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Abstract

Solving systems of quadratic equations is a cen-

tral problem in machine learning and signal pro-

cessing. One important example is phase re-

trieval, which aims to recover a signal from only

magnitudes of its linear measurements. This

paper focuses on the situation when the mea-

surements are corrupted by arbitrary outliers, for

which the recently developed non-convex gradi-

ent descent Wirtinger flow (WF) and truncated

Wirtinger flow (TWF) algorithms likely fail. We

develop a novel median-TWF algorithm that ex-

ploits robustness of sample median to resist arbi-

trary outliers in the initialization and the gradient

update in each iteration. We show that such a

non-convex algorithm provably recovers the sig-

nal from a near-optimal number of measurements

composed of i.i.d. Gaussian entries, up to a log-

arithmic factor, even when a constant portion of

the measurements are corrupted by arbitrary out-

liers. We further show that median-TWF is also

robust when measurements are corrupted by both

arbitrary outliers and bounded noise. Our analy-

sis of performance guarantee is accomplished by

development of non-trivial concentration mea-

sures of median-related quantities, which may be

of independent interest. We further provide nu-

merical experiments to demonstrate the effective-

ness of the approach.

1. Introduction

Phase retrieval is a classical problem in machine learning,

signal processing and optical imaging, where one aims to
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recover a signal x ∈ R
n from only observing the magni-

tudes of its linear measurements:

yi = |〈ai,x〉|
2, i = 1, . . . ,m.

It has many important applications such as X-ray crys-

tallography (Drenth, 2007), but is known to be notori-

ously difficult due to the quadratic form of the measure-

ments. Classical methods based on alternating minimiza-

tion between the signal of interest and the phase informa-

tion (Fienup, 1982), though computationally simple, are of-

ten trapped at local minima and lack rigorous performance

guarantees.

Using the lifting trick, the phase retrieval problem can be

reformulated as estimating a rank-one positive semidefinite

matrix X = xxT from linear measurements (Balan et al.,

2006), to which convex relaxations into semidefinite pro-

gramming are considered (Waldspurger et al., 2015; Can-

dès et al., 2013; Chen et al., 2015; Demanet & Hand, 2014;

Candès & Li, 2014; Li & Voroninski, 2013). In particular,

when the measurement vectors ai’s are composed of i.i.d.

Gaussian entries, Phaselift (Candès et al., 2013) perfectly

recovers all x ∈ R
n with high probability as long as the

number m of measurements is on the order of n.

However, the computational cost of Phaselift becomes pro-

hibitive when the signal dimension is large. Appealingly,

a so-called Wirtinger flow (WF) algorithm based on gradi-

ent descent was recently proposed in (Candès et al., 2015;

Soltanolkotabi, 2014) and shown to work remarkably well:

it converges to the global optima when properly initialized

using the spectral method. The truncated Wirtinger flow

(TWF) algorithm (Chen & Candès, 2015) further improves

WF by eliminating samples whose contributions to both the

initialization and the search direction are excessively devi-

ated from the sample mean, so that the behavior of each

gradient update is well controlled. TWF is shown to con-

verge globally at a geometric rate as long as m is on the

order of n for i.i.d. Gaussian measurement vectors using

a constant step size. Both WF and TWF algorithms have
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been shown to be robust to bounded noise in the measure-

ments.

However, the performance of WF and TWF can be very

sensitive to outliers that take arbitrary values and can in-

troduce anomalous search directions. Even for TWF, since

the sample mean can be arbitrarily perturbed, the truncation

rule based on such sample mean cannot control the gradi-

ent well. On the other hand, the ability to handle outliers is

of great importance for phase retrieval algorithms, because

outliers arise frequently from the phase imaging applica-

tions (Weller et al., 2015) due to various reasons such as

detector failures, recording errors, and missing data. While

a form of Phaselift (Hand, 2015) is shown to be robust to

sparse outliers even when they constitute a constant portion

of all measurements, it is computationally too expensive.

1.1. Main Contributions

The main contribution of this paper lies in the development

of a non-convex phase retrieval algorithm with both statis-

tical and computational efficiency, and provable robustness

to even a constant proportion of outliers. To the best of

the authors’ knowledge, our work is the first application

of the median to robustify high-dimensional statistical es-

timation in the presence of arbitrary outliers with rigorous

non-asymptotic performance guarantees.

Our strategy is to carefully robustify the TWF algorithm

by replacing the sample mean used in the truncation rule

by its robust counterpart, the sample median. We refer

to the new algorithm as median truncated Wirtinger flow

(median-TWF). Appealingly, median-TWF does not re-

quire any knowledge of the outliers. The robustness prop-

erty of median lies in the fact that the median cannot be ar-

bitrarily perturbed unless the outliers dominate the inliers

(Huber, 2011). This is in sharp contrast to the mean, which

can be made arbitrarily large even by a single outlier. Thus,

using the sample median in the truncation rule can effec-

tively remove the impact of outliers and indeed, the perfor-

mance of median-TWF can be provably guaranteed.

