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Abstract. The purpose of this paper is to show that DES-like iterated ciphers that 
are provably resistant against differential attacks exist. The main resuR on the 
security of a DES-like cipher with independent round keys is Theorem 1, which 
gives an upper bound to the probability of s-round differentials, as defined in [4], 
and this upper bound depends only on the round function of the iterated cipher. 
Moreover, it is shown that functions exist such that the probabilities of differentials 
are less than or equal to 2 a-n, where n is the length of the plaintext block. We also 
show a prototype of an iterated block cipher, which is compatible with DES and 
has proven security against differential attack. 

Key words. DES-like ciphers, Differential cryptanalysis, Almost perfect nonlinear 
permutations, Markov ciphers. 

1. Introduction 

A DES-like cipher is a block cipher based on iterating a function, called F, several 
times. Each i teration is called a round.  The input  to each round  is divided into 
halves. The right half  is fed into F together with a round  key derived f rom a 
key-schedule algorithm. The ou tpu t  of  F is added (modulo 2) to the left h a g  of  the 
input  and  the halves are swapped except for the last round.  The plaintext is the 
input  to the first round  and the ciphertext is the output  of  the last round.  

In  [1]  Biham and Shamir  in t roduced differential cryptanalysis of  DES-like ci- 
phers. In  their at tacks they make  use of  characteristics which describe the behavior  
of  input  and ou tpu t  differences for some number  of  consecutive rounds. The proba-  
bility of  a one- round  characteristic is the condit ional  probabil i ty that  given a certain 
difference in the inputs to the round  we get a certain difference in the outputs  of  the 
round.  Lai and Massey [4]  observed that  for the success of  differential cryptanalysis 
it may  not  be necessary to fix the values of  input  and output  differences for the 

* A preliminary version of this paper was presented in the rump session at Crypto '92. The work of 
Kaisa Nyberg on this project was supported by MATINE Board, Finland. 

27 



28 K. Nyberg and L. R. Knudsen 

intermediate rounds in a characteristic. They introduced the notion of differential. 
The probability of an s-round differential is the conditional probability that given 
an input difference at the first round, the output difference at the sth round will be 
some fixed value. Note that the probability of an s-round differential with input 
difference A and output difference B is the sum of the probabilities of all s-round 
characteristics with input difference A and output difference B. For  s < 2 the 
probabilities for a differential and for the corresponding characteristic are equal, 
but in general the probabilities for differentials will be higher. 

In order to make a successful attack on a DES-like iterated cipher by differential 
cryptanalysis the existence of good characteristics is sufficient. On the other hand 
to prove security against differential attacks for DES-like iterated ciphers we must 
ensure that there is no differential with a probability high enough to enable success- 
ful attacks. 

2. Resistance Against Differential Attacks 

A DES-like iterated cipher with block size 2n and with r rounds is defined as follows. 
Let 

f: GF(2) m ~ GF(2) n, m > n, 

E: GF(2) ~ ~ GF(2) m, an affine expansion mapping, 

and let K = (K1, K2 . . . . .  K,), where K i ~ GF(2)% be the r round keys. The round 
function (in the ith round) 

F: GF(2) ~ x GF(2) m ~ GF(2) ~ 

is then defined F(X ,  K i ) =  f (E (X)+  Ki), where " + "  is the bitwise addition 
modulo 2. 

Given a plaintext X = (X L, Xg) and a key K = (K1, K2 . . . . .  K,) the ciphertext 
Y = (YL, YR) is computed in r rounds. Set XL(0) = XL and XR(0) = XR and compute, 
fo r i  = 1,2 . . . .  ,r ,  

x L ( i )  = x , ( i  - 1), 

XR(i ) = F(XR(i  -- 1), Ki) + XL(i -- 1), 

X(i )  = (XL(i), X, ( i ) ) .  

Set YL = XR(r) and YR = XL(r). 
The difference between two n-bit blocks is defined as 

AX = X + X*. 

