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Abstract

We propose a method to learn deep ReLU-based

classifiers that are provably robust against norm-

bounded adversarial perturbations on the training

data. For previously unseen examples, the ap-

proach is guaranteed to detect all adversarial ex-

amples, though it may flag some non-adversarial

examples as well. The basic idea is to consider

a convex outer approximation of the set of acti-

vations reachable through a norm-bounded per-

turbation, and we develop a robust optimization

procedure that minimizes the worst case loss over

this outer region (via a linear program). Cru-

cially, we show that the dual problem to this lin-

ear program can be represented itself as a deep

network similar to the backpropagation network,

leading to very efficient optimization approaches

that produce guaranteed bounds on the robust

loss. The end result is that by executing a few

more forward and backward passes through a

slightly modified version of the original network

(though possibly with much larger batch sizes),

we can learn a classifier that is provably robust

to any norm-bounded adversarial attack. We il-

lustrate the approach on a number of tasks to

train classifiers with robust adversarial guaran-

tees (e.g. for MNIST, we produce a convolutional

classifier that provably has less than 5.8% test er-

ror for any adversarial attack with bounded ℓ∞
norm less than ǫ = 0.1), and code for all exper-

iments is available at http://github.com/

locuslab/convex_adversarial.
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1. Introduction

Recent work in deep learning has demonstrated the preva-

lence of adversarial examples (Szegedy et al., 2014; Good-

fellow et al., 2015), data points fed to a machine learning

algorithm which are visually indistinguishable from “nor-

mal” examples, but which are specifically tuned so as to fool

or mislead the machine learning system. Recent history in

adversarial classification has followed something of a virtual

“arms race”: practitioners alternatively design new ways of

hardening classifiers against existing attacks, and then a new

class of attacks is developed that can penetrate this defense.

Distillation (Papernot et al., 2016) was effective at prevent-

ing adversarial examples until it was not (Carlini & Wagner,

2017b). There was no need to worry about adversarial ex-

amples under “realistic” settings of rotation and scaling (Lu

et al., 2017) until there was (Athalye & Sutskever, 2017).

Nor does the fact that the adversary lacks full knowledge

of the model appear to be a problem: “black-box” attacks

are also extremely effective (Papernot et al., 2017). Even

detecting the presence of adversarial examples is challeng-

ing (Metzen et al., 2017; Carlini & Wagner, 2017a), and

attacks are not limited to synthetic examples, having been

demonstrated repeatedly on real-world objects (Sharif et al.,

2016; Kurakin et al., 2016). Somewhat memorably, many of

the adversarial defense papers at the most recent ICLR con-

ference were broken prior to the review period completing

(Athalye et al., 2018).

Given the potentially high-stakes nature of many machine

learning systems, we feel this situation is untenable: the

“cost” of having a classifier be fooled just once is potentially

extremely high, and so the attackers are the de-facto “win-

ners” of this current game. Rather, one way to truly harden

classifiers against adversarial attacks is to design classifiers

that are guaranteed to be robust to adversarial perturbations,

even if the attacker is given full knowledge of the classifier.

Any weaker attempt of “security through obscurity” could

ultimately prove unable to provide a robust classifier.

In this paper, we present a method for training provably

robust deep ReLU classifiers, classifiers that are guaranteed

to be robust against any norm-bounded adversarial pertur-

bations on the training set. The approach also provides a

provable method for detecting any previously unseen adver-

sarial example, with zero false negatives (i.e., the system

http://github.com/locuslab/convex_adversarial
http://github.com/locuslab/convex_adversarial
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will flag any adversarial example in the test set, though it

may also mistakenly flag some non-adversarial examples).

The crux of our approach is to construct a convex outer

bound on the so-called “adversarial polytope”, the set of all

final-layer activations that can be achieved by applying a

norm-bounded perturbation to the input; if we can guaran-

tee that the class prediction of an example does not change

within this outer bound, we have a proof that the example

could not be adversarial (because the nature of an adversar-

ial example is such that a small perturbation changed the

class label). We show how we can efficiently compute and

optimize over the “worst case loss” within this convex outer

bound, even in the case of deep networks that include rela-

tively large (for verified networks) convolutional layers, and

thus learn classifiers that are provably robust to such pertur-

bations. From a technical standpoint, the outer bounds we

consider involve a large linear program, but we show how

to bound these optimization problems using a formulation

that computes a feasible dual solution to this linear program

using just a single backward pass through the network (and

avoiding any actual linear programming solvers).

Using this approach we obtain, to the best of our knowledge,

by far the largest verified networks to date, with provable

guarantees of their performance under adversarial perturba-

tions. We evaluate our approach on classification tasks such

as human activity recognition, MNIST digit classification,

“Fashion MNIST”, and street view housing numbers. In the

case of MNIST, for example, we produce a convolutional

classifier that provably has less than 5.8% test error for any

adversarial attack with bounded ℓ∞ norm less than ǫ = 0.1.

