Wi).

GenProof(pk, F = (m1, . . . ,mn), chal,Σ = (T1,m1
, . . . , Tn,mn

)):

1. Let (N, g) = pk and (c, k1, k2, gs) = chal.
For 1 ≤ j ≤ c:

• compute the indices of the blocks for which the proof is generated: ij = πk1
(j)

• compute coefficients: aj = fk2
(j).

2. Compute T = Ta1

i1,mi1
· . . . · Tac

ic,mic
= (h(Wi1)

a1 · . . . · h(Wic
)ac · ga1mi1

+...+acmic )
d

mod N .

(note that Tij ,mij
is the ij-th value in Σ).

3. Compute ρ = H(g
a1mi1

+...+acmic
s mod N).

4. Output V = (T, ρ).

CheckProof(pk, sk, chal,V):

1. Let (N, g) = pk, (e, v) = sk, (c, k1, k2, s) = chal and (T, ρ) = V .

2. Let τ = Te. For 1 ≤ j ≤ c:

• compute ij = πk1
(j), Wij

= v||ij , aj = fk2
(j), and τ =

τ

h(Wij
)aj

mod N

(As a result, one should get τ = ga1mi1
+...+acmic mod N)

3. If H(τs mod N) = ρ, then output “success”. Otherwise output “failure”.

We construct a PDP system from a PDP scheme in two phases, Setup and Challenge:

Setup: The client C runs (pk, sk)← KeyGen(1k), stores (sk, pk) and sets (N, g) = pk, (e, d, v) = sk.
C then runs (Ti,mi

, Wi) ← TagBlock(pk, (d, v),mi, i) for all 1 ≤ i ≤ n and sends pk, F and Σ =
(T1,m1

, . . . , Tn,mn
) to S for storage. C may now delete F and Σ from its local storage.

Challenge: C requests proof of possession for c distinct blocks of the file F (with 1 ≤ c ≤ n):

1. C generates the challenge chal = (c, k1, k2, gs), where k1

R
← {0, 1}κ, k2

R
← {0, 1}κ, gs =

gs mod N and s
R
← Z

∗
N . C sends chal to S.

2. S runs V ← GenProof(pk, F, chal,Σ = (T1,m1
, . . . , Tn,mn

)) and sends to C the proof of posses-
sion V .

3. C sets chal = (c, k1, k2, s) and checks the validity of the proof V by running
CheckProof(pk, (e, v), chal,V).

Figure 2: S-PDP: a PDP scheme with strong data possession guarantee

f : {0, 1}κ × {0, 1}log2(n) → {0, 1}ℓ;

π : {0, 1}κ × {0, 1}log2(n) → {0, 1}log2(n)

We write fk(x) to denote f keyed with key k applied on input x. Our S-PDP scheme is described
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in Fig. 2. The purpose of including the the aj coefficients in the values for ρ and T computed by S
is to ensure that S possesses each one of the requested blocks. These coefficients are determined by
a PRF keyed with a fresh randomly-chosen key for each challenge, which prevents S from storing
combinations (e.g., sums) of the original blocks instead of the original file blocks themselves. Also,
we are able to maintain constant communication cost because tags on blocks can be combined into
a single value.

In Appendix A, we prove:

Theorem 4.3 Under the RSA and KEA1-r assumptions, S-PDP guarantees data possession in the
random oracle model.

Regarding efficiency, we remark that each challenge requires a small, constant amount of com-
munication between C and S (the challenge and the response are each slightly more than 1 Kilobit).
In terms of server block access, the demands are c accesses for S, while in terms of computation
we have c exponentiations for both C and S. When S deletes a fraction of the file blocks, c is a
relatively small, constant value, which gives the O(1) parameters in Table 1 (for more details, see
Section 5.1). Since the size of the file is O(n), accommodating the additional tags does not change
(asymptotically) the storage requirements for the server.

In our analysis we assume w.l.o.g. that the indices for the blocks picked by the client in a
challenge are different. One way to achieve this is to implement π using the techniques proposed
by Black and Rogaway [11]. In a practical deployment, our protocol can tolerate collisions of these
indices. Moreover, notice that the client can dynamically append new blocks to the stored file after
the Setup phase, without re-tagging the entire file.