An s-round characteristic is an (s + 1)-tuple (fl(0), fl(1) . . . . .  fl(s)) considered as the 
possible values of (AX(0), AX(1), . . . ,  AX(s)), whereas an s-round differential is a 
pair (fl(0), fl(s)) considered as the possible values of (AX(0), AX(s)) [l-l, [4]. To 
prove resistance against differential cryptanalysis we need to find the best differen- 
tials, so for the remainder of this paper we consider only differentials. 
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Differential attacks use s-round differentials to push forward the information of 
a fixed input difference at the first round to the sth round independently of the key 
used. In this paper we will show that it is possible to choose the round function so 
that no single differential is useful. Given a plaintext pair X, X*, chosen by the 
cryptanalyst and r independent uniformly random round keys K 1, K2,  . . . ,  K,, 
unknown to the cryptanalyst, the differential may or may not hold. It is natural to 
measure the rate of success for the cryptanalyst by the probability of the differential 
taken over the distributions of X and K. The probability of a one-round differential 
( a x ( 0 )  = a, AX(1) = 8 ) i s  

P(AX(1) = fllAX(0) = a), 

which by the property of Markov ciphers, as defined in [4], is equal to 

P ( a X 0 )  = P l a x ( 0 )  = ~, x = ~) 

for all values ? of X, if the round key K is uniformly distributed. Hence the 
probability of a one-round differential is independent of the distribution of X and 
is taken over the distribution of K. Assuming that the round keys Kt ,  K 2 . . . . .  K, 
are mutually independent it follows that the probability of an s-round characteristic 
is the product of the probabilities of the individual rounds. Then the probability of 
an s-round differential equals (see also [4]) 

P(AX(s) = 8(s)IAX(0) = 8(0)) 

= Z X "'" Z I - I P ( A X ( i ) = 8 ( i ) [ A X ( i - 1 ) = 8 ( i - l ) ) .  
p(1) #(2) p(s-1) i=1 

We denote by Pmax the highest probability for a nontrivial one-round differential 
achievable by the cryptanalyst, i.e., 

Pmax = maxp max~,~0 P(AX(1) = 8lAX(0) = a), 

where an is the right half of ~. We show in Section 3 that the round function of a 
DES-like cipher can be chosen in such a way that Pm,x is small. 

Theorem 1. It is assumed that in a DES-like cipher with f: GF(2) = -+ GF(2)" the 
round keys are independent and uniformly random. Then the probability of an s-round 

2 differential, s >_ 4, is less than or equal to 2pmax. 

Proof. We first give the proof for s = 4, i.e., 

2 P(AX(4) = flIAX(0) = ~) _< 2pm,, 

for any 8, a ( #  0). Let ~L, aR and 8L, 8iR be the left and right halves of ~ and 8- We 
denote by AXR(i) the right input differences at the ith round, see Fig. 1. Let 3 ~ e 
denote that, in order for the s-round differential (~, 8) to occur, it is necessary that 
inputs to F with difference 3 lead to outputs with difference e. We split the proof 
into cases where fL = 0 and 8L # 0. Note that when 8L = 0 then PR # 0, otherwise 
~L = aR = fL = fir = 0, which is of no use in differential cryptanalysis. Similarly if 
c% = O, then ~R # O. 
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AXL(0) = ~L AXR(0) = ~R 

a x ,  o) 

Y 

AXL(4 ) = ]~ AXR(4) = / ~  

Fig. 1. The four-round differential. 

1. flL = 0. Then dea r ly  AXR(2) = fir # 0. If  AXa(1) = 0, then AXR(2) = ~R = fl~ 
# 0. It  then follows that  aR = fig ~ ~tL in the first round  and AXa(2 ) = fir ~ 0 in 
the third round,  bo th  combinat ions  with probabil i ty at mos t  Pma," If  AXa(1) # 0, 
then it follows that  for any given AXR(1) the second round  must  be AXR(1) 
0tR + fir and the third round  must  be AXR(2) = fir ~ AXR(1), bo th  combinat ions  
with probabil i ty at mos t  Pma," We obtain 

P(AX(4) = f l lAX(0)=  a) 

= ~ P(AXR(1)IAX(O) = ct)P(AX(4) = fllAX(0) = 0t, AXR(1)) 
AXa(1) 

= P(AXR(1) = 0lAX(0) = 0t)P(AX(4) = f l l ax(0)  = ct, AXR(1) = O) 

