
Provable Security Proofs and their
Interpretation in the Real World

Vikram Singh ∗

Abstract

This paper analyses provable security proofs, using the EDL signa-
ture scheme as its case study, and interprets their benefits and draw-
backs when applied to the real world.

Provable security has been an area of contention. Some, such as
Koblitz and Menezes, give little credit to the potential extra security
provided and argue that it is a distracting goal. However, others be-
lieve that an algorithm with a security proof is superior to one without
it, and are prepared to accept the impact to performance that their use
might involve. Goldreich has been notable for his defence of the secu-
rity proof, and for his opposition to the view of Koblitz and Menezes.
This paper is designed to help the reader make their own decisions on
security proofs. We achieve this by giving an introduction to the typ-
ical security model used, then give a description of the EDL signature
scheme and its tight reduction to the CDH problem in the Random
Oracle Model, then analyse the proof’s assumptions, meaning, validity
and overhead for real world security.

Keywords: Cryptography, Provable Security, EDL Signature Scheme,
Tight Reduction, Computational Diffie Hellman problem, Random Or-
acle Model

∗ vs77814@gmail.com. Completed in 2008 based on studies at RWTH Aachen Uni-
versity, 2005-2007.

1

Contents

1 Introduction 3

2 The Security Model 3
2.1 The Random Oracle Model . 5

3 The EDL Algorithm 5
3.1 Setup . 5
3.2 Key Generation . 6
3.3 Signature Generation . 6
3.4 Signature Verification . 6
3.5 Adaptations of the Algorithm 6

4 The Security Proof of the EDL Algorithm 6
4.1 The Simulated Functions . 7
4.2 Categorization of the Adversary’s Actions 8
4.3 Reducing to a Hard Problem 9

5 Analysis of the Security Proof 10
5.1 Accuracy of Assumptions . 11
5.2 Attacking the Algorithm . 11
5.3 Redundancy for Security . 12

6 Conclusion 12

2

1 Introduction

The field of Security Proofs is a daunting one to an outsider. The method-
ologies can seem strange, and the field can produce results that are incom-
prehensible to common sense, such as the extra bit used in the Katz Wang
version of Schnorr’s algorithm that provides twice the bit-length of security.
Such results cause some to dismiss the field. However, proofs also give useful
confidence in an algorithm’s security, and many researchers regard this as
being of utmost importance. As such, one finds strong positive and negative
views on the matter.

Papers produced by Menezes and Koblitz ([3] and [4]) have attempted
to critically examine aspects of security proofs and the claims of those that
produced them. Unsurprisingly, these papers have met with fierce opposition,
most notably in [8] from Goldreich who is vehement in his rebuttal of their
ideas. However, behind the controversy is a rigorous mathematical discipline
that is flawless in its own right. Whether it may be applied in the real world
is where the debate probably truly lies.

This paper first introduces the subject, describing the security model
which allows the difficulty of breaking a cryptographic algorithm to be related
to the difficulty of solving an assumed-hard mathematical problem. Such a
relation is called a reduction, and it is “tight” if the time to solve each is
similar. A tight reduction thus enables security bounds to be put on the
cryptographic algorithm.

The focus of this paper will then be the EDL signature algorithm, and
consideration of the real world interpretation of the results of security proofs.
EDL and the subsequent variants by Katz Wang and Chevallier-Mames have
shown security proofs with the most success of late, with EDL being the first
signature algorithm to have a tight reductionist security proof, thanks to Goh
and Jarecki in [2]. This EDL proof will be described and analysed. We will
not consider algorithms with asymptotic and non-tight security reductions
as they provide comparatively insignificant benefit.

This paper is divided into six sections. Section 2 describes the principles
behind producing security proofs. Section 3 describes the EDL signature
algorithm and adaptations of the algorithm. In Sections 4 and 5 the security
proof is described and analysed. The paper concludes in Section 6.

2 The Security Model

The purpose of a security proof is to show that within some defined mathe-
matical world, if a machine is able to break the algorithm then that machine

3

may be applied to solve a known hard problem (except with small proba-
bility). It is usually straightforward to show that breaking some hard prob-
lem (such as finding a discrete logarithm) results in breaking the algorithm,
though not always. Thus, in the mathematical world we are reducing the
problem of attacking the algorithm to solving a hard problem and may con-
clude that breaking the algorithm is at least an equally hard problem. This
type of proof of security is also known as a reduction proof, and certainly
the latter name is more accurate.

