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1 Introduction 

The purpose of this paper is to show that there exist DES-like iterated ciphers, 
which are provably resistant against differential attacks. The main result on the 
security of a DES-like cipher with independent round keys is Theorem 1, which 
gives an upper bound to the probability of r-round differentials, as defined in [3] 
and this upper bound depends only on the round function of the iterated cipher. 
Moreover, it is shown that there exist functions such that  the probabilities of 
differentials are less than or equal to 22-" ~ where n is the length of the plaintext 
block. We also show a prototype of an iterated block cipher, which is compatible 
with DES and has proven security against differential attacks. 

2 
ciphers 

Differential Cryptanalysis of DES-like iterated 

A DES-like cipher is a block cipher based on iterating a function, called F, sev- 
eral times. Each iteration is called a round. The input to each round is divided 
into two halves. The right half is fed into F together with a round key derived 
from a keyschedule algorithm. The ou tpu t  of F is added (modulo 2 )  to the left 
half of the input and the two halves are swapped except for the last round. The 
plaintext is the input to  the first round and the ciphertext is the output of the 
last round. 
Notation: Let the block size of the cipher be 2n and the size of the round key 
be rn, rn >_ n. Let f : GF(2)"' -+ GF(2)" and E : GF(2)" + GF(2)m, an 
affine expansion mapping. Let L, ,  R, be the left and right halves of the in- 
put to the i'th round. Then Lj+l = Ri and = f(E(&) @ Ki)  @ L,  and 

In [l] Biham and Shamir introduced differential cryptanalysis of DES-like ci- 
phers. In their attacks they make use of characteristics, which describe the be- 
haviour of input and output differences for some number of consecutive rounds. 
The probability of a one-round characteristic is the conditional probability that 
given a certain difference in the inputs to the round we get a certain difference 

F(K,  Ici) = f(E(%) @ K i ) .  
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in the outputs of that round. Assume that in every round the inputs E(R)  @ K 
to f a r e  independent and random. This assumption is satisfied if the round keys 
are uniformly random and independent. Then the probability of an r-round 
characteristic is obtained by multiplying the probabilities of the r one-round 
characteristics. 
Lai and Massey [3] observed that for the success of differential cryptanalysis it is 
not necessary to fix the values of input and output differences for the intermedi- 
ate rounds in a characteristic. They introduced the notion of dzflerentials. The 
probability of an r-round differential is the conditional probability that given an 
input difference at the first round, the output difference at the r ' th round will 
be some fixed value. Note that the probability of an r-round differential with 
input difference A and output difference B is the sum of the probabilities of 
all r-round characteristics with input difference A and output difference B.  For 
r <: 2 the probabilities for a differential and for the corresponding characteristic 
are equal, but in general the probabilities for differentials will be higher. 
In order to make a successful attack on a DES-like iterated cipher by differen- 
tial cryptanalysis the existence of good characteristics is suficient. On the other 
hand to prove security against differential attacks for DES-like iterated ciphers 
we must ensure that there is no differential with a probability high enough to 
enable successful attacks. 
The difference of two inputs E(R)@K and E ( R * ) $ K  to f is E(R)$E(R') .  Since 
we assume E to be afine, the difference of two inputs depends only on the differ- 
ence R$ R* . Hence for DES-like ciphers the round probabilities of characteristics 
only depend on the intrinsic properties off. Given f : GF(2)* + GF(2)" denote 

That is, p,,, is the highest probability for a non trivial one-round characteristic 
or differential. 

Theorem 1 It i s  assumed that in a DES-like cipher with f : GF(2)" + GF(2)" 
the inputs to f at each round are independent and uniformly random. Then the 
probability of an r-round diflerential, r 2 4, i s  less than o r  equal t o  2p%,=. 

Proof We shall first give the proof for r = 4.  Let a~ and CXR be the left and right 
halves of the input difference at the first round and ,LIL and ,OR be corresponding 
halves of the output difference at the last round. Either pr, # 0 or PR # 0 or 
both. We shall give the proof in the case pr, = 0, PR # 0, the other two cases 
are similar. We denote by AR(i) the right input differences to the i'th round, 
i = 2 ,3 ,4 .  Let PL = 0 and /?R # 0. Then AR(4) = PL = 0 and AR(3) = PR. We 
separate between two cases: LYR # PR and CUR = P R .  
1. (YR #,OR. Then AR(2) # 0. For any given AR(2) # 0 there is exactly one 
way of getting PL,PR from the input differences a~ and AR(2) at the second 
round, and the probability is less than or equal to pk,,. Hence the probability 
of the four round differential is less than or equal to px , , .  
2. (YR = PR.  If AR(2) = 0 it follows that the output difference from F at the 
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third round AF(R(3)) = 0, which happens with probability less than or equal 
to pmaz ,  because AR(3) = PR # 0. Since &R # 0 we have 