2. Background and Related Work

In addition to general work in adversarial attacks and de-

fenses, our work relates most closely to several ongoing

thrusts in adversarial examples. First, there is a great deal of

ongoing work using exact (combinatorial) solvers to verify

properties of neural networks, including robustness to adver-

sarial attacks. These typically employ either Satisfiability

Modulo Theories (SMT) solvers (Huang et al., 2017; Katz

et al., 2017; Ehlers, 2017; Carlini et al., 2017) or integer pro-

gramming approaches (Lomuscio & Maganti, 2017; Tjeng

& Tedrake, 2017; Cheng et al., 2017). Of particular note is

the PLANET solver (Ehlers, 2017), which also uses linear

ReLU relaxations, though it employs them just as a sub-step

in a larger combinatorial solver. The obvious advantage of

these approaches is that they are able to reason about the

exact adversarial polytope, but because they are fundamen-

tally combinatorial in nature, it seems prohibitively difficult

to scale them even to medium-sized networks such as those

we study here. In addition, unlike in the work we present

here, the verification procedures are too computationally

costly to be integrated easily to a robust training procedure.

The next line of related work are methods for computing

tractable bounds on the possible perturbation regions of

deep networks. For example, Parseval networks (Cisse et al.,

2017) attempt to achieve some degree of adversarial robust-

ness by regularizing the ℓ2 operator norm of the weight ma-

trices (keeping the network non-expansive in the ℓ2 norm);

similarly, the work by Peck et al. (2017) shows how to limit

the possible layerwise norm expansions in a variety of dif-

ferent layer types. In this work, we study similar “layerwise”

bounds, and show that they are typically substantially (by

many orders of magnitude) worse than the outer bounds we

present.

Finally, there is some very recent work that relates sub-

stantially to this paper. Hein & Andriushchenko (2017)

provide provable robustness guarantees for ℓ2 perturbations

in two-layer networks, though they train their models using

a surrogate of their robust bound rather than the exact bound.

Sinha et al. (2018) provide a method for achieving certified

robustness for perturbations defined by a certain distribu-

tional Wasserstein distance. However, it is not clear how to

translate these to traditional norm-bounded adversarial mod-

els (though, on the other hand, their approach also provides

generalization guarantees under proper assumptions, which

is not something we address in this paper).

By far the most similar paper to this work is the concur-

rent work of Raghunathan et al. (2018), who develop a

semidefinite programming-based relaxation of the adver-

sarial polytope (also bounded via the dual, which reduces

to an eigenvalue problem), and employ this for training a

robust classifier. However, their approach applies only to

two-layer networks, and only to fully connected networks,

whereas our method applies to deep networks with arbitrary

linear operator layers such as convolution layers. Likely

due to this fact, we are able to significantly outperform their

results on medium-sized problems: for example, whereas

they attain a guaranteed robustness bound of 35% error on

MNIST, we achieve a robust bound of 5.8% error. However,

we also note that when we do use the smaller networks they

consider, the bounds are complementary (we achieve lower

robust test error, but higher traditional test error); this sug-

gests that finding ways to combine the two bounds will be

useful as a future direction.

Our work also fundamentally relates to the field of robust

optimization (Ben-Tal et al., 2009), the task of solving an

optimization problem where some of the problem data is

unknown, but belong to a bounded set. Indeed, robust opti-

mization techniques have been used in the context of linear

machine learning models (Xu et al., 2009) to create clas-

sifiers that are robust to perturbations of the input. This

connection was addressed in the original adversarial exam-

ples paper (Goodfellow et al., 2015), where it was noted that

for linear models, robustness to adversarial examples can

be achieved via an ℓ1 norm penalty on the weights within
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Figure 1. Conceptual illustration of the (non-convex) adversarial polytope, and an outer convex bound.

the loss function.1 Madry et al. (2017) revisited this connec-

tion to robust optimization, and noted that simply solving

the (non-convex) min-max formulation of the robust opti-

mization problem works very well in practice to find and

then optimize against adversarial examples. Our work can

be seen as taking the next step in this connection between

adversarial examples and robust optimization. Because we

consider a convex relaxation of the adversarial polytope, we

can incorporate the theory from convex robust optimization

and provide provable bounds on the potential adversarial

error and loss of a classifier, using the specific form of dual

solutions of the optimization problem in question without

relying on any traditional optimization solver.

3. Training Provably Robust Classifiers

This section contains the main methodological contribution

of our paper: a method for training deep ReLU networks

that are provably robust to norm-bounded perturbations. Our

derivation roughly follows three steps: first, we define the

adversarial polytope for deep ReLU networks, and present

our convex outer bound; second, we show how we can ef-

ficiently optimize over this bound by considering the dual

problem of the associated linear program, and illustrate how

to find solutions to this dual problem using a single modi-

fied backward pass in the original network; third, we show

how to incrementally compute the necessary elementwise

upper and lower activation bounds, using this dual approach.

After presenting this algorithm, we then summarize how the

method is applied to train provably robust classifiers, and

how it can be used to detect potential adversarial attacks on

previously unseen examples.

3.1. Outer Bounds on the Adversarial Polytope

In this paper we consider a k layer feedforward ReLU-based

neural network, fθ : R|x| → R
|y| given by the equations

ẑi+1 =Wizi + bi, for i = 1, . . . , k − 1

zi = max{ẑi, 0}, for i = 2, . . . , k − 1
(1)

with z1 ≡ x and fθ(x) ≡ ẑk (the logits input to the clas-

sifier). We use θ = {Wi, bi}i=1,...,k to denote the set of

all parameters of the network, where Wi represents a linear

operator such as matrix multiply or convolution.