To produce such a proof, two protagonists are required; an Adversary and
a Simulator. The role of the Adversary is to be able to produce a forgery in
some way. The role of the Simulator is to use this ability of the Adversary to
build a machine that solves the hard problem. The Simulator is named thus
as it simulates the expected world of the Adversary so that the Adversary
may not detect that it is being used for this purpose. The reasoning allows
the logical conclusion that the Adversary will act in the same way to produce
its forgeries whether inside the Simulator or not.

H1(…) H2(...)

A, B, C, …

Public
Values

Sign(m, …)

A, B, C, …

Adversary

Simulator

Forgery
(m’, …)

Solution to
hard problem

Figure 1: Adversary-Simulator Model

Figure 1 provides a pictorial explanation of the setup. Functions required
by, but unknown to, the Adversary are simulated by the Simulator. The Sim-
ulator may choose the return values in any way so long as they are distributed
as the Adversary expects. The next stage of these proofs is to produce a fi-
nite classification of all possible actions of the forger (A, B, C, etc. in the
diagram). For each of these, it is demonstrated that the machine is either
able to solve the hard problem or the forger is highly unlikely to produce a

4

successful forgery. The prover then relates the probability/time to produce
the forgery with that to solve the known hard problem.

2.1 The Random Oracle Model

In the security proof of most algorithms, it is assumed that the mathematical
world is the Random Oracle Model. The Random Oracle Model assumes that
the hash function may be chosen randomly by the Simulator from the set of all
possible functions. In other words the hash is perfect, allowing the following
properties:

1. The output of the hash function is indistinguishable from random out-
put.

2. The Adversary’s attack must be independent of the hash function used.

3. The Adversary cannot exploit any properties of the hash function.

The second of these points means that while the Adversary may use any
public values, the Adversary may not know the hash functions used in the
algorithm. The Adversary’s knowledge of the hash functions would render
any attempted simulation of the functions detectable. This point will be
returned to in Section 5.

3 The EDL Algorithm

The design of EDL, as specified and proved in [2], is similar to Schnorr’s
algorithm, [7]. In fact one can view the algorithm as Schnorr’s algorithm
run in parallel on both the generator g and the message hash h. This is not
accidental as the security proof of Schnorr’s algorithm works by considering
more than one iteration of the algorithm. By putting these iterations in
parallel the designers of EDL are able to achieve tighter security bounds
than may be achieved with Schnorr’s algorithm, at the cost of a more complex
algorithm.

3.1 Setup

The algorithm is performed in a cyclic group G of order q, generated by g.
Let elements of G have bit length lp and q be a prime with bit length lq.
Define lr to be the bit-length of the random value r. The group is viewed
multiplicatively. Given the space of messages is M, two hash functions are
required; H : M×{0, 1}lr → G and G : G6 → Zq. Finally, it must be possible

5

to generate random values of bit length lq, and random values of bit length
lr.

3.2 Key Generation

The private key is a random number x ∈ Zq. The public key is y = gx.

3.3 Signature Generation

To sign a message m ∈M, the signer generates r ∈ {0, 1}lr , and k ∈ Zq. The
signer computes h = H(m, r) and z = hx. Similarly, the signer computes
u = gk and v = hk. The signer then calculates the hash of these values
c = G(g, h, y, z, u, v) and computes s = k + cx mod q. The signer produces
the signature on m: σ = (z, r, s, c).

3.4 Signature Verification

To verify the signature, σ = (z, r, s, c), on a message m ∈ M, the verifier
computes h̃ = H(m, r), ũ = gsy−c and ṽ = hsz−c. The signature is accepted
iff c = G(g, h̃, y, z, ũ, ṽ).

3.5 Adaptations of the Algorithm

There are at least two further adaptations of this algorithm that the reader
should be aware of. The first is the Katz Wang signature algorithm, [5]. This
algorithm makes the improvement of reducing the size of r to a single(!) bit
at the cost of a slightly weaker security bound. There is also the Chevallier-
Mames signature algorithm proposed in [1]. This impressively alters the
algorithm in a way that retains the security bounds while removing the need
for r altogether. Both of these algorithms have a security proof that follow
similar lines to the proof of EDL given in Section 4.