Statistically, the sample complexity of median-TWF is

near-optimal up to a logarithmic factor when the measure-

ment vectors are composed of i.i.d. Gaussian entries. We

demonstrate that as soon as the number m of measure-

ments is on the order of n log n, median-TWF converges

to the global optima, i.e. recovers the ground truth up to a

global sign difference, even when the number of outliers

scales linearly with m. Computationally, median-TWF

converges at a geometric rate, requiring a computational

cost of O(mn log 1/ǫ) to reach ǫ-accuracy, which is linear

in the problem size. Reassuringly, under the same sam-

ple complexity, median-TWF still recovers the ground truth

when outliers are absent. It can therefore handle outliers

in an oblivious fashion. Finally, median-TWF is also sta-

ble when the measurements are further corrupted by dense

bounded noise besides outliers.

Our proof proceeds by first showing the initialization of

median-TWF is close enough to the ground truth, and that

the neighborhood of the ground truth, where the initializa-

tion lands in, satisfies certain Regularity Condition (Candès

et al., 2015; Chen & Candès, 2015) that guarantees con-

vergence of the descent rule, as long as the size of the

corruption is small enough and the sample size is large

enough. However, as a nonlinear operator, the sample me-

dian used in median-TWF is much more difficult to analyze

than the sample mean used in TWF, which is a linear opera-

tor and many existing concentration inequalities are readily

applicable. Considerable technical efforts lie in developing

novel non-asymptotic concentrations of the sample median,

and various statistical properties of the sample median re-

lated quantities, which may be of independent interest.

1.2. Related Work

The adoption of median in machine learning and com-

puter science is not unfamiliar, for example, K-median

clustering (Chen, 2006) and resilient data aggregation for

sensor networks (Wagner, 2004). Our work here further

extends the applications of median to robustifying high-

dimensional estimation problems.

Another popular approach in robust estimation is to use the

trimmed mean (Huber, 2011), which has found success in

robustifying sparse regression (Chen et al., 2013), linear

regression (Bhatia et al., 2015), subspace clustering (Qu &

Xu, 2015), etc. However, using the trimmed mean requires

knowledge of an upper bound on the number of outliers,

whereas median does not require such information.

Developing non-convex algorithms with provable global

convergence guarantees has attracted intensive research

interest recently. A partial list includes low-rank ma-

trix recovery (Keshavan et al., 2010; Zheng & Lafferty,

2015; Tu et al., 2015; Chen & Wainwright, 2015; White

et al., 2015), robust principal component analysis (Netra-

palli et al., 2014), robust tensor decomposition (Anandku-

mar et al., 2015), dictionary learning (Arora et al., 2015;

Sun et al., 2015), etc. We expect our analysis in this pa-

per may be extended to robustly solving other systems of

quadratic or bilinear equations in a non-convex fashion,

such as mixed linear regression (Chen et al., 2014), sparse

phase retrieval (Cai et al., 2015), and blind deconvolution

(Lee et al., 2015).

1.3. Paper Organization and Notations

The rest of this paper is organized as follows. Section 2

provides the problem formulation, and Section 3 describes

the proposed median-TWF algorithm. Theoretical perfor-

mance guarantees are stated in Section 4, with proof out-

lines given in Section 5. Numerical experiments are pre-

sented in Section 6. Finally, we conclude in Section 7.

We adopt the following notations in this paper. Given a vec-
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tor of numbers {βi}
m
i=1, the sample median is denoted as

med({βi}
m
i=1). The indicator function 1A = 1 if the event

A holds, and 1A = 0 otherwise. For two matrices, A ≺ B
if B − A is a positive semidefinite matrix. We define the

Euclidean distance between two vectors up to a global sign

difference as dist(z,x) := min {‖z − x‖, ‖z + x‖}.

2. Problem Formulation

Suppose the following set of m measurements are given

yi = |〈ai,x〉|
2
+ ηi, i = 1, · · · ,m, (1)

where x ∈ R
n is the unknown signal,1 ai ∈ R

n for

i = 1, . . . ,m are measurement vectors with each ai having

i.i.d. Gaussian entries distributed as N (0, 1), and ηi ∈ R

for i = 1, . . . ,m are outliers with arbitrary values. We

assume that outliers are sparse with sm nonzero values,

i.e., ‖η‖0 ≤ sm, where η = {ηi}
m
i=1 ∈ R

m. Here, s is a

nonzero constant, representing the faction of measurements

that are corrupted by outliers.