1This fact is well-known in robust optimization, and we merely
mean that the original paper pointed out this connection.
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Figure 2. Illustration of the convex ReLU relaxation over the

bounded set [ℓ, u].

We use the set Zǫ(x) to denote the adversarial polytope, or

the set of all final-layer activations attainable by perturbing

x by some ∆ with ℓ∞ norm bounded by ǫ:2

Zǫ(x) = {fθ(x+∆) : ‖∆‖∞ ≤ ǫ}. (2)

For multi-layer networks, Zǫ(x) is a non-convex set (it

can be represented exactly via an integer program as in

(Lomuscio & Maganti, 2017) or via SMT constraints (Katz

et al., 2017)), so cannot easily be optimized over.

The foundation of our approach will be to construct a convex

outer bound on this adversarial polytope, as illustrated in

Figure 1. If no point within this outer approximation exists

that will change the class prediction of an example, then we

are also guaranteed that no point within the true adversarial

polytope can change its prediction either, i.e., the point is ro-

bust to adversarial attacks. Our eventual approach will be to

train a network to optimize the worst case loss over this con-

vex outer bound, effectively applying robust optimization

techniques despite non-linearity of the classifier.

The starting point of our convex outer bound is a linear re-

laxation of the ReLU activations. Specifically, given known

lower and upper bounds ℓ, u for the pre-ReLU activations,

we can replace the ReLU equalities z = max{0, ẑ} from

(1) with their upper convex envelopes,

z ≥ 0, z ≥ ẑ, −uẑ + (u− ℓ)z ≤ −uℓ. (3)

The procedure is illustrated in Figure 2, and we note that if

ℓ and u are both positive or both negative, the relaxation is

exact. The same relaxation at the activation level was used

in Ehlers (2017), however as a sub-step for exact (combina-

torial) verification of networks, and the method for actually

computing the crucial bounds ℓ and u is different. We denote

this outer bound on the adversarial polytope from replacing

the ReLU constraints as Z̃ǫ(x).

2For the sake of concreteness, we will focus on the ℓ∞ bound
during this exposition, but the method does extend to other norm
balls, which we will highlight shortly.
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Robustness guarantees via the convex outer adversarial

polytope. We can use this outer bound to provide prov-

able guarantees on the adversarial robustness of a classifier.

Given a sample x with known label y⋆, we can find the

point in Z̃ǫ(x) that minimizes this class and maximizes

some alternative target ytarg, by solving the optimization

problem

minimize
ẑk

(ẑk)y⋆ − (ẑk)ytarg ≡ cT ẑk

subject to ẑk ∈ Z̃ǫ(x)
(4)

where c ≡ ey⋆−eytarg . Importantly, this is a linear program

(LP): the objective is linear in the decision variables, and our

convex outer approximation consists of just linear equalities

and inequalities.3 If we solve this LP for all target classes

ytarg 6= y⋆ and find that the objective value in all cases is

positive (i.e., we cannot make the true class activation lower

than the target even in the outer polytope), then we know

that no norm-bounded adversarial perturbation of the input

could misclassify the example.

We can conduct similar analysis on test examples as well.

If the network predicts some class ŷ on an example x, then

we can use the same procedure as above to test whether the

network will output any different class for a norm-bounded

perturbation. If not, then the example cannot be adversarial,

because no input within the norm ball takes on a different

class (although of course, the network could still be predict-

ing the wrong class). Although this procedure may incor-

rectly “flag” some non-adversarial examples, it will have

zero false negatives, e.g., there may be a normal example

that can still be classified differently due to a norm-bounded

perturbation, but all norm-bounded adversarial examples

will be detected.

Of course, two major issues remain: 1) although the LP

formulation can be solved “efficiently”, actually solving an

LP via traditional methods for each example, for each target

class, is not tractable; 2) we need a way of computing the

crucial ℓ and u bounds for the linear relaxation. We address

these in the following two sections.

3.2. Efficient Optimization via the Dual Network

Because solving an LP with a number of variables equal to

the number of activations in the deep network via standard

approaches is not practically feasible, the key aspect of our

approach lies in our method for very efficiently bounding

these solutions. Specifically, we consider the dual problem

of the LP above; recall that any feasible dual solution pro-

vides a guaranteed lower bound on the solution of the primal.

Crucially, we show that the feasible set of the dual problem

can itself be expressed as a deep network, and one that is

very similar to the standard backprop network. This means

that providing a provable lower bound on the primal LP (and

3The full explicit form of this LP is given in Appendix A.1.

hence also a provable bound on the adversarial error), can

be done with only a single backward pass through a slightly

modified network (assuming for the time being, that we still

have known upper and lower bounds for each activation).

