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Abstract

An approach is presented for exploring an unknown, ar-

bitrary surface in three-dimensional (3D) space by a mobile

robot. The main contributions are (1) an analysis of the ca-

pabilities a robot must possess and the trade-offs involved in

the design of an exploration strategy, and (2) two provably-

correct exploration strategies that exploit these trade-offs and

use visual sensors (e.g., cameras and range sensors) to plan

the robot’s motion. No such analysis existed previously for

the case of a robot moving freely in 3D space. The approach

exploits the notion of the occlusion boundary, i.e., the points

separating the visible from the occluded parts of an object.

The occlusion boundary is a collection of curves that “slide”

over the surface when the robot’s position is continuously con-

trolled, inducing the visibility of surface points overwhich they

slide. The paths generated by our strategies force the occlu-

sion boundary to slide over the entire surface. The strategies

provide a basis for integrating motion planning and visual

sensing under a common computational framework.

1 Introduction

An important, unsolved problem in robotics is the devel-

opment of strategies for real-time and provably-correct ex-

ploration of unknown environments where three-dimensional

reasoning and visual sensing is necessary. Such exploration

strategies are necessary when a mobile robot must control its

position in order to reach a desired location in an unknown

three-dimensional environment, or to produce a map of it.

The main focus of this paper is the development of strategies

for solving the object exploration task: In this task the goal

of the robot is to plan a collision-free path allowing it to

sense all points on the surface of an object in the environment.

We assume that the robot is a point and that it is equipped

with a camera or a range sensor. We assume that the robot’s

environment contains objects that are finite volumes bounded

by closed and connected surfaces of arbitrary shape.
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The major contributions of this paper are (1) the devel-

opment of a framework for solving the object exploration

problem that makes explicit both the capabilities a robot must

possess in order to successfully explore an object, and the

trade-offs involved in the design of an exploration strategy,

and (2) two exploration strategies that exploit these trade-offs

and rely on visual sensors (e.g., cameras or range sensors) for

planning the motion of the robot. These strategies build on

computer vision research that has studied the appearance of

smooth and piecewise-smooth surfaces [1, 2]. Our results pro-

vide a basis for integrating motion planning and visual sensing

under a common computational framework.

Our work has been inspired by recent approaches which,

instead of assuming that complete information about the envi-

ronment is available [3], use only the sensor information that

is necessary for planning the motion of the robot [4]. These

approaches follow a purposive [5], act-while-thinking strategy

and consider robotic motion planning as a continuous process

where sensing and action are tightly coupled [6–8].

In our previous work we focused on the path planning prob-

lem, i.e., the task of reaching a location within an unknown

three-dimensional environment [7]. That work provides the

basis for the work we present here. More specifically, in [7]

we obtained three main results:

In order to solve the path planning problem a robot must,

in general, be capable of exploring the surface of an

arbitrary object. This result shows the importance of

solving the object exploration problem.

A provably-correct path planning strategy was developed

under the assumption that an object exploration strategy

is available to the robot. However, an exploration strat-

egy was not presented.

Through a theoretical analysis of the type of sensing in-

formation that is necessary and sufficient for solving the

path planning and exploration problems, we showed that

in order to solve these problems a robot must plan its

motion based on the perceived shape (i.e., appearance)

of the objects and must use sensors that provide infor-

mation for at least a one-dimensional set of object points



from every position of the robot. This result implies that

visual sensors (i.e., sensors that provide shape informa-

tion about the visible portions of object surfaces ) are

important for planning a robot’s motion.

In this paper we develop strategies that guarantee

correctness and bounded length paths for exploring ar-

bitrary geometrically-complex, three-dimensional environ-

ments. When trying to perform tasks that depend on the

appearance of an object (as is the case with three-dimensional

exploration and path planning), provable correctness is critical

(see Section 2): Object appearance can drastically change de-

pending on the position of the robot, making ad hoc strategies

unpredictable, incomplete, and even non-terminating

To our knowledge, no strategies currently exist for solving

the object exploration problem in non-polyhedral environ-

ments when the robot is able to freely move in space (i.e., has

three degrees of freedom in position). In the case of polyhe-

dra, the strategies developed (e.g., [9]) rely on the fact that

the objects consist of a finite collection of planar faces, and

produce paths whose lengths diverge in the limit. A number

of recent approaches in computer vision have been suggested

for exploring the surfaces of objects [8, 10–12], but their cor-

rectness in arbitrary environments has not been investigated.