We are also interested in the model when the measurements

are corrupted by not only sparse arbitrary outliers but also

dense bounded noise. Under such a model, the measure-

ments are given by

yi = |〈ai,x〉|
2
+ wi + ηi, i = 1, · · · ,m, (2)

where the bounded noise w = {wi}
m
i=1 satisfies ‖w‖∞ ≤

c1‖x‖
2 for some universal constant c1, and as before, the

outlier satisfies ‖η‖0 ≤ sm.

The goal is to recover the signal x (up to a global sign dif-

ference) from the measurements y = {yi}
m
i=1 and mea-

surement vectors {ai}
m
i=1.

3. Median-TWF Algorithm

A natural idea is to recover the signal as a solution to the

following optimization problem

min
z

m
∑

i=1

−ℓ(z; yi) (3)

where ℓ(z, yi) is a likelihood function, e.g., using Gaus-

sian or Poisson likelihood. Since the measurements are

quadratic in x, the objective function is non-convex. A typ-

ical gradient descent procedure to solve (3) proceeds as

z(t+1) = z(t) +
µt

m

m
∑

i=1

∇ℓ(z(t); yi), (4)

where z(t) denotes the tth iterate of the algorithm, and µt

is the step size. By a careful initialization using the spectral

1We focus on real signals here, but our analysis can be ex-
tended to complex signals.

method, the WF algorithm (Candès et al., 2015) using the

gradient descent update (4) is shown to converge globally

under the Gaussian likelihood (i.e., quadratic loss) func-

tion, as long as the number of measurements is on the order

of n log n for i.i.d. Gaussian measurement vectors.

The TWF algorithm (Chen & Candès, 2015) improves WF

in both initialization and the descent rule: only a subset

of samples T0 contributes to the spectral method, and only

a subset of data-dependent and iteration-varying samples

Tt+1 contributes to the search directions:

z(t+1) = z(t) +
µt

m

∑

i∈Tt+1

∇ℓ(z(t); yi). (5)

The idea is that through pruning, i.e., samples with gra-

dient components ∇ℓ(z(t); yi) being much larger than the

sample mean are truncated so that each update is well con-

trolled. This modification yields both statistical and com-

putational benefits – under the Poisson loss function, TWF

converges globally geometrically to the true signal with a

constant step size with measurements at the order of n and

with i.i.d. Gaussian measurement vectors.

However, if some measurements are corrupted by arbitrary-

valued outliers as in (1), both WF and TWF can fail. This is

because the gradient of the loss function typically contains

the term |yi−|aT
i z|

2|. With yi being corrupted by arbitrar-

ily large ηi, the gradient can deviate the search direction

from the signal arbitrarily. In TWF, since the truncation

rule is based on the sample mean of the gradient, which

can be affected significantly even by a single outlier, we

cannot expect it to converge globally, particularly when the

fraction of corrupted measurements is linear with the total

number m of measurements, which is the regime we are

interested in.

To handle outliers, our central idea is to prune the samples

in both the initialization and each iteration via the sample

median related quantities. Compared to the sample mean

used in TWF, the sample median is much less affected even

in the presence of a certain linear fraction of outliers, and

is thus more robust to outliers with arbitrary values.

In the following, we describe our median-TWF in more de-

tails. We adopt the following Poisson likelihood function,

ℓ(z; yi) = yi log |a
T
i z|

2 − |aT
i z|

2, (6)

which is motivated by the maximum likelihood estimation

of the signal when the measurements are corrupted by Pois-

son distributed noise. We note that our analysis is also ap-

plicable to the quadratic loss function, but in order to com-

pare more directly to TWF in (Chen & Candès, 2015), we

adopt the Poisson likelihood function in (6).

Our median-TWF algorithm (summarized in Algorithm 1)

contains the following main steps:

1. Initialization: We initialize z(0) by the spectral method

with a truncated set of samples, where the threshold is de-
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Algorithm 1 Median Truncated Wirtinger Flow (Median-

TWF)

Input: y = {yi}
m
i=1, {ai}

m
i=1;

Parameters: thresholds αy , αh, αl, and αu, stepsize µt;

Initialization: Let z(0) = λ0z̃, where λ0 =
√

med(y)/0.455 and z̃ is the leading eigenvector of

Y :=
1

m

m
∑

i=1

yiaia
T
i 1{|yi|≤α2

yλ
2
0
}. (7)

Gradient loop: for t = 0 : T − 1 do

z(t+1) = z(t) +
2µt

m

m
∑

i=1

yi − |aT
i z

(t)|2

aT
i z

(t)
ai1Ei

1
∩Ei

2
, (8)

where

E i
1 :=

{

αl‖z
(t)‖ ≤ |aT

i z
(t)| ≤ αu‖z

(t)‖
}

,

E i
2 :=

{

|yi − |aT
i z

(t)|2| ≤ αhKt
|aT

i z
(t)|

‖z(t)‖

}

,

Kt := med

(

{|yi − |aT
i z

(t)|2|}mi=1

)

.