This is expressed in the following theorem

Theorem 1. The dual of (4) is of the form

maximize
α

Jǫ(x, gθ(c, α))

subject to αi,j ∈ [0, 1], ∀i, j
(5)

where Jǫ(x, ν) is equal to

−

k−1
∑

i=1

νTi+1bi − xT ν̂1 − ǫ‖ν̂1‖1 +

k−1
∑

i=2

∑

j∈Ii

ℓi,j [νi,j ]+ (6)

and gθ(c, α) is a k layer feedforward neural network given

by the equations

νk = −c

ν̂i =WT
i νi+1, for i = k − 1, . . . , 1

νi,j =







0 j ∈ I−
i

ν̂i,j j ∈ I+
i

ui,j

ui,j−ℓi,j
[ν̂i,j ]+ − αi,j [ν̂i,j ]− j ∈ Ii,

for i = k − 1, . . . , 2

(7)

where ν is shorthand for (νi, ν̂i) for all i (needed because

the objective J depends on all ν terms, not just the first),

and where I−
i , I+

i , and Ii denote the sets of activations in

layer i where the lower and upper bounds are both negative,

both positive, or span zero respectively.

The “dual network” from (7) in fact is almost identical to the

backpropagation network, except that for nodes j in Ii there

is the additional free variable αi,j that we can optimize over

to improve the objective. In practice, rather than optimizing

explicitly over α, we choose the fixed, dual feasible solution

αi,j =
ui,j

ui,j − ℓi,j
. (8)

This makes the entire backward pass a linear function, and

is additionally justified by considerations regarding the con-

jugate set of the ReLU relaxation (see Appendix A.3 for

discussion). Because any solution α is still dual feasible,

this still provides a lower bound on the primal objective,

and one that is reasonably tight in practice.4 Thus, in the

remainder of this work we simply refer to the dual objective

as J(x, gθ(c)), implicitly using the above-defined α terms.

We also note that norm bounds other than the ℓ∞ norm are

also possible in this framework: if the input perturbation

is bounded within some convex ℓp norm, then the only

difference in the dual formulation is that the ℓ1 norm on ‖ν̂‖1
changes to ‖ν̂‖q where q is the dual norm of p. However,

because we focus solely on experiments with the ℓ∞ norm

below, we don’t emphasize this point in the current paper.

4The tightness of the bound is examined in Appendix B.
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Algorithm 1 Computing Activation Bounds

input: Network parameters {Wi, bi}
k−1
i=1 , data point x,

ball size ǫ

// initialization

ν̂1 :=WT
1

γ1 := bT1
ℓ2 := xTWT

1 + bT1 − ǫ‖WT
1 ‖1,:

u2 := xTWT
1 + bT1 + ǫ‖WT

1 ‖1,:
// ‖ · ‖1,: for a matrix here denotes ℓ1 norm of all columns

for i = 2, . . . , k − 1 do

form I−
i , I+

i , Ii; form Di as in (10)

// initialize new terms

νi,Ii
:= (Di)Ii

WT
i

γi := bTi
// propagate existing terms

νj,Ij
:= νj,Ij

DiW
T
i , j = 2, . . . , i− 1

γj := γjDiW
T
i , j = 1, . . . , i− 1

ν̂1 := ν̂1DiW
T
i

// compute bounds

ψi := xT ν̂1 +
∑i

j=1 γj

ℓi+1 := ψi − ǫ‖ν̂1‖1,: +
∑i

j=2

∑

i′∈Ii
ℓj,i′ [−νj,i′ ]+

ui+1 := ψi + ǫ‖ν̂1‖1,: −
∑i

j=2

∑

i′∈Ii
ℓj,i′ [νj,i′ ]+

end for

output: bounds {ℓi, ui}
k
i=2

3.3. Computing Activation Bounds

Thus far, we have ignored the (critical) issue of how we actu-

ally obtain the elementwise lower and upper bounds on the

pre-ReLU activations, ℓ and u. Intuitively, if these bounds

are too loose, then the adversary has too much “freedom” in

crafting adversarial activations in the later layers that don’t

correspond to any actual input. However, because the dual

function Jǫ(x, gθ(c)) provides a bound on any linear func-

tion cT ẑk of the final-layer coefficients, we can compute J

for c = I and c = −I to obtain lower and upper bounds on

these coefficients. For c = I , the backward pass variables

(where ν̂i is now a matrix) are given by

ν̂i = −WT
i Di+1W

T
i+1 . . . DnW

T
n

νi = Diν̂i
(9)

where Di is a diagonal matrix with entries

(Di)jj =







0 j ∈ I−
i

1 j ∈ I+
i

ui,j

ui,j−ℓi,j
j ∈ Ii

. (10)

We can compute (νi, ν̂i) and the corresponding upper bound

Jǫ(x, ν) (which is now a vector) in a layer-by-layer fashion,

first generating bounds on ẑ2, then using these to generate

bounds on ẑ3, etc.

The resulting algorithm, which uses these backward pass

variables in matrix form to incrementally build the bounds,

is described in Algorithm 1. From here on, the computa-

tion of J will implicitly assume that we also compute the

bounds. Because the full algorithm is somewhat involved,

we highlight that there are two dominating costs to the full

bound computation: 1) computing a forward pass through

the network on an “identity matrix” (i.e., a basis vector ei
for each dimension i of the input); and 2) computing a for-

ward pass starting at an intermediate layer, once for each

activation in the set Ii (i.e., for each activation where the

upper and lower bounds span zero). Direct computation of

the bounds requires computing these forward passes explic-

itly, since they ultimately factor into the nonlinear terms in

the J objective, and this is admittedly the poorest-scaling

aspect of our approach. A number of approaches to scale

this to larger-sized inputs is possible, including bottleneck

layers earlier in the network, e.g. PCA processing of the im-

ages, random projections, or other similar constructs; at the

current point, however, this remains as future work. Even

without improving scalability, the technique already can be

applied to much larger networks than any alternative method

to prove robustness in deep networks that we are aware of.