+ ~ P(AXR(1)IAX(O) = ~x)P(AX(4) = fllAX(0) = ~, AXR(1) ) 
AXR(1)#O 

2 
~)" Pmax < Pm.~ + ~, P(AXR(1)JAX(O) = 2 

AXe(1)#O 

2 
_< 2Pma x 

since ~_,ax.(l)~,o P(AXR(1)IAX(O) = ~x) < 1. 
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2. //L ~ 0. We consider first the three-round differential obtained by fixing AXR(1). 
We obtain 

P(AX(4) =/ / lAX(0) -- ~, AXx(1)) 

= ~, P(AXx(2)IAX(O) -- or, AX~(1)) 
AXR(2) 

x P(AX(4) =// lAX(0) = ~, AXR(1), AXR(2)) 

= P(AXR(2) = 0]AX(0) -- g, AXR(1)) 

x P(AX(4) =// lAX(0) = at, AXR(1), AXR(2) = 0) 

+ ~, P(AXR(E)[AX(O) -- ~, AX~(1)) 
AXa(2)#O 

x P(Ax(4) =//lAX(0) = ~, AXR0), AXR(2)) 

--< Pmax "Pmax + ~ P(AXR(2)IAX(O) = t;t, AXR(I)) .  Pmax2 
AXR(2):~ 0 

2 < 2pmax. 

The above shows that Theorem 1 holds for s-round differentials for s _> 3 if//L ~ 0. 
In the first inequality we used that if AXR(2) = 0, then AXe(l) ~ 0, since otherwise 
~L = ~a = 0. NOW 

P(AX(4) =// lAX(O) = ~) 

= ~. P(AXa(1)IAX(O) -- ct)e(AX(4) --//lAX(0) = ~, AXR(1)) 
~3/~(I) 

< ~ P(AXR(1)IAX(O)--ot)'2p~,. 
AXI(1) 

2 < 2Pm,z. 

NOW let s > 4. Then 

P(AX(s )  = / / l A X ( 0 )  = ~) 

= ~, P ( A X ( s  - 4 ) l A X ( 0 )  - -  ~)P(AX(s)  = / / l A X ( 0 )  = ~, A X ( s  - 4)). 
AX(s -4) 

Since we assumed that the round keys are independent and uniformly random it 
follows from the proof for s = 4 that 

P(AX(s) =// lAX(0) = ~, AX(s - 4)) = P(AX(s) =//[AX(s - 4)) < 2p~.,. 

Thus P(AX(s) =// lAX(0) -- ~) < 2pZmr []  

If f is a permutation, Theorem 1 can be proved for s > 3. It comes from the fact 
that to have equal outputs of one round we must have equal inputs. 

Theorem 2. It is assumed that the function f in a DES-like cipher is a permutation 
and that the round keys are independent and uniformly random. Then the probability 
of an s-round differential for s > 3 is less than or equal to 2p~  r 
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Proof. We give the proof for s = 3. The general case can then be proved like in 
the preceding theorem. Again we separate between two cases and use the same 
notation as before. 

1. flL = 0. Then AXR(0) = ct R ~ 0, otherwise different inputs would have to yield 
equal outputs in the second round, but that is not possible, since f is a permuation. 
The difference in the inputs at the first round is 0t R # 0 and the difference in the 

2 inputs at the second round is fiR # 0, thus P(AX(3) = fllAX(0) = ~) < Pma~" 

2. flL # 0. Like in the proof  of Theorem 1 we split into cases where AXR(1) is zero 
or not. Note that if AXR(1) = 0, then ~L # 0, otherwise ~R ~ ~L = 0 implies that 
~R = 0. We obtain 

P(AX(3) = fl lAX(0)= ~t) 

= ~ P(AXR(1)IAX(O) = ct)P(AX(3) = fllAX(0) = ct, AXR(1)) 
~ t ( 1 )  

= P(AXR(1) = 0lAX(0) = 0t)P(AX(3) = fllAX(0) = ~t, AXR(1) = 0) 

+ ~ P(AXR(1)IAX(O) = ~)P(AX(3) =/~IAX(0) = ~, AX.0)) 
AXR(1)~O 

2 
--< Pmax d- ~ P(AXR(1)IAX(O) = ~t). Pmax2 

AXR(1)~O 

2 
< 2Pm~. []  

3. Almost Perfect Nonfinear Permutations 

First we show that the maximum probability Pmax of a one-round differential has 
an upper bound that can be expressed in terms of the function f. Let 

pf = maxb maxa,0 P(f(Y + a) + f(Y) = b). 