Output zT .

termined by the median of {yi}
m
i=1. In comparison, WF

does not truncate samples, and the truncation in TWF is

based on the mean of {yi}
m
i=1, which is not robust to out-

liers. As will be shown, as long as the portion of outliers

is not too large, our initialization (7) is guaranteed to be

within a small neighborhood of the ground truth signal.

2. Gradient loop: for each iteration 0 ≤ t ≤ T − 1, com-

paring (4) and (8), median-TWF uses an iteration-varying

truncated gradient given as

∇ℓtr(z
(t)) = 2

m
∑

i=1

yi − |aT
i z

(t)|2

aT
i z

(t)
ai1Ei

1
∩Ei

2
. (9)

It is clear from the definition of the set E i
2 (see Algo-

rithm 1), that samples are truncated by the sample median

of gradient components evaluated at the current iteration,

as opposed to the sample mean in TWF.

We set the step size in the median-TWF to be a fixed

small constant, i.e., µt = 0.2. The rest of the parameters

{αy, αh, αl, αu} are set to satisfy

ζ1 := max
{

E

[

ξ21{|ξ|<
√
1.01αl or |ξ|>

√
0.99αu}

]

,

E

[

1{|ξ|<
√
1.01αl or |ξ|>

√
0.99αu}

]}

,

ζ2 := E
[

ξ21{|ξ|>0.248αh
}
]

, (10)

2(ζ1 + ζ2) +
√

8/πα−1
h < 1.99

αy ≥ 3,

where ξ ∼ N (0, 1). For example, we set αl = 0.3, αu =
5, αy = 3 and αh = 12, and consequently ζ1 ≈ 0.24 and

ζ2 ≈ 0.032.

4. Performance Guarantees of Median-TWF

In this section, we characterize the performance guarantees

of median-TWF.

Theorem 1 (Exact recovery with sparse arbitrary out-

liers). Consider the phase retrieval problem with sparse

outliers given in (1). There exist constants µ0, s0 > 0,

0 < ρ, ν < 1 and c0, c1, c2 > 0 such that if m ≥
c0n log n, s < s0, µ ≤ µ0, then with probability at least

1− c1 exp(−c2m), the median-TWF yields

dist(z(t),x) ≤ ν(1− ρ)t‖x‖, ∀t ∈ N (11)

simultaneously for all x ∈ R
n\{0}.

Theorem 1 indicates that median-TWF admits exact recov-

ery for all signals in the presence of sparse outliers with ar-

bitrary magnitudes even when the number of outliers scales

linearly with the number of measurements, as long as the

number of samples satisfies m & n log n. This is near-

optimal up to a logarithmic factor.

Moreover, median-TWF converges at a geometric rate us-

ing a constant step size, with per-iteration cost O(mn)
(note that the median can be computed in linear time (Tib-

shirani, 2008)). To reach ǫ-accuracy, i.e., dist(z(t),x) ≤ ǫ,
onlyO(log 1/ǫ) iterations are needed, and the total compu-

tational cost is O(mn log 1/ǫ), which is highly efficient.

Not surprisingly, Theorem 1 implies that median-TWF also

performs well for the noise-free model, as a special case of

the model with outliers. This justifies utilization of median-

TWF in an oblivious situation without knowing whether the

underlying measurements are corrupted by outliers.

Corollary 1 (Exact recovery for noise-free model). Sup-

pose that the measurements are noise-free, i.e., ηi = 0
for i = 1, · · · ,m in the model (1). There exist constants

µ0 > 0, 0 < ρ, ν < 1 and c0, c1, c2 > 0 such that if

m ≥ c0n log n and µ ≤ µ0, then with probability at least

1− c1 exp(−c2m), the median-TWF yields

dist(z(t),x) ≤ ν(1− ρ)t‖x‖, ∀t ∈ N (12)

simultaneously for all x ∈ R
n\{0}.

We next consider the model when the measurements are

corrupted by both sparse arbitrary outliers and dense

bounded noise. Our following theorem characterizes that

median-TWF is robust to coexistence of the two types of

noises.

Theorem 2 (Stability to sparse arbitrary outliers and

dense bounded noises). Consider the phase retrieval

problem given in (2) in which measurements are corrupted
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by both sparse arbitrary and dense bounded noises. There

exist constants µ0, s0 > 0, 0 < ρ < 1 and c0, c1, c2 > 0
such that if m ≥ c0n log n, s < s0, µ ≤ µ0, then with

probability at least 1− c1 exp(−c2m), median-TWF yields

dist(z(t),x) .
‖w‖∞
‖x‖

+ (1− ρ)t‖x‖, ∀t ∈ N (13)

simultaneously for all x ∈ R
n\{0}.

Theorem 2 immediately implies the stability of median-

TWF for the model corrupted only by dense bounded noise.