Notice that the server may store the client’s file F however it sees fit, as long as it is able to
recover the file when answering a challenge. For example, it is allowed to compress F (e.g., if all
the blocks of F are identical, then the server may only store one full block and the information
that all the blocks are equal). Alternatively, w.l.o.g., one could assume that F has been optimally
compressed by the client and the size of F is equal to F’s information entropy function.

A concrete example of using S-PDP. For a concrete example of using S-PDP, we consider a
1024-bit modulus N and a 4 GB file F which has n = 1, 000, 000 4KB blocks. During Setup, C
stores the file and the tags at S. The tags require additional storage of 128 MB. The client stores
about 3 Kbytes (N, e, d each have 1024 bits and v has 128 bits). During the Challenge phase, C
and S use AES for π (used to select the random block indices i), HMAC for f (used to determine
the random coefficients a) and SHA1 for H. In a challenge, C sends to S four values which total
168 bytes (c has 4 bytes, k1 has 16 bytes, k2 has 20 bytes, gs has 1024 bits). Assuming that S
deletes at least 1% of F, then C can detect server misbehavior with probability over 99% by asking
proof for c = 460 randomly selected blocks. The server’s response contains two values which total
148 bytes (T has 1024 bits, ρ has 20 bytes). We emphasize that the server’s response to a challenge
consists of a small, constant value; in particular, the server does not send back to the client any of
the file blocks and not even their sum.

A more efficient scheme, with weaker guarantees (E-PDP). Our S-PDP scheme provides the
guarantee that S possesses each one of the c blocks for which C requested proof of possession in a
challenge. We now describe a more efficient variant of S-PDP, which we call E-PDP, that achieves
better performance at the cost of offering weaker guarantees. E-PDP differs from S-PDP only in
that all the coefficients aj are equal to 1:
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In GenProof (steps 2 and 3) the server computes T = Ti1,m1
· . . . · Tic,mc

and ρ =

H(g
mi1

+...+mic
s mod N).

In CheckProof (step 2) the client computes τ =
Te

h(Wi1) · . . . · h(Wic)
mod N .

The E-PDP scheme reduces the computation on both the server and the the client to one
exponentiation, as described in Table 1 (see Server Computation details in Section 5.2, the server
computes ρ as one exponentiation to a value whose size in bits is slightly larger than |mi|). E-PDP

only guarantees possession of the sum of the blocks mi1 + . . .+mic and not necessarily possession
of each one of the blocks for which the client requests proof of possession. However, we argue next
that this is not a practical concern.

If the server pre-computes and stores the sums of all possible combinations of c blocks out of the
n blocks (

(n
c

)

values), then the server could successfully pass any challenge. When using E-PDP,
the client needs to choose the parameters of the scheme such that it is infeasible for the server to
misbehave by pre-computing and storing all these sums. For example, if n = 1000 and c = 101, the
server needs to pre-compute and store ≈ 10140 values and might be better off trying to factor N .
The client can also reduce the server’s ability to misbehave by choosing c as a prime integer and
by using a different c value for each challenge.

An alternative strategy (No KEA1-r Assumption). Instead of the value ρ, the server S
could send the sum of the queried blocks as an integer (S does not know the order of QRN ) and
let C verify the proof of possession using this value. Thus, we will not have to rely on the KEA1-r
assumption. However, network communication will increase by a significant amount.

In addition, notice that any solution based on proofs of knowledge of the sum would require
even more bandwidth than just sending the sum itself. This is, again, because S does not know
the order of QRN and would have to work with large integers.

Public verifiability. The variant of the protocol described above that does not rely on KEA1-r
can be further modified in order to offer the public verifiability property, which allows anyone, not
just the data owner, to challenge the server for data possession. The advantages of having public
verifiability are akin to those of public-key over symmetric-key cryptography.

The size of the each file block and the coefficients ai’s (the outputs of the pseudo-random
function f) is now limited so that the sum of any c blocks will be less than λ/2 (remember that
e > λ). The following changes should be applied to the S-PDP protocol (described in Fig. 2):

• the client (data owner) makes e public (along with N and g).

• the values Wi are generated as Wi = wv(i), where w is a PRF such that w : {0, 1}κ ×

{0, 1}log2
(n) → {0, 1}ℓ and v

R
← {0, 1}κ.