4 The Security Proof of the EDL Algorithm

The proof for the EDL algorithm precisely follows the model described in
Section 2. The proof assumes the Random Oracle Model and that the Sim-
ulator and Adversary have the public values g, q, G and y. The proof then
builds the Simulator and categorizes the possible actions of the Adversary.
It then demonstrates that on production of a forgery, the Simulator is highly
likely to be able to solve the following hard problem:

6

Definition 4.1. The CDH problem - The CDH or Computational Diffie
Hellman problem is the problem of finding gax given g, ga and gx. Note that
for EDL, g and y = gx are public values. It is assumed that w = ga is another
public value known to the Simulator. Assume that in G, given time τ̃ the
probability of solving the CDH problem is ε̃(τ̃).

4.1 The Simulated Functions

There are three functions that the Simulator answers for the forger, the two
hashes H(m, r), G(g, h, y, z, u, v) and the signature simulation: Sign(m).

• H(m, r) - If the request has previously been made, the Simulator re-
turns the previously returned value. Otherwise, the Simulator gen-
erates a random value d ∈ Zq and returns: wgd. Note that this is
distributed randomly in G and hence H is indistinguishable from a
random hash function.

• G(g, h, y, z, u, v) - If the request has previously been made, the Simu-
lator returns the previously returned value. Otherwise, the Simulator
returns a random value: c̃ ∈ Zq. Hence G is indistinguishable from a
random hash function.

• Sign(m) - If the request has previously been made, the Simulator re-
turns the previous signature. Otherwise, the Simulator generates a
random number r ∈ {0, 1}lr . If H(m, r) has already been chosen the
Simulator fails. Otherwise the Simulator generates a random number
κ ∈ Zq and sets h = H(m, r) = gκ and computes z = yκ(= hx). The
Simulator now chooses c and s at random and computes u = gsy−c

and v = hsz−c. If G(g, h, y, z, u, v) has been previously chosen then the
Simulator fails. Otherwise set c = G(g, h, y, z, u, v) and return:

σ = (z, r, s, c)

Note that this signature is indistinguishable to the Adversary from one
produced by a real signer.

Note that the Simulator may set the return values of G and H and thus pro-
duce signatures precisely because we are in the Random Oracle Model. The
reader may concern themselves with the issue that the Simulator’s control
over the hash means it is able to produce forgeries itself, and so the reader
may wonder why it needs the Adversary at all? The answer to this question
is found by noting that the Simulator provides the adversary with a different

7

output to H than it uses itself. The Adversary is in a more constrained posi-
tion than the Simulator; the point being that success under these constraints
is highly likely to result in a solution to the CDH problem.

4.2 Categorization of the Adversary’s Actions

Simulator Fails

Cannot
Set H(. . .)

Cannot
Set G(. . .)

Simulator Successful

z = hx

Forgery
Unsuccessful

Forgery
Successful

z 6= hx

Forgery
Unsuccessful

Forgery
Successful

Figure 2: Adversary’s actions

The Adversary’s actions will be separated into six disjoint cases. These
cases can be seen in Figure 2.

Firstly, in attempting to produce a signature, the Simulator may fail.
If the Simulator fails, it is acting in a way not expected by the Adversary
meaning the CDH will not be solved. There are two ways in which in could
fail, due to H(m, r) being previously requested or due to G(g, h, y, z, u, v)
being previously requested. Let qH , qG and qS be the number of H, G and
signature queries respectively, where hashes queried during signing do not
count towards qH or qG. Then the probability of the first failure is at most
qS

qH+qS
2lr

.
If the second failure occurs then G(g, h, y, z, u, v) has already been set.

If this had been set as part of a previous signature query, a collision on H
has occurred and the same k = (s − cx) has been chosen by the Simulator.

This occurs with probability at most
q2S
q2

. Otherwise, this has been set by an
Adversary’s query to G. As the first failure did not occur, h must have been
chosen at random. Furthermore, as the input must match with an input
of the form; (g, gκ, y, yκ, gk, gkκ), and κ and k may be chosen randomly, the
probability of this occurring is at most qSqG

q2
.

8

Thus the probability of Simulator failure is at most:

P(Sim Fails) ≤ qS

(
qH + qS

2lr
+
qG + qS
q2

)
Now assume the Simulator is successful. If the Adversary produces a

forgery on a message that is either incorrect or has previously been signed
by the Simulator, then the Adversary has failed. If instead the Adversary
has generated a successful forgery, σ = (z, r, s, c), for a previously unsigned
message, m, then the Adversary is successful. Assume that given time τ , the
Adversary is successful with probability ε(τ), so that:

P(Valid Forge|Sim Success) = ε(τ)

There are two cases to consider: z = hx and z 6= hx.
If z 6= hx, then the Adversary must find c and s such that c = G(g, h, y, z, gsy−c, hsz−c).