Corollary 2. Consider the phase retrieval problem in

which measurements are corrupted only by dense bounded

noises, i.e., ηi = 0 for i = 1, · · · ,m in the model (2).

There exist constants µ0 > 0, 0 < ρ < 1 and c0, c1, c2 > 0
such that if m ≥ c0n log n, µ ≤ µ0, then with probability

at least 1− c1 exp(−c2m), median-TWF yields

dist(z(t),x) .
‖w‖∞
‖x‖

+ (1− ρ)t‖x‖, ∀t ∈ N (14)

simultaneously for all x ∈ R
n\{0}.

Thus, Theorem 2 and Corollary 2 imply that median-TWF

for the model with both sparse arbitrary outliers and dense

bounded noises achieves the same convergence rate and

the same level of estimation error as the model with only

bounded noise. In fact, together with Theorem 1 and Corol-

lary 1, it can be seen that applying median-TWF does

not require the knowledge of the noise corruption models.

When there indeed exist outliers, median-TWF achieves

the same performance as if the outliers do not exist.

5. Proof Outlines of Main Results

In this section, we first develop a few statistical properties

of median that will be useful for our analysis of perfor-

mance guarantees, and then provide a proof sketch of our

main results. The details of the proofs can be found in Sup-

plemental Materials.

5.1. Properties of Median

We start by the definitions of the quantile of a population

distribution and its sample version.

Definition 1 (Generalized quantile function). Let 0 < p <
1. For a cumulative distribution function (CDF)F , the gen-

eralized quantile function is defined as

F−1(p) = inf{x ∈ R : F (x) ≥ p}. (15)

For simplicity, denote θp(F ) = F−1(p) as the p-quantile of

F . Moreover for a sample sequence {Xi}
m
i=1, the sample

p-quantile θp({Xi}) means θp(F̂ ), where F̂ is the empiri-

cal distribution of the samples {Xi}
m
i=1 .

Remark 1. We take the median med({Xi}) = θ1/2({Xi})
and use both notations interchangeably.

Next, we show that as long as the sample size is large

enough, the sample quantile concentrates around the popu-

lation quantile (motivated from (Charikar et al., 2002)), as

in Lemma 1.

Lemma 1. Suppose F (·) is cumulative distribution func-

tion (i.e., non-decreasing and right-continuous) with con-

tinuous density function F ′(·). Assume the samples

{Xi}
m
i=1 are i.i.d. drawn from F . Let 0 < p < 1. If

l < F ′(θ) < L for all θ in {θ : |θ − θp| ≤ ǫ}, then

|θp({Xi}
m
i=1)− θp(F )| < ǫ (16)

holds with probability at least 1− 2 exp(−2mǫ2l2).

Lemma 2 bounds the distance between the median of two

sequences.

Lemma 2. Given a vector X = (X1, X2, ..., Xn), reorder

them in a non-decreasing manner

X(1) ≤ X(2) ≤ ... ≤ X(n−1) ≤ X(n).

Given another vector Y = (Y1, Y2, ..., Yn), then one has

|X(k) − Y(k)| ≤ ‖X − Y ‖∞, (17)

for all k = 1, ..., n.

Lemma 3 suggests that in the presence of outliers, one can

lower and upper bound the sample median by neighboring

quantiles of the corresponding clean samples.

Lemma 3. Consider clean samples {X̃i}
m
i=1. If a fraction

s of them are corrupted by outliers, one obtains contami-

nated samples {Xi}
m
i=1 which contain sm corrupted sam-

ples and (1− s)m clean samples. Then

θ 1
2
−s({X̃i}) ≤ θ 1

2
({Xi}) ≤ θ 1

2
+s({X̃i}).

Finally, Lemma 4 is related to bound the median and den-

sity at the median for the product of two possibly correlated

standard Gaussian random variables.

Lemma 4. Let u, v ∼ N (0, 1) which can be correlated

with the correlation coefficient |ρ| ≤ 1. Let r = |uv|,
and ψρ(x) represent the density of r. Denote θ 1

2
(ψρ) as

the median of r, and the value of ψρ(x) at the median as

ψρ(θ1/2). Then for all ρ,

0.348 < θ1/2(ψρ) < 0.455,

0.47 < ψρ(θ1/2) < 0.76.

5.2. Robust Initialization with Outliers

We show that the initialization provided by the median-

truncated spectral method in (7) is close enough to the
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ground truth, i.e. dist(z(0),x) ≤ 1/11‖x‖, even if there

are sm arbitrary outliers, as long as s is a small enough

constant.