• after the initial Setup phase, the client (data owner) publishes v (the key for the PRF w).

• in GenProof and in CheckProof , the challenge chal does not contain the values gs and s
anymore (also, in the Challenge phase these values are not used anymore).

• in GenProof the server computes M = a1mi1 +. . .+acmic instead of ρ and returns V = (T,M).
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• in CheckProof , step 3, the client now checks whether gM = τ and, in addition, the client
checks whether |M | < λ/2. (This test ensures that, in the proof in Appendix A, the condition
gcd(e, 2(M∗ −M)) = 1 is verified.)

The communication cost of this variant is now slightly larger than the size of a file block. We
leave as an open problem devising publicly-verifiable PDP schemes where the size of challenges and
responses is less than the size of a single file block.

In Appendix A, we prove:

Theorem 4.4 Under the RSA assumption, the scheme above guarantees data possession in the
random oracle model.

Remark 1 (Data Format Independence). Our PDP schemes put no restriction on the format
of the data, in particular files stored at the server do not have to be encrypted. This feature is very
relevant since we anticipate that PDP schemes will have the biggest impact when used with large
public repositories (e.g., digital libraries, astronomy/medical/legal repositories, archives etc.).

Remark 2 (Prime-order Group Variant). Alternatively, our PDP schemes can potentially
be modified to work within a group of a publicly-known prime order q. In this case, however, file
blocks (seen as integers) must be less than q, otherwise the server could simply store them reduced
modulo q. In a prime-order setting, network communication is further reduced (particularly in the
elliptic curve setting), but pre-processing becomes more expensive given the small size of the file
blocks. In contrast, the RSA setting allows us to work with arbitrarily large file blocks.

Remark 3 (Multiple Files). We have described PDP schemes for the case when a client stores
a single file F on the server. In the TagBlock algorithm, for each block mi the client computes a
tag over the tuple (Wi,mi). We emphasize that the values Wi cannot be reused. Since Wi is obtained
by concatenating a secret value v with i, this implies that the indices i must be different across
all tags. In other words, the client should not use the same index twice for computing tags. This
condition holds because in our scheme an index i is simply the position of the block mi in the file.

In order to store multiple files on the server, the client must ensure that indices used to compute
tags are distinct not only across the tags corresponding to the blocks of each file, but also across
the tags corresponding to the blocks of all files. One simple method to achieve this is to pre-
pend the file’s identifier to the index. For example, if the identifier of a file F = (m1, . . . ,mn)
is given by id(F), then for each block mi, 1 ≤ i ≤ n, C computes the tag (Tid(F)||i,mi

, Wid(F)||i) ←
TagBlock(pk, sk,mi, id(F)||i). The uniqueness of indices is ensured under the assumption that each
file has a unique identifier. Another simple way to ensure that indices are only used once is to use a
global counter for the index, which is incremented by the client each time after a tag is computed.

5 System Implementation and Performance Evaluation

5.1 Probabilistic Framework

Our PDP schemes allow the server to prove possession of select blocks of F. This “sampling”
ability greatly reduces the workload on the server, while still achieving detection of server misbe-
havior with high probability. We now analyze the probabilistic guarantees offered by a scheme that
supports block sampling.

Assume S deletes t blocks out of the n-block file F. Let c be the number of different blocks for
which C asks proof in a challenge. Let X be a discrete random variable that is defined to be the
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Figure 3: PX , the probability of server misbehavior detection. We show PX as a function of n (the number
of file blocks) and c (the number of blocks queried by the client, shown as a percentage of n) for two values
of t (the number of blocks deleted by the server). Note that each graph has a different scale.

number of blocks chosen by C that match the blocks deleted by S. We compute PX , the probability
that at least one of the blocks picked by C matches one of the blocks deleted by S. We have:

PX = P{X ≥ 1} = 1− P{X = 0} = 1−
n− t

n
·
n− 1− t

n− 1
·
n− 2− t

n− 2
· . . . ·

n− c+ 1− t

n− c+ 1
.

Since
n− i− t

n− i
≥
n− i− 1− t

n− i− 1
, it follows that:

1−

(

n− t

n

)c

≤ PX ≤ 1−

(

n− c+ 1− t

n− c+ 1

)c

.