Prob(dfl(2) = 0 Q I L ,  OR) I pmaz 

If AR(2) # 0 the probability that  AF(R(3)) = AR(2) is less than or equal to  
p,,,. We also need to  have AF(R(2)) = 0, which is true with probability less 
than or equal to pmaz. So we obtain 

Prob(PL I PR I aL I OR) 
= c Prob(AR(2) I aL, CUR) P r o b ( h ,  PR I at, aB, W 2 ) )  

AR(2) 

= Prob(AR(2) = 0 1 O L ,  CYR)  P r o b ( P ~ ,  ,OR I O L ,  C Y R ,  AR(2) = 0) 

+ Prob(AR(2) I aL, aR) Prob(PL,PR 1 QL, & R ,  AR(2))  
AR(2120 

2 I Pkaz + c Prob(AR(2)  I QL, f fR)  'P,,, 
AR(Z)#O 

2 I 2 P m m  

Let now T > 4. Then 

Prob(PL, PR I a L !  aR) 

= [Prob(AL(r  - 3 ) ,  AR(r - 3 )  1 C Y L ~  CYR)  . 

P ~ o ~ ( P L , ~ ~ R I ~ I ~ . Q R , A L ( ~ -  3 ) , A R ( r -  3))l 

Since we assumed that the inputs to f a r e  independent and uniformly random it 
follows from the proof for r = 4 that 

AL(r -3) ,dR(r -3)  

P r o b ( P ~ ,  PR I C U L ,  QR, d L ( r  - 3) ,  AR(r - 3 ) )  = 
~ r o b ( g t ,  PR I A L ( ~  - 3), A R ( ~  - 3)) 5 2Pkaz 

Thus PTob(PL,PR I ~ L I  OR) 5 2pia, .  n 
I f f  is a permutation, then in every characteristic between two zero rounds there 
has to  be at least two nonzero rounds and the following result can be proved. 

Theorem 2 It is assumed that the function f in a DES-like cipher is a per- 
mulation and that the inputs t o  f at each round are independent and uniformly 
random. Then the probability of an r-round differential fo r  r 2 3 is less than o r  
equal t o  pma,. 

Proof We give the proof for r = 3.  The general case can then be proved like in 
the preceding theorem. Again we separate between three cases and use the same 
notation as before. 
1. L?r, = 0, PR # 0. In this case the third round of each characteristic is a zerc- 
round. At the second round the input difference AR(2) = / 3 ~  # 0 results in 

2 
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an output difference ct # 0 with probability less than or equal to  pmax. At 
the first round we get the output difference crL @ j 3 ~  # 0 with probability 
less than or equal to p,,, from the input difference AR(1) = CKR # 0. Hence 
P ~ o W L J P R  I w ,  a ~ )  I Pmaz. 
2. PL # 0, PR = 0. NOW the output difference at the third round equals AR(2) 
and it is different from zero. Given AR(2) # 0 the probability of the third 
round is less than or equal to pmaz and the same holds for the second round. 
Consequently 

2 

Prob(PL, PR I aL, a R )  

= Prob(AR(2) I (YL, C U R )  PrOb(Pr,, PR I Q L ,  LYR, AR(2)) 
ARP)#O 

2 2 5 C ~ r o b ( ~ ~ ( 2 )  I *Lj "A) ' ~ m a z  _< Pmar 

ARW 

3. PL # 0, /?R # 0. Assume first that dR(2) = 0. Then for every characteristic 
the probability of the third round is less than or equal to p,,,, the probability 
of the second round is one and the probability of the first round is less than or 
equal to pmas. Secondly, given AR(2) # 0,  the probability of the third round 
is less than or equal to Pmaz and the same is true for the second round. Hence 
Prob(Pr,, , b ~  I a ~ ,  a ~ )  5 pkaz also in this case. 

3 Almost perfect nonlinear permutations 

For a mapping f : GF(2)" - GF(2)" the lower bound for pmaz is 2-". Map- 
pings attaining this lower bound were investigated in ["], where they are called 
perfect nonlinear generalizing the definition of perfect nonlinearity given for 
Boolean functions in [ 6 ] .  It was shown in [7] that perfect nonlinear mappings 
from GF(2)" -+ GF(2)" only exist for rn even and m 2 2n. Hence they can be 
adapted for use in DES-like ciphers only with expansion mappings that double 
the block length. 
If the round function of a DES-like cipher does not involve any expansion, i.e. in 
the case when f : GF(2)" -t GF(2)" is a permutation, the trivial lower bound 
for pma, is 2l-", since then the difference 

f ( x + w ) + f ( x )  
obtains half of the values in GF(2)" twice and never the other half of the values. 
We shall call the permutations with pmdr = 2l-" almost perfecd nonlinear. The 
purpose of this section is to show that such permutations exist. 
Assume that rn = n d ,  where rn, n, d are all odd integers. In [8] permutations f 
in GF(2") = CF(Zd)^ were constructed to satisfy the following property: 

(P) Every nonzero linear combination of the components of f is a balanced 
quadratic form x'Cx in n indeterminates over GF(2d)  with ranA(C + Ct) = 
n- 1. 
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Indeed the following theorem holds. 