Then 

Pro,, = maxp max~,r P(AX(1) = fllAX(0) = a) 

= maxp max~,,o P(ct L + f(E(X + ~R) + K) + f(E(X) + K) = fiR) 

----- pf ,  

where we have assumed that E is affine and denoted K + E(X) by Y. I fK  is uniformly 
distributed, then so is Y. 

For  a mapping f: GF(2) m ~ GF(2)" the lower bound for pf is 2-". Mappings 
attaining this lower bound were investigated in I-7], where they are called perfect 
nonlinear generalizing the definition of perfect nonlinearity given for Boolean 
functions in 1,6]. It was shown in 1,7] that perfect nonlinear mappings from GF(2) m 
GF(2)" only exist for m even and m > 2n. Hence they can be adapted for use in 
DES-like ciphers only with expansion mappings that double the block length. 

If the round function of a DES-like cipher does not involve any expansion, i.e., 
in the case when f: GF(2) m ~ GF(2)" is a permutation, the trivial lower bound for 



Provable Security Against a Differential Attack 33 

Pt is 2 l-n, since then the difference 

f(x + w) + f(x) 

takes half of the values in GF(2) n twice bat never the other half of the values. We 
call the permutations with Pt = 21-" alrwst perfect nonlinear. The purpose of this 
section is to show that such permutations exist. For  unexplained terminology we 
refer to [53. 

Let m = nd, where n is odd. In [8] permutations f of GF(2 m) = GF(2a)" were 
constructed to satisfy the following property: 

(P) Every nonzero linear combination of the components of f is a nondegenerate 
quadratic form xtCx in n indeterminates over GF(2 a) with rank(C + C t) = 
n - 1 .  

It follows immediately from the definition that the coordinate functions of a per- 
mutation with (P) are complete, that is, depend on all input variables. 

The main result of this section is the following theorem. 

Theorem 3. Let f: GF(2a) n ~ GF(2d) ", n odd, be a permutation satisfying (P). Then 
Pt = 2a{1-n). 

Our proof of the theorem is based on the following three lemmata concerning 
properties of linear structures of quadratic forms. Recall that a linear structure w 
o f f :  F n --. F, F a field, is a vector in F" such that f ( x  + w) + f(x)  is constant as x 
varies. The linear structures of a quadratic form f(x)  = xtAx in n indeterminates 
over GF(2 a) with rank(A + A t) = n - 1 form a one-dimensional linear subspace of 
GF(2a) ~ (see Proposition 3 of [8]). 

For  a quadratic form f and every fixed w the function f (x  + w) + f(x)  of x is 
affine or constant. From this we get the first lemma. 

Lemma 1. Let w ~ GF(2a)" be not a linear structure o f f :  GF(2d) n ---} GF(2a), f (x)  = 
xtAx. Then the function f ( x  + w) + f(x)  of x is balanced, i.e., takes each value in 
GF(2 a) equally many times. 

Lemma 2. Let f (x)  = xtAx be a quadratic form in n indeterminates over GF(2 d) such 
that rank(A + A t) = n - 1. Then f is nondegenerate i f  and only i f  f(w) # 0 for the 
nonzero linear structures w of f (see also Lemma 4.1. in [3]). 

Proof. Let 

(p(X 1 . . . . .  Xn) = X I X  2 -Jr- " '" "4" X n _ 2 X n _  1 + (~X 2, 

6 = 0 or 1, be the quadratic forms to which all quadratic forms f(x)  = xtAx with 
rank(A + A t) = n - 1 are equivalent (see Chapter 6.2 of [5]). It means that there 
is a linear transformation T of coordinates such that f(x)  = q~(Tx). Then w is a 
linear structure o f f  if and only if Tw = (0, 0 . . . . .  0, a), where a e GF(2d). Then f is 
nondegenerate if and only if ~ is nondegenerate which is true if and only if c5 = 1. 
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However,  6 = 1 if and only if 

f(w) = 9(Tw) = q~(0 . . . . .  0, a) = 6a 2 :# 0 

f o r a  ~ 0 .  [ ]  

L e m m a  3. Let f:  GF(2a)" ~ GF(2d) ~ be a permutation with property (P). Then every 
nonzero w �9 GF(2d) n is a linear structure of a nonzero linear combination of the 
components of f. 