PX indicates the probability that, if S deletes t blocks of the file, then C will detect server
misbehavior after a challenge in which it asks proof for c blocks. Fig. 3 plots PX for different values
of n, t, c. Interestingly, when t is a fraction of the file, C can detect server misbehavior with
a certain probability by asking proof for a constant amount of blocks, independently of the total
number of file blocks: e.g., if t = 1% of n, then C asks for 460 blocks and 300 blocks in order to
achieve PX of at least 99% and 95%, respectively.

5.2 Implementation and Experimental Results

We measure the performance of E-PDP and the benefits of sampling based on our implemen-
tation of E-PDP in Linux. As a basis for comparison, we have also implemented the scheme of
Deswarte et al. [17] and Filho et al. [19] (B-PDP), and the more efficient scheme in [20] (MHT-SC)
suggested by David Wagner (these schemes are described in Appendix B).

All experiments were conducted on an Intel 2.8 GHz Pentium IV system with a 512 KB cache,
an 800 MHz EPCI bus, and 1024 MB of RAM. The system runs Red Hat Linux 9, kernel version
2.4.22. Algorithms use the crypto library of OpenSSL version 0.9.8b with a modulus N of size 1024
bits and files have 4KB blocks. Experiments that measure disk I/O performance do so by storing
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Figure 4: Performance of sampling at multiple confidence levels.

files on an ext3 file system on a Seagate Barracuda 7200.7 (ST380011A) 80GB Ultra ATA/100
drive. All experimental results represent the mean of 20 trials. Because results varied little across
trials, we do not present confidence intervals.

Sampling. To quantify the performance benefits of sampling for E-PDP, we compare the client
and server performance for detecting 1% missing or faulty data at 95% and 99% confidence (Fig.
4). These results are compared with using E-PDP over all blocks of the file at large file sizes, up to
64 MB. We measure both the computation time only (in memory) as well as the overall time (on
disk), which includes I/O costs.

Examining all blocks uses time linear in the file size for files larger than 4MB. This is the
point at which the computation becomes bound from either memory or disk throughput. Larger
inputs amortize the cost of the single exponentiation required by E-PDP. This is also the point at
which the performance of sampling diverges. The number of blocks needed to achieve the target
confidence level governs performance.

For larger files, E-PDP generates data as fast as it can be accessed from memory and summed,
because it only computes a single exponentiation. In E-PDP, the server generates

∑c
i=1mi, which

it exponentiates. The maximum size of this quantity in bits is |mi| + log2(c); its maximum value
is c · 2|mi|. Thus, the cryptographic costs grows logarithmically in the file size. The linear cost of
accessing all data blocks and computing the sum dominate this logarithmic growth.

Comparing results when data are on disk versus in cache shows that disk throughput bounds
E-PDP’s performance when accessing all blocks. With the exception of the first blocks of a file,
I/O and the challenge computation occur in parallel. Thus, E-PDP generates proofs faster than
the disk can deliver data: 1.0 second versus 1.8 seconds for a 64 MB file. Because I/O bounds
performance, no protocol can outperform E-PDP by more than the startup costs. While faster,
multiple-disk storage may remove the I/O bound today. Over time increases in processor speeds
will exceed those of disk bandwidth and the I/O bound will hold.

Sampling breaks the linear scaling relationship between time to generate a proof of data posses-
sion and the size of the file. At 99% confidence, E-PDP can build a proof of possession for any file,
up to 64 MB in size in about 0.4 seconds. Disk I/O incurs about 0.04 seconds of additional runtime
for larger file sizes over the in-memory results. Sampling performance characterizes the benefits
of E-PDP. Probabilistic guarantees make it practical to use public-key cryptography constructs to
verify possession of very large data sets.
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Figure 5: Computation performance.

Server Computation. The next experiments look at the worst-case performance of generating
a proof of possession, which is useful for planning purposes to allow the server to allocate enough
resources. For E-PDP, this means sampling every block in the file, while for MHT-SC this means
computing the entire hash tree. We compare the computation complexity of E-PDP with other
algorithms, which do not support sampling. All schemes perform an equivalent number of disk and
memory accesses.