3.4. Efficient Robust Optimization

Using the lower bounds developed in the previous sec-

tions, we can develop an efficient optimization approach to

training provably robust deep networks. Given a data set

(xi, yi)i=1,...,N , instead of minimizing the loss at these data

points, we minimize (our bound on) the worst location (i.e.

with the highest loss) in an ǫ ball around each xi, i.e.,

minimize
θ

N
∑

i=1

max
‖∆‖∞≤ǫ

L(fθ(xi +∆), yi). (11)

This is a standard robust optimization objective, but prior

to this work it was not known how to train these classifiers

when f is a deep nonlinear network.

We also require that a multi-class loss function have the

following property (all of cross-entropy, hinge loss, and

zero-one loss have this property):

Property 1. A multi-class loss functionL : R|y|×R
|y| → R

is translationally invariant if for all a ∈ R,

L(y, y⋆) = L(y − a1, y⋆). (12)

Under this assumption, we can upper bound the robust op-

timization problem using our dual problem in Theorem 2,

which we prove in Appendix A.4.

Theorem 2. Let L be a monotonic loss function that satis-

fies Property 1. For any data point (x, y), and ǫ > 0, the

worst case adversarial loss from (11) can be upper bounded

by

max
‖∆‖∞≤ǫ

L(fθ(x+∆), y) ≤ L(−Jǫ(x, gθ(ey1
T − I)), y),

(13)
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where Jǫ is vector valued and as defined in (6) for a given ǫ,

and gθ is as defined in (7) for the given model parameters θ.

We denote the upper bound from Theorem 2 as the robust

loss. Replacing the summand of (11) with the robust loss

results in the following minimization problem

minimize
θ

N
∑

i=1

L(−Jǫ(xi, gθ(eyi
1T − I)), yi). (14)

All the network terms, including the upper and lower bound

computation, are differentiable, so the whole optimization

can be solved with any standard stochastic gradient variant

and autodiff toolkit, and the result is a network that (if we

achieve low loss) is guaranteed to be robust to adversarial

examples.

3.5. Adversarial Guarantees

Although we previously described, informally, the guaran-

tees provided by our bound, we now state them formally.

The bound for the robust optimization procedure gives rise

to several provable metrics measuring robustness and detec-

tion of adversarial attacks, which can be computed for any

ReLU based neural network independently from how the

network was trained; however, not surprisingly, the bounds

are by far the tightest and the most useful in cases where the

network was trained explicitly to minimize a robust loss.

Robust error bounds The upper bound from Theorem 2

functions as a certificate that guarantees robustness around

an example (if classified correctly), as described in Corollary

1. The proof is immediate, but included in Appendix A.5.

Corollary 1. For a data point x, label y⋆ and ǫ > 0, if

Jǫ(x, gθ(ey⋆1T − I)) ≥ 0 (15)

(this quantity is a vector, so the inequality means that all

elements must be greater than zero) then the model is guar-

anteed to be robust around this data point. Specifically,

there does not exist an adversarial example x̃ such that

‖x̃− x‖∞ ≤ ǫ and fθ(x̃) 6= y⋆.

We denote the fraction of examples that do not have this

certificate as the robust error. Since adversaries can only

hope to attack examples without this certificate, the robust

error is a provable upper bound on the achievable error by

any adversarial attack.

Detecting adversarial examples at test time The certifi-

cate from Theorem 1 can also be modified trivially to detect

adversarial examples at test time. Specifically, we replace

the bound based upon the true class y⋆ to a bound based

upon just the predicted class ŷ = maxy fθ(x)y . In this case

we have the following simple corollary.

Corollary 2. For a data point x, model prediction ŷ =
maxy fθ(x)y and ǫ > 0, if

Jǫ(x, gθ(eŷ1
T − I)) ≥ 0 (16)

then x cannot be an adversarial example. Specifically, x

cannot be a perturbation of a “true” example x⋆ with ‖x−
x⋆‖∞ ≤ ǫ, such that the model would correctly classify x⋆,

but incorrectly classify x.

This corollary follows immediately from the fact that the

robust bound guarantees no example with ℓ∞ norm within

ǫ of x is classified differently from x. This approach may

classify non-adversarial inputs as potentially adversarial,

but it has zero false negatives, in that it will never fail to

flag an adversarial example. Given the challenge in even

defining adversarial examples in general, this seems to be

as strong a guarantee as is currently possible.

ǫ-distances to decision boundary Finally, for each exam-

ple x on a fixed network, we can compute the largest value

of ǫ for which a certificate of robustness exists, i.e., such

that the output fθ(x) provably cannot be flipped within the ǫ

ball. Such an epsilon gives a lower bound on the ℓ∞ distance

from the example to the decision boundary (note that the

classifier may or may not actually be correct). Specifically,

if we find ǫ to solve the optimization problem

maximize
ǫ

ǫ

subject to Jǫ(x, gθ(efθ(x)1
T − I))y ≥ 0,

(17)

then we know that x must be at least ǫ away from the deci-

sion boundary in ℓ∞ distance, and that this is the largest ǫ

for which we have a certificate of robustness. The certifi-

cate is monotone in ǫ, and the problem can be solved using

Newton’s method.