Proof. Let u be a nonzero  vector in GF(2d) n and let w �9 GF(2d) n be a nonzero  linear 
structure of  u" f. Then  2w, 2 �9 GF(2d), are the linear structures of  cu" f, c �9 GF(2d). 
Hence it suffices to show that  if ul" f and u2" f share a nonzero  linear structure, then 
there is c �9 GF(2 d) such that  ul = co2. 

Let w be a nonzero  linear structure of  ul" f and u2" f. Then w is also the linear 
structure of  (clul  + c z u 2 ) ' f  for all Cl, c2 �9 GF(2a). Since th f and u2 "f are non-  
degenerate it follows from L e m m a  2 that  

u l " f ( w )  ~ 0  a n d  u 2 " f ( w )  # 0 .  

Hence c # 0 exists such that  cul  �9 f(w ) = Oz. f(w) or, what  is the same, 

(cul  + us)" f(w) = 0. 

If  cul  # u2, then (cu~ + u2)" f is nondegenerate  which cannot  be true by L e m m a  2. 
Consequently,  cul  = I12. [ ]  

N o w  Theorem 3 is a consequence of  the following: 

Theorem 4. Let f = ( f l ,  f2 . . . . .  fn): GF(2d) ~ ~ GF(2d) ~ be a permutation that satis- 
fies (P). Then for every fixed nonzero difference w ~ GF(2d) * of the inputs to f, the 
differences of  the outputs lie in an affine hyperplane of  GF(2d) ~ and are uniformly 
distributed there. 

Proof. Let w be a nonzero  input difference for f. Then by Lemma 3 there is 
v �9 GF(2~) ~, v # 0, such that  w is the linear structure of  v. f and, by L e m m a  2, 

v.  f (x + w) + v.  f(x) = v- f(w) ~ 0 

for all x �9 GF(2d) ~. We denote b o = v. f(w). 
Let ul . . . . .  u~-i be linearly independent  vectors in GF(2d) ~ such that  

v ~ span{u 1 . . . . .  u~_l }. 

Then by L e m m a  1 for each nonzero  u �9 span{u1 . . . . .  u~-i } the function 

x ~-. u - f ( x  + w)  + u .  f i x )  

takes each value in GF(2 a) equally many  times. Consequent ly  (see [5]), for every 
(b 1 . . . . .  b~_l) �9 GF(2a) ~-1, the system of equat ions 

u i �9 f ( x  + w)  + u i .  f (x )  = b i, i = 1, . . . ,  n - 1, (1) 
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has 2 a solutions x �9 GF(2d) ". Hence  the system of n equations:  

u / ' f ( x  + w) + u i ' f ( x )  = b~, i - -  1 . . . . .  n - 1, 

v" f(x + w) + v" f(x) = b, (2) 

has 2 d solutions if b = b o and no solutions if b # b o. Every system of n equat ions  

f~(x + w) + fi(w) = ai, i = 1, 2 . . . .  , n, 

is a l inear t r ans fo rmat ion  of (2), f rom which the claim follows. [ ]  

By a similar a rgumenta t ion  the following general izat ion of  Theo rem 3 can be 
proved.  

T h e o r e m  5. Let f be a permutation of GF(2d) n, n odd, with property (P) and let 
f l ,  . . . ,  f~ be the components of f with respect to some arbitrary fixed basis over 
GF(2a). Let l < n and set h = ( f l ,  f2 . . . . .  ft). Then p~ = 2 dtl-l). 