In step 3 of the GenProof algorithm of S-PDP, S has two ways of computing ρ: Either sum the
values ajmij (as integers) and then exponentiate gs to this sum or exponentiate gs to each value
ajmij and then multiply all values. We observed that the former choice takes considerable less
time, as it only involves one exponentiation to a (|mi| + ℓ + log2(c))-bit number, as opposed to c
exponentiations to a (|mi|+ ℓ)-bit number (typically, ℓ = 160).

Fig. 5(a) shows the computation time as a function of file size used at the server when computing
a proof for B-PDP, MHT-SC and E-PDP. Note the logarithmic scale. Computation time includes
the time to access the memory blocks that contain file data in cache. We restrict this experiment
to files of 768 KB or less, because of the amount of time consumed by B-PDP.

E-PDP radically alters the complexity of data possession protocols and even outperforms pro-
tocols that provide weaker guarantees, specifically MHT-SC. For files of 768 KB, E-PDP is more
than 185 times faster than B-PDP and more than 4.5 times as fast as MHT-SC. These performance
ratios become arbitrarily large for larger file sizes. For B-PDP performance grows linearly with the
file size, because it exponentiates the entire file. For MHT-SC, performance also grows linearly, but
in disjoint clusters which represent the height of the Merkle-tree needed to represent a file of that
size.

Pre-Processing. In preparing a file for outsourced storage, the client generates its local metadata.
In this experiment, we measure the processor time for metadata generation only. This does not
include the I/O time to load data to the client or store metadata to disk, nor does it include the
time to transfer the file to the server. Fig. 5(b) shows the pre-processing time as a function of file
size for B-PDP, MHT-SC and E-PDP.

E-PDP exhibits slower pre-processing performance. The costs grow linearly with the file size at
162 KB/s. E-PDP performs an exponentiation on every block of the file in order to create the per-
block tags. For MHT-SC, preprocessing performance mirrors challenge performance, because both
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Figure 6: E-PDP pre-processing vs. challenge trade-offs with block size for a 1 MB file.

protocol steps perform the same computation. It generates data at about 433 KB/s on average.
The preprocessing performance of B-PDP differs from the challenge phase even though both

steps compute the exact same signature. This is because the client has access to φ(N) and can
reduce the file modulo φ(N) before exponentiating. In contrast, the security of the protocol depends
on φ(N) being a secret that is unavailable to the server. The preprocessing costs comprise a single
exponentiation and computing a modulus against the entire file.

E-PDP also exponentiates data that was reduced modulo φ(N) but does not reap the same speed
up, because it must do so for every block. This creates a natural trade-off between preprocessing
time and challenge time by varying the block size; e.g., the protocol devolves to B-PDP for files of
a single block. Fig. 6 shows this trade-off and indicates that the best balance occurs at natural file
system and memory blocks sizes of 4-64 KB (note that in this example all file blocks are checked
in a challenge). We choose a block size of 4K in order to minimize the server’s effort.

Given the efficiency of computing challenges, pre-processing represents the limiting performance
factor for E-PDP. The rate at which clients can generate data to outsource bounds the overall system
performance perceived by the client. However, there are several mitigating factors. (1) Outsourcing
data is a one time task, as compared to challenging outsourced data, which will be done repeatedly.
(2) The process is completely parallelizable. Each file can be processed independently at a different
processor. A single file can be parallelized trivially if processors share key material.

6 Conclusion

We focused on the problem of verifying if an untrusted server stores a client’s data. We in-
troduced a model for provable data possession, in which it is desirable to minimize the file block
accesses, the computation on the server, and the client-server communication. Our solutions for
PDP fit this model: They incur a low (or even constant) overhead at the server and require a
small, constant amount of communication per challenge. Key components of our schemes are the
homomorphic verifiable tags. They allow to verify data possession without having access to the
actual data file.

Experiments show that our schemes, which offer a probabilistic possession guarantee by sam-
pling the server’s storage, make it practical to verify possession of large data sets. Previous schemes
that do not allow sampling are not practical when PDP is used to prove possession of large amounts
of data. Our experiments show that such schemes also impose a significant I/O and computational
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burden on the server.
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A Proof of Theorem 4.3

Under the KEA1-r assumption, we reduce the security of our S-PDP scheme to the security of
the RSA problem and the security of integer factoring. We model both hash functions h(·) and
H(·) as random oracles. However we do not use the ”full power” of the random oracle model and
indeed a scheme that does not use any random oracles can be easily derived from ours but at the
cost of increased computational cost and bandwidth requirement.