Assume u = gk, v = hk̃, z = hx̃ for some k, k̃, x̃ ∈ Zq and x 6= x̃. As the
forgery is valid, c = G(g, h, y, z, u, v), k = s− cx and k̃ = s− cx̃. Thus there
is only one valid c for each s as:

c =
k − k̃
x̃− x

Thus the probability of the Adversary’s success in this case is:

P(Valid Forge|z 6= hx & Sim Success) ≤ qG
q

If z = hx, then the Simulator may solve the CDH problem. To produce
the signature, the Adversary must have queried H(m, r) or else there’s only
a 1

q
probability of a valid forgery. Thus h = wgd for some d known to the

Simulator. Hence the Simulator may calculate:

zy−d = hxg−dx = wxgdxg−dx = gax

If an exponentiation of a group element requires time τexp, then the runtime
of the Simulator in this case is approximately: τ + τexp(6qS + qH).

4.3 Reducing to a Hard Problem

Recall that in G, given time τ̃ the probability of solving the CDH problem is
ε̃(τ̃). So set τ̃ = τ + τexp(6qS + qH), and let F be the event that the forgery
is valid, and S be the event that the Simulator is successful (with S̄ being
the complement), then:

9

ε̃(τ̃) ≥ P(z = hx & F & S)

= P(F & S)− P(z 6= hx & F & S)

= (P(F |S)− P(z 6= hx & F |S))P(S)

≥ (P(F |S)− P(F |z 6= hx & S))(1− P(S̄))

≥ P(F |S)− P(F |z 6= hx & S)− P(S̄)

≥ ε(τ)− qG
q
− qS

(
qH + qS

2lr
+
qG + qS
q2

)
Meaning that, except for a small error term, the probability the Adversary
produces a forgery is less than the probability of solving the CDH problem in
a similar period. By choosing parameters sensibly and by assuming knowl-
edge of the most likely attack on the CDH problem, the equation above can
be rearranged to give a non-trivial upper bound on the probability of success
in time τ .

ε(τ) ≤ ε̃(τ̃) +
qG
q

+ qS

(
qH + qS

2lr
+
qG + qS
q2

)
One may like to believe that this is roughly an equivalence, but interest-

ingly being able to solve the CDH problem does not imply that the Adversary
can forge a signature. In this case, the Adversary can calculate the correct
z given h and y, however the Adversary cannot publish s (= k + cx) as x is
unknown. Only gs may be found.

We now note that for typical real-world bounds on the number of hash
and signature queries available to the Adversary, the probability of CDH
success is similar to the probability of forgery success, and the time taken
in both cases is similar too. This gives the tight reduction of the forgery
to a solution of CDH, which can be quantified once read-world bounds are
assigned.

5 Analysis of the Security Proof

The proof has produced the impressive result of tightly relating the security
of a signature algorithm to solving the CDH problem, given the assumptions
(and the correctness of the proof). To interpret this result as providing
security of the algorithm, it is necessary to attempt to embed the result into
the real world.

10

5.1 Accuracy of Assumptions

At the beginning of the proof the Random Oracle Model was assumed. This
attack restricts the Adversary to only finding attacks for a general hash
function. However, as no algorithm is implemented using a general hash
function, at some point it is clear that the designer will need to be specific. In
this case the Random Oracle Model assumption is clearly incorrect unless it is
proven that the best attack against the chosen hash function is generic. Until
such a hash exists, it is difficult to perceive an entirely reliable application
of these results.

Alternatively, one could take the view that the proof has ensured that
only attacks that involve exploiting properties of the hash need be considered
in assessing the security of the algorithm in the real world. But does not
considering attacks which apply with a generic hash make it easier to assess
an algorithm?

5.2 Attacking the Algorithm

Given that the Random Oracle Model is assumed, the simplest way to assess
the value added by the proof is to consider attacks on the algorithm, and
how these attacks are considered within the proof.

• H collision attack: Given a message, signature pair m, (z, r, s, c), find
a (m̃, r̃) such that H(m, r) = H(m̃, r̃).