F r o m  the results of  Section 2 we now obtain:  

T h e o r e m  6. Assume that in a DES-like cipher the function f is a mapping from 
GF(2) ~a to GF(2) la, n >_ l, obtained from a permutation of GF(2d)" with (P) by dis- 
carding n -  l output coordinates. Then pf = 2 d(1-0. Moreover, i f  n >l, then the 
probability of every r-round differential, r >_ 4, is less than or equal to 2 2dtl-l)+l, 
assuming that the round keys are uniformly random and independent. I f  n = l, the 
probability of every r-round differential, r >_ 3, is less than or equal to 2 2a(1-0+t. 

4. Class  o f  P e r m u t a t i o n s  with P r o p e r t y  (P )  

In this section we show tha t  the pe rmuta t ions  fix) = x 2~+1 of  GF(2 "a) with k = 
0 m o d  d, gcd(k, n) = 1, and  n odd, have p rope r ty  (P), when considered as pe rmuta -  
t ions of  GF(2d) ". 

Let cq . . . . .  ~. be a basis for GF(2 "d) over  GF(2 a) and let fit . . . . .  ft. be its dual  
basis. Let x = ~7=1 xi~ti, xi �9 GF(2d). Then  the i th c o m p o n e n t  f/(x) of  f(x) with 
respect to the basis oq . . . . .  0t. is 

f/(x) = Tr(fl ix 2k+1) 

= Tr i xt~xt 
l 

= Tr(flie~el )x~x z 
j = l  l = l  

2k 
= Tr(y~j(ylcq) )x jx .  

j=1 l=1  

where Yl �9 GF(2 '~) is such that  y~k+l = fl~, i = 1, 2 . . . . .  n. 



36 K. Nyberg and L. R. Knudsen 

Now it is straightforward to check that Tr(71ctj(7~t) 2k) e GF(2 d) is the entry on 
the j th  row a n d / t h  column in the matrix A~ --- B~RkB~ where 

~iOC 1 ~iC(2 "'" ~i~n 

B i = (7i~1) 2 ( ~ i ~ 2 )  2 " ' "  ( 7 i  0~n) 2 
�9 . " .  �9 

( ~ i ~ 1 )  2 . . . . .  2 n - I  2 . - I  [Tiot2) . . .  (~i~t,) 

is an n • n regular matrix over GF(2 "d) and [010 
0 0 1 ...  

R ~ �9 . . 

0 0 

0 0 

is the cyclic shift for which rank(R k + (Rk) t) 
also nondegenerate. Consequently, 

f~(x) = xtAix 

and 

r ank (A/+  A~) = rank(B~(R k + (Rk)t)Bi) = rank(R k + ( R k )  t) = n - -  1 

over GF(2"d). Thus r ank (A/ +  A t) = n - 1 also over GF(2d), since the rank does not 
decrease when going to a subfield and it cannot  be n. By the linearity of the trace 
function the same holds for every nonzero linear combination of the components 
f~ of f. This completes the proof  of property (P) for f. 

ii!] 
= n - 1 if gcd(k, n) = 1. Then xtRx is 

5. A Prototype o f  a D E S - L i k e  Cipher for Encryption 

Let g ( x ) =  x 3 in GF(233). There are several efficient ways of implementing this 
power polynomial and each of them suggests a choice of a basis in GF(233). Let us 
fix a basis and discard one output  coordinate. Then we have a function f: GF(2) 33 
GF(2) 32. The 64-bit plaintext block is divided into 32-bit halves L and R. The 
plaintext expansion is an affine mapping E: GF(2) 32 ~ GF(2) 33. Each round takes 
a 32-bit input and a 33-bit key. The round function is L ]1R ~ R[I L + f(E(R) + K). 

In [2] Biham and Shamir introduced an improved differential attack on a 
16-round DES. This means, that in general for an r-round DES-like cipher the 
existence of an (r - 2)-round differential with a sufficiently high probability may 
enable a successful differential attack. From Theorem 6 we have that every four- and 
five-round differential of this block cipher has probability less than or equal to 2-61. 
Therefore we suggest at least six rounds for the block cipher. All round keys should 
be independent, therefore we need at least 198 key bits. 

More examples of permutations f for which Pm,x is lOW can be found in [9]. The 
examples include the inverses of x ~-, x 2k§ and the mappings x ~ x -1, whose 
coordinate functions are of higher nonlinear order than quadratic. 
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