We assume there exists an adversary B that wins the Data Possession Game on a challenge
picked by A and show that A will be able to extract the blocks determined by the challenge. If
B can break the data possession guarantee of the S-PDP scheme, we show how to construct an
adversary A that uses B in order to either break RSA or factor the product of two large primes.

For the RSA problem, A is given (N, e, y), with y
R
← Z

∗
N , and needs to find a value b ≡

y1/e mod N . We assume w.l.o.g. that e is a large prime number. A will play the role of the
challenger in the Data Possession Game and will interact with B.

We first look at the case when in GenProof and CheckProof all the coefficients a1, . . . , ac are equal
to 1. This corresponds to the case where the server proves it possesses the sum of the requested
blocks. We then generalize the proof to the case where the coefficients are random and pairwise
distinct, which corresponds to the case where the server proves it possesses each individual block.
A simulates a PDP environment for B as follows:

Setup: A computes g = y2 mod N , sets the public key pk = (N, g) and sends pk to B. A generates

the secret value v
R
← {0, 1}κ.

Query: B makes tagging queries adaptively: B selects a block m1 and is also allowed to select
an index i1. B sends m1 and i1 to A. A generates Ti1,m1

and sends it back to B. B continues to
query A for the tags Ti2,m2

, . . . , Tin,mn
on the blocks m2, . . . ,mn and indices i1, . . . , in of its choice.

The only restriction is that B cannot make tagging queries for two different blocks using the same
index.
A answers B’s tagging oracle queries as follows:

when A receives a tagging query for a block m and index i, with 1 ≤ i ≤ n:

• if a previous tagging query has been made for the same m and i, then A retrieves the recorded
tuple (m, i, ri, Wi) and returns Ti,m = ri.

• else, A picks ri
R
← QRN , computes Wi = v||i, records the tuple (m, i, ri, Wi) and returns Ti,m = ri.

when A receives a hash query for a value x:

• if a previous hash query was made for a value x, then A retrieves the recorded tuple (x, ωx)
and returns h(x) = ωx.

• else A picks ω
R
← QRN , records the tuple (x, ωx) and returns h(x) = ωx.

22



A’s view of the hash values h(Wi), for 1 ≤ i ≤ n, is: h(Wi) = re
i · g

−mi mod N . Clearly B could
query the random oracle on values Wi with only negligible probability. Notice that in the random
oracle model h(Wi) is simply a PRF under the secret v.

Challenge: A generates the challenge chal = (gs, i1, . . . , ic), where gs = gs mod N , s
R
← Z

∗
N and

i1, . . . , ic are the indices of the blocks for which A requests proof of possession (with 1 ≤ ij ≤ n,
1 ≤ j ≤ c, 1 ≤ c ≤ n). A sends chal to B.

Forge: B generates a proof V = (T, ρ) about the blocks mi1, . . . ,mic determined by i1, . . . , ic, where
T = T{i1,...,ic},mi1

+...+mic
. Note that V is a valid proof that passes CheckProof(pk, sk, chal,V). B

returns V to A and A checks the validity of V. Let M = mi1 + . . .+mic .
As H is a random oracle, with overwhelming probability we can extract the pre-image value ρp

that B utilized to calculate ρ. (By the definition of a random oracle, B can guess a valid value of
ρ with only negligible probability.)

A has given B both g, gs and B has implicitly returned τ =
Te

∏c
j=1 h(Wij)

, ρp by returning T, ρ.

Because τ s = ρp, by KEA-1r, A can utilize the extractor B̄ to extract a value M∗ such that
gM∗

= τ (if −gM∗
= τ then A sets T = −T mod N).