• G collision attack: Pick z ∈ G at random, find (s, c) such that c =
G(g, h, y, z, gsy−c, hsz−c).

• G collision, H inversion attack. Find (m, r) such that H(m, r) = gk,
find (s, c) such that c = G(g, gk, y, yk, gsy−c, (gsy−c)k) to achieve a
forgery.

• Outside Group ‘attack’: Set z = 0, find (s, c) such that c = G(g, h, y, 0, gsy−c, 0).

Careful consideration will show that all of these attacks except the last are
considered by the Security Proof. Furthermore, sensible parameter checking
would ensure that the last attack is not feasible.

The ‘outside group attack’ does raise an interesting point. Assuming
(probably incorrectly) that the algorithm designer did not consider the case
z = 0. The missing edge case occurs due to the probable implementation
being over a ring rather than a group. Such subtle changes are out of scope
of the security proof but have as much significance to the real security of the
algorithm.

11

Alternatively, the security proof could be considered to have changed
the problem from finding a flaw in the algorithm to finding a flaw in the
proof of the algorithm or a hidden flaw in the assumptions (such as: z 6=
0). Thus the question remains: Is it harder to find flaws in the algorithm’s
proof/assumptions than in the algorithm itself ?

Furthermore, if it is, how much harder? For example, in the extreme,
if there existed a signature algorithm which has had similar level of effort
into breaking as the CDH problem, would a lack of reduction to the CDH
problem be a concern as our assurance of the ‘hardness’ of the problems
may be the same. If it were shown that breaking this new EDL algorithm is
tightly reducible to breaking the long standing DSA, would this be of value?

5.3 Redundancy for Security

Comparing the ‘G collision attack’ and the ‘G collision, H inversion attack’
it appears that calculating the correct value for z achieves little for the at-
tacker. Define F (h, z, s, c) = G(g, h, y, z, gsy−c, hsz−c). As G is a general
hash function, we may assume that F is as well.

An attacker is attempting to find a (z, s, c) such that c = F (h, z, s, c).
While it is clear there is a solution for the correct z, this is also expected for
any other x as F is a random function. Is there a purpose for z other than
to be used as part of the security proof? It is worth the reader noting that
removing x from EDL results in a randomised hashing version of Schnorr’s
signature algorithm.

6 Conclusion

Whatever your answer to the questions in Section 5, it is clear that a security
proof cannot be perceived as a replacement for common sense analysis. A
security proof is provided within a mathematical domain and hence careful
consideration will always be required before its results can have significance
in reality. In particular, the assumptions made as part of the Random Ora-
cle Model cannot currently be satisfied and the significance of this will need
consideration. Furthermore, efforts in attacking the algorithm could be per-
ceived to have been mapped to attacking the proof or assumptions and this
may or may not be of benefit. Lastly, the algorithm could contain redundancy
whose presence has no perceivable security benefit other than to complete
the proof.

12

References

[1] B. Chevallier-Mames. An Efficient CDH-based Signature
Scheme With a Tight Security Reduction. 2005.

[2] E.-J. Goh and S. Jarecki. A Signature Scheme as Secure as
the Diffie Hellman Problem. Advances in Cryptology - EU-
ROCRYPT 2003, Lecture Notes in Computer Science, pages
401-415. Springer-Verlag, 2003.

[3] N. Koblitz and A. Menezes. Another look at “provable secu-
rity”. Cryptology ePrint Archive, Report 2004/152, 2004.

[4] N. Koblitz and A. Menezes. Another look at “provable secu-
rity” II. Cryptology ePrint Archive, Report 2006/229, 2006.

[5] J. Katz, and N. Wang. Efficiency improvements for signature
schemes with tight security reductions. ACM Conference on
Computer and Communications Security, pages 155-164. ACM
Press, 2003

[6] J. Stern, D. Pointcheval, J. Malone-Lee and N. Smart. Flaws in
applying proof methodologies to signature schemes. Advances
in Cryptology - CRYPTO 2002, volume 2442 of Lecture Notes
in Computer Science, pages 93-110. Springer-Verlag, 2002.

[7] C.-P. Schnorr. Efficient signature generation by smart cards.
Journal of Cryptology, 1991.

[8] O. Goldreich. On Post-Modern Cryptography. 2006. Cryptol-
ogy ePrint Archive, Report 2006/461, 2006.

13