1. We first bound the concentration of med({yi}), also de-

noted by θ1/2({yi}). Lemma 3 suggests that

θ 1
2
−s({(a

T
i x)

2}) < θ1/2({yi}) < θ 1
2
+s({(a

T
i x)

2})

Observe that (aT
i x)

2 = ã2i1‖x‖
2, where ãi1 = aT

i x/‖x‖
is a standard Gaussian random variable. Thus |ãi1|

2 is a χ2
1

random variable, whose CDF is denoted as K. By Lemma

1, for a small ǫ, one has

∣

∣

∣
θ 1

2
−s({|ãi1|

2})− θ 1
2
−s(K)

∣

∣

∣
<

ǫ and

∣

∣

∣
θ 1

2
+s({|ãi1|

2})− θ 1
2
+s(K)

∣

∣

∣
< ǫ with probability

1 − exp(−cmǫ2). Thus, let ζs := θ 1
2
−s(K) and ζs :=

θ 1
2
+s(K), we have with probability 1− exp(−cmǫ2)

(ζs − ǫ)‖x‖2 < θ1/2({yi}) < (ζs + ǫ)‖x‖2, (18)

where ζs and ζs can be arbitrarily close if s is small enough.

2. We next estimate the direction of x, assuming ‖x‖ = 1.

The norm ‖x‖ can be estimated as in Algorithm 1. For

simplicity of presentation, we assume ‖x‖ = 1. Using

(18), the matrix Y in (7) can be bounded by Y 1 ≺ Y ≺
Y 2 with high probability, where

Y 1 :=
1

m

∑

aia
T
i (a

T
i x)

2
1{(aT

i
x)2≤α2

y(ζs−ǫ)/0.455}

Y 2 :=
1

m

∑

aia
T
i (a

T
i x)

2
1{(aT

i
x)2≤α2

y(ζ
s+ǫ)/0.455}

+
1

m

∑

i∈S
aia

T
i α

2
y(ζ

s + ǫ)/0.455.

It can then be shown by concentration of random matrices

with non-isotropic sub-Gaussian rows (Vershynin, 2012)

that Y 1 and Y 2 concentrate on their means which can be

made arbitrarily close with s sufficiently small. Together

with the fact that both means of Y 1 and Y 2 have leading

eigenvector x, one can justify that the leading eigenvector

of Y can be made close enough to x for sufficiently small

constant s.

5.3. Geometric Convergence

We now show that within a small neighborhood of the

ground truth, the truncated gradient (9) satisfies the Reg-

ularity Condition (RC) (Candès et al., 2015; Chen & Can-

dès, 2015), which guarantees the geometric convergence of

median-TWF once the initialization lands into this neigh-

borhood.

Definition 2. The gradient ∇ℓtr(z) is said to satisfy the

Regularity Condition RC(µ, λ, ǫ) if

−

〈

1

m
∇ℓtr(z),h

〉

≥
µ

2

∥

∥

∥

∥

1

m
∇ℓtr(z)

∥

∥

∥

∥

2

+
λ

2
‖h‖2 (19)

for all z and h = z − x obeying ‖h‖ ≤ c‖z‖.

We will first show that ∇ℓtr(z) satisfies the RC for the

noise-free case, and then extend it to model (1) with

sparse outliers, thus establishing the global convergence of

median-TWF in both cases.

The central step to establish the RC is to show that the sam-

ple median used in the truncation rule concentrates at the

level ‖z − x‖‖z‖ as stated in the following proposition.

Proposition 1. If m > c0n log n, then with probability at

least 1−c1 exp(−c2m), there exist constants β and β′ such

that

β‖z‖‖h‖ ≤ med(
{
∣

∣|aT
i x|

2 − |aT
i z|

2
∣

∣

}m

i=1
) ≤ β′‖z‖‖h‖,

holds for all z,h := z − x satisfying ‖h‖ < 1/11‖z‖.

We note that a similar property for the sample mean has

been shown in (Chen & Candès, 2015) as long as the num-

ber of measurements m is O(n). In fact, the median is

much more challenging to handle due to its non-linearity,

which also causes slightly more measurements compared

to the sample mean.

We next briefly sketch how we exploit the properties of the

median developed in Section 5.1 to show Proposition 1.

First fix x and z satisfying ‖x − z‖ < 1/11‖z‖. It can

be shown that

|(aT
i x)

2 − (aT
i z)

2| = c|uivi| · ‖h‖‖z‖,

where ui and vi are correlated N (0, 1) Gaussian random

variables and 1.89 < c < 2. Hence, Lemma 4 and Lemma

1 imply that

(0.65− ǫ)‖z‖‖h‖ ≤ med
({

|(aT
i x)

2 − (aT
i z)

2|
})

≤ (0.91 + ǫ)‖z‖‖h‖ (20)

for given x and z with high probability. Then applying the

net covering argument we prove that (20) holds for all z
and x with ‖z − x‖ ≤ 1

11‖z‖. In particular, Lemma 2 is

applied to bound the distance between the medians of two

points on and off the net.