4. Experiments

Here we demonstrate the approach on small and medium-

scale problems. Although the method does not yet scale to

ImageNet-sized classifiers, we do demonstrate the approach

on a simple convolutional network applied to several im-

age classification problems, illustrating that the method can

apply to approaches beyond very small fully-connected net-

works (which represent the state of the art for most existing

work on neural network verification). Scaling challenges

were discussed briefly above, and we highlight them more

below. Code for these experiments is available at http://

github.com/locuslab/convex_adversarial.

A summary of all the experiments is in Table 1. For all exper-

iments, we report the clean test error, the error achieved by

the fast gradient sign method (Goodfellow et al., 2015), the

error achieved by the projected gradient descent approach

(Madry et al., 2017), and the robust error bound. In all cases,

http://github.com/locuslab/convex_adversarial
http://github.com/locuslab/convex_adversarial
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Figure 3. Illustration of classification boundaries resulting from

standard training (left) and robust training (right) with ℓ∞ balls of

size ǫ = 0.08 (shown in figure).

the robust error bound for the robust model is significantly

lower than the achievable error rates by PGD under standard

training. All experiments were run on a single Titan X GPU.

For more experimental details, see Appendix B.

4.1. 2D Example

We consider training a robust binary classifier on a 2D in-

put space with randomly generated spread out data points.

Specifically, we use a 2-100-100-100-100-2 fully connected

network. Note that there is no notion of generalization

here; we are just visualizing and evaluating the ability of the

learning approach to fit a classification function robustly.

Figure 3 shows the resulting classifiers produced by standard

training (left) and robust training via our method (right). As

expected, the standard training approach results in points

that are classified differently somewhere within their ℓ∞ ball

of radius ǫ = 0.08 (this is exactly an adversarial example for

the training set). In contrast, the robust training method is

able to attain zero robust error and provides a classifier that

is guaranteed to classify all points within the balls correctly.

4.2. MNIST

We present results on a provably robust classifier on the

MNIST data set. Specifically, we consider a ConvNet ar-

chitecture that includes two convolutional layers, with 16

and 32 channels (each with a stride of two, to decrease the

resolution by half without requiring max pooling layers),

and two fully connected layers stepping down to 100 and

then 10 (the output dimension) hidden units, with ReLUs

following each layer except the last.

Figure 4 shows the training progress using our procedure

with a robust softmax loss function and ǫ = 0.1. As de-

scribed in Section 3.4, any norm-bounded adversarial tech-

nique will be unable to achieve loss or error higher than the

robust bound. The final classifier after 100 epochs reaches

a test error of 1.80% with a robust test error of 5.82%. For

a traditionally-trained classifier (with 1.07% test error) the

FGSM approach results in 50.01% error, while PGD results

in 81.68% error. On the classifier trained with our method,

however, FGSM and PGD only achieve errors of 3.93%

and 4.11% respectively (both, naturally, below our bound of
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Figure 4. Loss (left) and error rate (right) when training a robust

convolutional network on the MNIST dataset. Similar learning

curves for the other experiments can be found in Appendix B.
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Figure 5. Maximum ǫ distances to the decision boundary of each

data point in increasing ǫ order for standard and robust models

(trained with ǫ = 0.1). The color encodes the fraction of points

which were correctly classified.

5.82%). These results are summarized in Table 1.

Maximum ǫ-distances Using Newton’s method with

backtracking line search, for each example, we can compute

in 5-6 Newton steps the maximum ǫ that is robust as de-

scribed in (17) for both a standard classifier and the robust

classifier. Figure 5 shows the maximum ǫ values calculated

for each testing data point under standard training and robust

training. Under standard training, the correctly classified

examples have a lower bound of around 0.007 away from

the decision boundary. However, with robust training this

value is pushed to 0.1, which is expected since that is the ro-

bustness level used to train the model. We also observe that

the incorrectly classified examples all tend to be relatively

closer to the decision boundary.

4.3. Other Experiments

Fashion-MNIST We present the results of our robust clas-

sifier on the Fashion-MNIST dataset (Xiao et al., 2017), a

harder dataset with the same size (in dimension and number

of examples) as MNIST (for which input binarization is

a reasonable defense). Using the same architecture as in

MNIST, for ǫ = 0.1, we achieve a robust error of 34.53%,

which is fairly close to the PGD error rate of 31.63% (Table

1). Further experimental details are in Appendix B.3.

HAR We present results on a human activity recognition

dataset (Anguita et al., 2013). Specifically, we consider a

fully connected network with one layer of 500 hidden units
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Table 1. Error rates for various problems and attacks, and our robust bound for baseline and robust models.