Theorem 3 Let  f : GF(2d)" + GF(2d)" be a permutat ion satisfying (P). T h e n  
p,,, = Zd(1-73). 

For the sake of simplicity we shall give the proof in the c u e  where d = 1 and 
m = n. 

Lemma 1 A quadratic form f ( x )  = &Ax in  n indeterminates  over  GF(2)  is 
balanced if and only zf f (w) # 0 for  the linear structure w o f f .  

Recall that a linear structure w off : F" + F is a nonzero vector in F" such that 
f(x + w) + f(x) is constant. It was also shown in [8] that a quadratic form 
f(x) = xtAx in n indeterminates over GF(2)  with rank(A + A') = n - 1 has 
exactly one linear structure. 
Proof of Lemma 1: Let 

t cp(r1, ."'...., z,) = % I 2 2  + .... + 2n-22,-1 + 6z, = x cx 
6 = 0 or 1, be the quadratic forms to which all quadratic forms f ( x )  = x t A x  
with rank(A + A t )  = n - 1 are equivalent (see [4]). It means that there is a 
linear transformation T of coordinates such that f ( x )  = cp(Tx). Then w is a 
linear structure of f if and only if Tw = ( O , O ,  ...., 0 , l ) .  Then f is balanced if 
and only if cp is balanced which is true if and only if 6 = 1. But b = 1 if and only 
if 

f (w) = cp(Tw) = p(0, ...., 0 , l )  = 1. 
0 

Lemma 2 Let w E GF(2)n 
GF(2) ,  f ( x )  = x tAx  with rank(A + At)  = R - 1. Then  

be not the linear structure of f : GF(2)" --+ 

x f(x + w) + f(x) 
i s  balanced. 

Proof It sufficies to show that 

d x  + w) + CpW 
is balanced for every w # (0, ...., 0 , l ) .  But this is true since 

cp(x + w) + cp(x) = 
(21 + w1)(12 + W Z )  + .... + ( ~ n - 2  + ~ n - 2 ) ( 2 n - 1 +  ~ n - 1 )  + zn + wn + 
2152 + .... + z7&-22,-1+ 2,. 

is a non-constant affine or linear function for every w # (0, ...., O,1). 0 

Lemma 3 Let f : GF(2)" ---f GF(2)" be a permutat ion with property (P). T h e n  
every nonzero vector w f GF(2)" is  a linear structure of a nonzero linear 
combination of the components  off. 
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Proof It sufficies to show that two different linear combinations of the compo- 
nents o f f  have different linear structures. Let u1 and u2 be nonzero vectors in 
GF(2)" and let w1 and w2 be the linear structures of u1 .f and u2.f, respectively. 
If w1 = w2 = w it follows that w is also the linear structure of (u1 + u2) . f .  
Since u1 . f and u2 . f are balanced it follows from Lemma 1 that 

u1 . f ( w )  = u2 * f ( w )  = 1 

(u1+ u2) . f ( w )  = 0. 
and consequently 

If u1 # u2, then (UI +uz) - f  is balanced. Thus by Lemma 1, u1 = u2. 0 
Now Theorem 3 for d = 1 is a consequence of the following 

Theorem 4 Let f = (f1 , f2 ,  ..... fn): GF(2)" + GF(2)" be a pemuiation that 
satisfies (P). Then for every f ixed nonzero diflerence w E GF(2)" of the inputs 
t o  f, the differences of the outputs lie in an afine hyperplane of GF(2)" and 
are uniformly distributed there. 