For the model in (1) with outliers, we show that med({|yi−
(aiz)

2|}) continues to have property as in Proposition 1

even with the presence of a small constant portion of out-

liers. This can be accomplished by first observing

θ 1
2
−s({|(a

T
i x)

2 − (aT
i z)

2|}) ≤ θ 1
2
({|yi − (aT

i z)
2|})

≤ θ 1
2
+s({|(a

T
i x)

2 − (aT
i z)

2|}). (21)

using Lemma 3, and then extending (20) to quantiles θ 1
2
−s

and θ 1
2
+s respectively for a small constant s. Taking all

these together yields bounds for both sides of (21) at the

level of ‖z‖‖h‖.

Remark 2. With ǫ small enough, β = 0.6, β′ = 1 is a

valid choice for Proposition 1. We will set the algorithm

parameters based on these two values.
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5.4. Stability with Additional Dense Bounded Noise

Now, consider the model in (2) with both sparse outliers

and dense bounded noise. We omit the analysis of the ini-

tialization step as it is similar to Section 5.2. We split our

analysis of the gradient loop into two regimes.

Regime 1: Assume c4‖z‖ ≥ ‖h‖ ≥ c3(‖w‖∞/‖z‖).
Lemma 3 implies

θ 1
2
−s({

∣

∣ỹi − (aT
i z)

2
∣

∣}) ≤ med(
{

|yi − (aT
i z)

2|
}

)

≤ θ 1
2
+s({

∣

∣ỹi − (aT
i z)

2
∣

∣}), (22)

where ỹi := (aT
i x)

2 + wi i.e., measurements that are cor-

rupted by only bounded noise. Moreover, Lemma 2 and

assumption of the regime implies

∣

∣

∣
θ 1

2
+s({

∣

∣ỹi − (aT
i z)

2
∣

∣})−

θ 1
2
+s({

∣

∣(aT
i x)

2 − (aT
i z)

2
∣

∣})
∣

∣

∣
≤ ‖w‖∞,

∣

∣

∣
θ 1

2
−s({

∣

∣ỹi − (aT
i z)

2
∣

∣})−

θ 1
2
−s({

∣

∣(aT
i x)

2 − (aT
i z)

2
∣

∣})
∣

∣

∣
≤ ‖w‖∞. (23)

Therefore, combining the above inequalities with Proposi-

tion 1, we have

β‖x− z‖‖z‖ ≤ med({
∣

∣yi − (aT
i z)

2
∣

∣}) ≤ β′‖x− z‖‖z‖,

implying that RC holds in Regime 1, and the error de-

creases geometrically in each iteration.

Regime 2: Assume ‖h‖ ≤ c3(‖w‖∞/‖z‖). Since each

update µ
m∇ℓtr(z) is at most the order of ‖w‖∞/‖z‖,

the estimation error cannot increase by more than

(‖w‖∞/‖z‖) with a constant factor. Thus, one has

dist
(

z +
µ

m
∇ℓtr(z),x

)

≤ c5(‖w‖∞/‖x‖) (24)

for some constant c5. As long as ‖w‖∞/‖x‖2 is suf-

ficiently small, it is guaranteed that c5(‖w‖∞/‖x‖) ≤
c4‖x‖. If the iteration jumps out of Regime 2, it falls into

Regime 1 described above.

6. Numerical Experiments

In this section, we provide numerical experiments to

demonstrate the effectiveness of median-TWF, which cor-

roborates with our theoretical findings.We first show that,

in the noise-free case, our median-TWF performs similarly

as TWF (Chen & Candès, 2015) for exact recovery. We set

the parameters of median-TWF as specified in Section 3,

and those of TWF as suggested in (Chen & Candès, 2015).

Let the signal length n take values from 1000 to 10000 by

a step size of 1000, and the ratio of the sample complex-

ity to the signal length, m/n, take values from 2 to 6 by

a step size of 0.1. For each pair of (m,n), we generate

a signal x ∼ N (0, In×n), and the measurement vectors

ai ∼ N (0, In×n) i.i.d. for i = 1, . . . ,m. For both al-

gorithms, a fixed number of iterations T = 500 are run,

and the trial is declared successful if z(T ), the output of

the algorithm, satisfies dist(z(T ),x)/‖x‖ ≤ 10−8. Fig-

ure 1 shows the number of successful trials out of 20 trials

for both algorithms, with respect to m/n and n. It can

be seen that for both algorithms, as soon as m is above

4n, exact recovery is achieved for both algorithms. Around

the phase transition boundary, the performance of median-

TWF is slightly worse than that of TWF, which is possibly

due to the inefficiency of median compared to mean in the

noise-free case (Huber, 2011).
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Figure 1. Phase transition of median-TWF and TWF for noise-

free data: the gray scale of each cell (m/n, n) indicates the num-

ber of successful recovery out of 20 trials.