If M∗ = M , then A was able to successfully extract the correct message M . We analyze next
the case when M∗ 6= M . Note that M∗ is the “full-domain” value utilized by this calculation. (If
the extractor B̄ is able to extract a value M ′ 6= M∗ such that gM ′

= gM∗
mod N , this will allow to

compute a multiple of φ(N), from which the factorization of N can be efficiently computed [34].)
From τ = gM∗

we get Te = (
∏c

j=1 h(Wij )) · g
M∗

, where clearly gM∗
6= gM , and thus:

T =









c
∏

j=1

h(Wij )



 · gM∗





d

=









c
∏

j=1

(re
ij · g

−mij )



 · gM∗





d

=





c
∏

j=1

rij



 ·
(

gM∗−M
)d

A computes:

z =
T

∏c
j=1 rij

=
(

gM∗−M
)d

We have ze = gM∗−M = y2(M∗−M). Notice that gcd(e, 2(M∗ −M)) = 1 with overwhelming
probability (this holds because e is a large prime number unknown to B). Applying Shamir’s
“trick” [43], A uses the extended Euclidian algorithm to efficiently compute integers u and v such
that u · e+ v · 2(M∗ −M) = 1 and outputs y1/e = yuzv.

Note that the interactions of A with B are indistinguishable to B from interactions with an
honest challenger in the Data Possession Game, as A chooses all parameters according to our
protocol (and in particular note that B does not learn the value e by interacting with A).
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The proof generalizes to the case where the coefficients a1, . . . , ac are random and pairwise
distinct. Indeed, in this case it is enough to apply the same simulation shown above and in addition
to notice that at the end of the simulation A will be able to extract M̄ = a1mi1 + . . .+ acmic . We
now have to show that our protocol constitutes a proof of knowledge of the blocks mi1 , . . . ,mic

when a1, . . . , ac are pairwise distinct. We show that a knowledge extractor E may extract the file
blocks mi1 , . . . ,mic . Note that each time E runs the PDP protocol, he obtains a linear equation of
the form M̄ = a1mi1 + . . .+ acmic . By choosing independent coefficients a1, . . . , ac in c executions
of the protocol on the same blocks mi1, . . . ,mic , E obtains c independent linear equations in the
variables mi1 , . . . ,mic . E may then solve these equations to obtain the file blocks mi1 , . . . ,mic .

Proof of Theorem 4.4 The proof of Theorem 4.4 follows directly from the proof of Theorem 4.3.
The main difference is that we do not need to use the KEA1-r extractor since the message is given
to A directly. In addition, we allow the adversary B to select only messages mi of a certain size and
to check the validity of tags after each tag query. When B makes a tagging query for a block mi

and index i, with 1 ≤ i ≤ n, then A picks ri
R
← QRN , computes Wi = wv(i) and returns (Ti,m, Wi),

where Ti,m = ri. B may verify the tag by checking whether the relation (Ti,mi
)e = h(Wi) · g

mi holds.
Indeed, when B makes a hash query for a value Wi, A will return h(Wi) = re

i · g
−mi mod N .

Now, if B releases a sum M∗ that passes CheckProof such that M∗ 6= M , then we can clearly
solve the RSA instance since gcd(e, 2(M∗ −M)) = 1 given that e is a prime bigger than |M∗−M |
(both |M∗| and |M | are smaller than λ/2 and e > λ).

B Implemented PDP Schemes

As a basis of comparison, we have implemented the following two PDP schemes in addition to
our E-PDP scheme:

Basic RSA-based PDP Scheme (B-PDP)[17, 19]. Let N be an RSA modulus and let g ∈ Z
∗
N .

Setup: C stores a = gF mod N . C sends F to S.

Challenge:

1. C generates a random value r
R
← Z

∗
n and sends gr to S.

2. S computes b = (gr)F mod N and sends b to C.

3. C computes ar and checks if b = ar mod N .

Merkle Hash Tree-based Storage Enforcing Scheme (MHT-SC)[20]. Let ψ be a one-way
length-increasing transformation and let h be a cryptographic hash function. In a binary tree, we
denote by PATH(i) the set of nodes on the path between the root of the tree and the i-th leaf.

Setup: C applies the transformation ψ on the file F and obtains the expanded file F′ = ψ(F). C
stores hroot as the root of the Merkle hash tree4 which is computed using h on the blocks of
F′.

Challenge:

4Merkle hash trees compute a parent node by applying a hash function on the concatenation of its children nodes.
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1. C randomly picks the index i of a block F′i of the expanded file F′ and sends i to S.

2. Let Hi be the set of hashes corresponding to the nodes that “hang” off PATH(i) in the
Merkle hash tree determined by F′. S sends Hi and F′i back to C.

3. C uses Hi and F′i to recompute the root of the tree and compares this value with the stored
value for hroot.
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