Proof: Let w be a nonzero input difference for f. Then by Lemma3 there is 
v E GF(2)" ,  v # 0, such that w is the linear structure of v.f and by Lemma 1 

v ' f(x + w) + v . f(x) = 1 

for all x E GF(2)" . 
Let ul, ...., un-l be linearly independent vectors in GF(2)" such that 

Y $2 span{ul, " . . ,u"-~} 

Then by Lemma 2 for every u E span(u1, ...., un-l} the function 

X H U . f ( X + W ) + U . f ( X )  

is balanced, which means (see [4]) that for every ( b l ,  ....., b,,-1) E GF(2)"-' the 
system of equations 

~ i . f ( x + w ) + u i . f ( x ) = b i ,  i =  I , . . . . ,n - I ,  

has 2 solutions x E GF(2)". Hence the system of n equations : 

(2) u; *f(x+ w) +u;  .f(x) = b ; , i  = 1, ...., n- 1, 
v * f ( x +  W )  + v . f (x)  = b 

has 2 solutions if b = 1 and no solutions if b = 0. Every system of n equations 

fi(x + w) + fi(x) = a, ,  i = 1,2, ...., n. 

is a linear transformation of (2), from which the claim follows. D 
By a similar argumentation one can prove the following generalization of Theo- 
rem 3. 
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Theorem 5 Let f be a permutation in GF(2d)", d and n odd, with property  ( P )  
and let f l )  ...., fn  be the components off with respect to some arbitrary fixed basis 
over GF(2d). Let 1 5 n and set h = (fi, f z 1  ....) fr). Then p,,, = Z d ( l - ' )  f o r  h. 

From the results in Section 2 we now obtain 

Theorem 6 Assume that in a DES-like cipher the function f is a mapping from 
GF(2)" to GF(2)", rn 2 n, obtained from a pernutation in  GF(2)" with ( P )  
b y  discarding m - n output bits. Then p,,, = 2l-" for  f. Moreover, if m > n, 
then the probability of every r-round differential, T >, 4, i s  less than or equal to  
23-2n, assuming that the inputs to f are uniformly random and independent at 
each round. If m = n,  the probability of every r-round differential, r 2 3, is less 
than or equal to 2 2 - 2 n .  

4 Examples of permutations with property (P) 

Pieprzyk [9] observed that the permutations f(x) = xZks1 in GF(2") with 
g c d ( b , n )  = 1, 1 5 lc < n and n odd are at a large distance from the linear 
mappings. We shall show that these permutations have property (P). 
Let ai, ...., Crn be a basis in GF(2") over G F ( 2 )  and P I ,  ....,Pn be its dual basis. 
Let x = ~ ~ = = l z i ~ i ,  z i  E GF(2) .  Then the i'th component f,(x) of f(x) with 
respect to the basis c y 1 ,  ...., ayn is 

where ~i E GF(2") is such that $*+' = pi, i = 1 , 2 ,  ...., n. 
Now it is straightforward to check that T ~ ( y ~ a ~ ( ~ , c r , ) ~ ~ )  is the jl ' th entry in the 
matrix A; = BiR'Bi where 
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is a n x n regular matrix over GF(2") and 

is the cyclic shift for which rank(Rk + (Rk))t) = n - 1 if g c d ( k ,  n)  = 1. Hence 

and 

over GF(2"). Thus ranb(Ai +A:) = R - 1 also over GF(2),  since the rank does 
not decrease when going to a subfield and it cannot be n. By the linearity of 
the trace function the same holds for every nonzero linear combination of the 
components f; o f f .  Moreover, since f is a permutation] they are all balanced, 
which completes the proof of property (P) for f. 
Matsumoto and Imaj proposed in [ 5 ]  a public key cryptosystem C',  which is 
based on power polynomials xZk+'. If the round function of an iterated DES- 
like cipher of block size 64 makes use of the mapping x2k+1 as proposed below 
in Section 5 ,  the description of the round function for efficient implementation 
would be less than the minimum size of the  public key for C' cryptosystem. 

5 A prototype of a DES-like cipher for encryption 

Let g(x) = x3 in GF(237). There are several efficient ways of implementing 
this power polynomial and each of them suggest a choice of a basis in GF(237). 
Let us fix a basis and discard five output coordinates. Then we have a function 
f : GF(2)37 -+ GF(2)32. The 64-bit plaintext block is divided into two 32-bit 
halves L and R. The plaintext expansion is an affine mapping E ; GF(2)32 - 
GF(q3'.  Each round take a 32 bit input and a 37 bit key. The round function 
is L(IR t+ R1( L EB f(E(R) @ K ) .  
In [a] Biham and Shamir introduced an improved differential attack on 16-round 
DES. This means, that  in general for an w o u n d  DES-like cipher the existence 
of an ( r  - 2)-round differential with a too high probability may enable a success- 
ful differential attack. From Theorem 6 we have that  every four and five round 
differential of this block cipher has probability less than or equal to 2-61. There- 
fore we suggest at  least six rounds for the block cipher. All round keys should be 
independent, therefore we need at least 222 key bits. This is equivalent to  four 
DES keys, where all parity bits plus two other bits are discarded. 
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