PROBLEM ROBUST ǫ TEST ERROR FGSM ERROR PGD ERROR ROBUST ERROR BOUND

MNIST × 0.1 1.07% 50.01% 81.68% 100%
MNIST

√
0.1 1.80% 3.93% 4.11% 5.82%

FASHION-MNIST × 0.1 9.36% 77.98% 81.85% 100%
FASHION-MNIST

√
0.1 21.73% 31.25% 31.63% 34.53%

HAR × 0.05 4.95% 60.57% 63.82% 81.56%
HAR

√
0.05 7.80% 21.49% 21.52% 21.90%

SVHN × 0.01 16.01% 62.21% 83.43% 100%
SVHN

√
0.01 20.38% 33.28% 33.74% 40.67%

and ǫ = 0.05, achieving 21.90% robust error.

SVHN Finally, we present results on SVHN. The goal

here is not to achieve state of the art performance on SVHN,

but to create a deep convolutional classifier for real world

images with provable guarantees. Using the same archi-

tecture as in MNIST, for ǫ = 0.01 we achieve a robust

error bound of 42.09%, with PGD achieving 34.52% error.

Further experimental details are in Appendix B.5.

4.4. Discussion

Although these results are relatively small-scale, the some-

what surprising ability here is that by just considering a few

more forward/backward passes in a modified network to

compute an alternative loss, we can derive guaranteed error

bounds for any adversarial attack. While this is by no means

state of the art performance on standard benchmarks, this is

by far the largest provably verified network we are currently

aware of, and 5.8% robust error on MNIST represents rea-

sonable performance given that it is against any adversarial

attack strategy bounded in ℓ∞ norm, in comparison to the

only other robust bound of 35% from Raghunathan et al.

(2018).

Scaling to ImageNet-sized classification problems remains

a challenging task; the MNIST classifier takes about 5 hours

to train for 100 epochs on a single Titan X GPU, which

is between two and three orders of magnitude more costly

than naive training. But because the approach is not com-

binatorially more expensive in its complexity, we believe

it represents a much more feasible approach than those

based upon integer programming or satisfiability, which

seem highly unlikely to ever scale to such problems. Thus,

we believe the current performance represents a substantial

step forward in research on adversarial examples.

5. Conclusion

In this paper, we have presented a method based upon linear

programming and duality theory for training classifiers that

are provably robust to norm-bounded adversarial attacks.

Crucially, instead of solving anything costly, we design an

objective equivalent to a few passes through the original

network (with larger batch size), that is a guaranteed bound

on the robust error and loss of the classifier.

While we feel this is a substantial step forward in defend-

ing classifiers, two main directions for improvement exist,

the first of which is scalability. Computing the bounds

requires sending an identity matrix through the network,

which amounts to a sample for every dimension of the input

vector (and more at intermediate layers, for each activation

with bounds that span zero). For domains like ImageNet,

this is completely infeasible, and techniques such as using

bottleneck layers, other dual bounds, and random projec-

tions are likely necessary. However, unlike many past ap-

proaches, this scaling is not fundamentally combinatorial,

so has some chance of success even in large networks.

Second, it will be necessary to characterize attacks beyond

simple norm bounds. While ℓ∞ bounded examples offer a

compelling visualization of images that look “identical” to

existing examples, this is by no means the only set of pos-

sible attacks. For example, the work in Sharif et al. (2016)

was able to break face recognition software by using manu-

factured glasses, which is clearly not bounded in ℓ∞ norm,

and the work in Engstrom et al. (2017) was able to fool con-

volutional networks with simple rotations and translations.

Thus, a great deal of work remains to understand both the

space of adversarial examples that we want classifiers to be

robust to, as well as methods for dealing with these likely

highly non-convex sets in the input space.

Finally, although our focus in this paper was on adversarial

examples and robust classification, the general techniques

described here (optimizing over relaxed convex networks,

and using a non-convex network representation of the dual

problem to derive guaranteed bounds), may find applica-

bility well beyond adversarial examples in deep learning.

Many problems that invert neural networks or optimize over

latent spaces involve optimization problems that are a func-

tion of the neural network inputs or activations, and similar

techniques may be brought to bear in these domains as well.



Provable Defenses via the Convex Outer Adversarial Polytope

Acknowledgements

This work was supported by a DARPA Young Faculty

Award, under grant number N66001-17-1-4036. We thank

Frank R. Schmidt for providing helpful comments on an

earlier draft of this work.

References

Anguita, D., Ghio, A., Oneto, L., Parra, X., and Reyes-

Ortiz, J. L. A public domain dataset for human activity

recognition using smartphones. In ESANN, 2013.

Athalye, A. and Sutskever, I. Synthesizing robust adversarial

examples. arXiv preprint arXiv:1707.07397, 2017.

Athalye, A., Carlini, N., and Wagner, D. Obfuscated

gradients give a false sense of security: Circumvent-

ing defenses to adversarial examples. 2018. URL

https://arxiv.org/abs/1802.00420.

Ben-Tal, A., El Ghaoui, L., and Nemirovski, A. Robust

optimization. Princeton University Press, 2009.

Carlini, N. and Wagner, D. Adversarial examples are not

easily detected: Bypassing ten detection methods. In

Proceedings of the 10th ACM Workshop on Artificial

Intelligence and Security, pp. 3–14. ACM, 2017a.

Carlini, N. and Wagner, D. Towards evaluating the robust-

ness of neural networks. In Security and Privacy (SP),

2017 IEEE Symposium on, pp. 39–57. IEEE, 2017b.

Carlini, N., Katz, G., Barrett, C., and Dill, D. L.