We next examine the performance of median-TWF in the

presence of sparse outliers. We compare the performance

of median-TWF with not only TWF but also an alterna-

tive which we call the trimean-TWF, based on replacing

the sample mean in TWF by the trimmed mean. More

specifically, trimean-TWF requires knowing the fraction s
of outliers so that samples corresponding to sm largest gra-

dient values are removed, and truncation is then based on

the mean of remaining samples. We fix the signal length

n = 1000 and the number of measurementsm = 8000. We

assume each measurement yi is corrupted with probabil-

ity s ∈ [0, 0.4] independently, where the corruption value

ηi ∼ U(0, ‖η‖∞) is randomly generated from a uniform

distribution. Figure 2 shows the success rate of exact recov-

ery over 100 trials as a function of s at different levels of

outlier magnitudes ‖η‖∞/‖x‖2 = 0.1, 1, 10, 100, for the

three algorithms median-TWF, trimean-TWF and TWF.

From Figure 2, it can be seen that median-TWF allows ex-

act recovery as long as s is not too large for all levels of

outlier magnitudes, without any knowledge of the outliers,

which validates our theoretical analysis. Unsurprisingly,

TWF fails quickly even with very small fraction of outliers.

No successful instance is observed for TWF when s ≥ 0.02
irrespective of the value of ‖η‖∞. Trimean-TWF does

not exhibit as sharp phase transition as median-TWF, and

in general underperforms our median-TWF, except when

both ‖η‖∞ and s gets very large, see Figure 2(d). This

is because in this range with large outliers, knowing the

fraction s of outliers provides substantial advantage for
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Figure 2. Success rate of exact recovery with outliers for median-TWF, trimean-TWF, and TWF at different levels of outlier magnitudes.
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(c) Poisson noise

Figure 3. The relative error with respect to the iteration count for median-TWF and TWF with both dense noise and sparse outliers,

and TWF with only dense noise. Performance of median-TWF with both dense noise and sparse outliers is comparable to that of TWF

without outliers. (a) and (b): Uniform noise with different levels; (c) Poisson noise.

trimean-TWF to eliminate them, while the sample median

can be deviated significantly from the true median for large

s. Moreover, it is worth mentioning that exact recovery is

more challenging for median-TWF when the magnitudes

of most outliers are comparable to the measurements, as in

Figure 2(c). In such a case, the outliers are more difficult

to exclude as opposed to the case with very large outlier

magnitudes as in Figure 2(d); and meanwhile, the outlier

magnitudes in Figure 2(c) are large enough to affect the ac-

curacy heavily in contrast to the cases in Figure 2(a) and

2(b) where outliers are less prominent.

We now examine the performance of median-TWF in the

presence of both sparse outliers and dense bounded noise.

The entries of the dense bounded noise w is generated

independently from U(0, ‖w‖∞), with ‖w‖∞/‖x‖2 =
0.001, 0.01 respectively. The entries of the outlier is

then generated as ηi ∼ ‖w‖ · Bernoulli(0.1) indepen-

dently. Figure 3(a) and Figure 3(b) depict the relative er-

ror dist(z(t),x)/‖x‖ with respect to the iteration count t,
for uniform noise at different levels. It can be seen that

median-TWF under outlier corruption clearly outperforms

TWF under the same situation, and acts as if the outliers

do not exist by achieving almost the same accuracy as

TWF under no outliers. Moreover, the solution accuracy

of median-TWF has 10 times gain from Figure 3(a) to Fig-

ure 3(b) as ‖w‖∞ shrinks by 1/10 , which corroborates

Theorem 2 nicely.

Finally, we consider when the measurements are corrupted

both by Poisson noise and outliers, which models pho-

ton detection in optical imaging applications. We gener-

ate each measurement as yi ∼ Poisson(|〈ai,x〉|
2), for

i = 1, · · · ,m, which is then corrupted with probability

s = 0.1 by outliers. The entries of the outlier are obtained

by first generating ηi ∼ ‖x‖2 · U(0, 1) independently, and

then rounding it to the nearest integer. Figure 3(c) depicts

the relative error dist(z(t),x)/‖x‖ with respect to the itera-

tion count t, where again median-TWF under both Poisson

noise and sparse outlier noise has almost the same accuracy

as TWF under only Poisson noise.

7. Conclusions

In this paper, we proposed median-TWF, and showed that it

allows exact recovery even with a constant proportion of ar-

bitrary outliers for robust phase retrieval. This is in contrast

to recently developed WF and TWF, which likely to fail un-

der outlier corruptions. We anticipate that sample median

can be applied to designing provably robust non-convex al-

gorithms for other inference problems under sparse arbi-

trary corruptions. The techniques we develop here to an-

alyze performance guarantee for median-based algorithms

will be useful in those contexts as well.
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