Ground-truth adversarial examples. arXiv preprint

arXiv:1709.10207, 2017.

Cheng, C.-H., Nührenberg, G., and Ruess, H. Maximum

resilience of artificial neural networks. In International

Symposium on Automated Technology for Verification and

Analysis, pp. 251–268. Springer, 2017.

Cisse, M., Bojanowski, P., Grave, E., Dauphin, Y., and

Usunier, N. Parseval networks: Improving robustness

to adversarial examples. In International Conference on

Machine Learning, pp. 854–863, 2017.

Ehlers, R. Formal verification of piece-wise linear feed-

forward neural networks. In International Symposium

on Automated Technology for Verification and Analysis,

2017.

Engstrom, L., Tsipras, D., Schmidt, L., and Madry, A. A ro-

tation and a translation suffice: Fooling cnns with simple

transformations. arXiv preprint arXiv:1712.02779, 2017.

Goodfellow, I., Shlens, J., and Szegedy, C. Explaining

and harnessing adversarial examples. In International

Conference on Learning Representations, 2015. URL

http://arxiv.org/abs/1412.6572.

Hein, M. and Andriushchenko, M. Formal guarantees on the

robustness of a classifier against adversarial manipulation.

In Advances in Neural Information Processing Systems.

2017.

Huang, X., Kwiatkowska, M., Wang, S., and Wu, M. Safety

verification of deep neural networks. In International

Conference on Computer Aided Verification, pp. 3–29.

Springer, 2017.

Katz, G., Barrett, C., Dill, D., Julian, K., and Kochenderfer,

M. Reluplex: An efficient smt solver for verifying deep

neural networks. arXiv preprint arXiv:1702.01135, 2017.

Kingma, D. and Ba, J. Adam: A method for stochastic

optimization. In International Conference on Learning

Representations, 2015.

Kurakin, A., Goodfellow, I., and Bengio, S. Adversar-

ial examples in the physical world. arXiv preprint

arXiv:1607.02533, 2016.

Lomuscio, A. and Maganti, L. An approach to reachability

analysis for feed-forward relu neural networks. arXiv

preprint arXiv:1706.07351, 2017.

Lu, J., Sibai, H., Fabry, E., and Forsyth, D. No need to

worry about adversarial examples in object detection in

autonomous vehicles. arXiv preprint arXiv:1707.03501,

2017.

Madry, A., Makelov, A., Schmidt, L., Tsipras, D., and

Vladu, A. Towards deep learning models resistant to

adversarial attacks. arXiv preprint arXiv:1706.06083,

2017.

Metzen, J. H., Genewein, T., Fischer, V., and Bischoff, B.

On detecting adversarial perturbations. In International

Conference on Learning Representations, 2017.

Papernot, N., McDaniel, P., Wu, X., Jha, S., and Swami,

A. Distillation as a defense to adversarial perturbations

against deep neural networks. In Security and Privacy

(SP), 2016 IEEE Symposium on, pp. 582–597. IEEE,

2016.

Papernot, N., McDaniel, P., Goodfellow, I., Jha, S., Celik,

Z. B., and Swami, A. Practical black-box attacks against

deep learning systems using adversarial examples. In Pro-

ceedings of the 2017 ACM Asia Conference on Computer

and Communications Security, 2017.

Peck, J., Roels, J., Goossens, B., and Saeys, Y. Lower

bounds on the robustness to adversarial perturbations. In

Advances in Neural Information Processing Systems, pp.

804–813. 2017.

Raghunathan, A., Steinhardt, J., and Liang, P. Certified

defenses against adversarial examples. In International

Conference on Learning Representations, 2018.

https://arxiv.org/abs/1802.00420
http://arxiv.org/abs/1412.6572


Provable Defenses via the Convex Outer Adversarial Polytope

Sharif, M., Bhagavatula, S., Bauer, L., and Reiter, M. K.

Accessorize to a crime: Real and stealthy attacks on state-

of-the-art face recognition. In Proceedings of the 2016

ACM SIGSAC Conference on Computer and Communica-

tions Security, pp. 1528–1540. ACM, 2016.

Sinha, A., Namkoong, H., and Duchi, J. Certifiable distribu-

tional robustness with principled adversarial training. In

International Conference on Learning Representations,

2018.

Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Er-

han, D., Goodfellow, I., and Fergus, R. Intriguing

properties of neural networks. In International Confer-

ence on Learning Representations, 2014. URL http:

//arxiv.org/abs/1312.6199.

Tjeng, V. and Tedrake, R. Verifying neural net-

works with mixed integer programming. CoRR,

abs/1711.07356, 2017. URL http://arxiv.org/

abs/1711.07356.

Xiao, H., Rasul, K., and Vollgraf, R. Fashion-mnist: a

novel image dataset for benchmarking machine learning

algorithms. arXiv preprint arXiv:1708.07747, 2017.

Xu, H., Caramanis, C., and Mannor, S. Robustness and

regularization of support vector machines. Journal of

Machine Learning Research, 10(Jul):1485–1510, 2009.

http://arxiv.org/abs/1312.6199
http://arxiv.org/abs/1312.6199
http://arxiv.org/abs/1711.07356
http://arxiv.org/abs/1711.07356