2 Overview of our Approach

As a robot moves in its environment, the set of visible

points changes. In our approach we capture and control these

visibility transitions by analyzing the occlusion boundary of

objects. For a given robot position, this is the collection of

closed curves bounding the occluded object points (Section

3). The shape and position of these surface curves almost

always depends continuously on the robot’s position: When

the robot’s position is continuously controlled, these curves

can be thought of as sliding on the surface. Furthermore, their

topology (i.e., connectivity) can change only at a discrete set

of robot positions. If an occlusion boundary curve slides over

a previously-occluded point during the robot’s motion, that

point becomes visible. This allows us to formulate exploration

as the task of forcing the occlusion boundary to slide over the

points occluded from the robot’s initial position (Section 3).

Intuitively, the main difficulty in solving the exploration

problem is that although the robot has some control over the

motion of the occlusion boundary over the surface, this control

is not complete; the motion of the occlusion boundary also

depends on the shape of the surface itself. In addition, the

Visible portions of an object surface contain all points for which the

open line segment connecting them to the robot does not intersect any object.

In our discussion, “visual sensors” include cameras, where only information

about the projected shape of the visible surfaces is directly available, as well

as more powerful mechanisms such as range sensors, which directly provide

distances to visible surface points within a finite ball around the robot.

(a) (b) (c)

Figure 1: Forcing the occlusion boundary curve , shown as

a white circle in the first image, to slide over the dark curve

drawn on the torus.

topology of the occlusion boundary can change unexpectedly,

further complicating the exploration process.

To illustrate the difficulties involved in exploring an object,

consider the torus shown in Figure 1(a). In order to explore

the torus, the robot must force the visibility of all points along

the dark curve drawn on its surface. One way to proceed is to

move downward, forcing the smooth curve , which is part of

the occlusion boundary, to slide over the segment of the dark

curve that is initially occluded. As the robot moves down-

ward, however, shrinks to a point and disappears (Figure

1(c)), changing the topology of the occlusion boundary and

making any further downward motion of the robot ineffective.

The robot must now move differently in order to continue the

exploration process. Similar difficulties occur due to geomet-

rical changes in the occlusion boundary (i.e., even when no

topological changes of the occlusion boundary occur).

This simple example illustrates that a number of basic steps

are necessary to solve the exploration problem. It is there-

fore necessary to ask how many times such actions need to be

executed, whether the whole surface is always explored, and

whether the exploration process is guaranteed to terminate.

These issues are precisely the reasons why provably-correct

exploration strategies are necessary: Since the answers to

these questions are not evident even for geometrically-simple

surfaces such as the torus, provably-correct exploration strate-

gies are necessary if one hopes to use them for exploring real

objects.

To explore the surface of an object we present an iterative

strategy (Section 4) that repeatedly performs a sequence of

basic motions in order to incrementally “grow” the set of points

made visible on an object surface. These motions are designed

in a way that guarantees (1) they will be executed only a finite

number of times, and (2) when the process terminates the

surface will be completely explored.

Clearly, the robot’s motions at each iteration of the explo-

ration process depend on the robot’s capabilities and the sensor

 



Figure 2: Points and belong to the occlusion boundary.

Only point belongs to the visible rim.

input. These motions determine the class of objects that the

robot can provably explore. To study the trade-offs involved

in the design of an exploration strategy we consider two dif-

ferent types of basic motions. The first type uses a sensor

capable of providing the three-dimensional coordinates of all

visible points (e.g., a range sensor), and requires the robot to

move very close to an object at every iteration (Section 5).

With these capabilities we show that arbitrary objects can be

explored. The second type of basic motions uses a camera

that provides only the shape of the projection of the occlusion

boundary, and requires the robot to get close to the surface

only when the surface geometry makes this necessary (Sec-

tion 6). In this case we show that the resulting exploration

strategy can only be used to explore non-concave objects or

the non-concave regions of a general object. We then briefly

discuss the trade-offs in these two exploration strategies, and

also describe how they can be combined (Section 7).

3 Visibility and Occlusion

In order to solve the exploration problem in an unknown

environment one must understand the structure of the occlu-

sion boundary, its relation to object geometry, and the way its

structure changes when the robot moves. This section presents

the basic concepts required for this analysis.

Without loss of generality, we consider in rest of the paper

the case where the environment contains a single object whose

surface is connected, has finite area, and bounds an open

volume in . Furthermore, we limit our discussion to the

case where is smooth; for these surfaces every surface point

has a uniquely-defined outward surface normal, , and

tangent plane, , both of which depend smoothly on .

Given a robot path , a point

is occluded from position if and only if the line

segment intersects ; otherwise is visible.

The strategies we present can be extended to handle piecewise-smooth

surfaces. These surfaces are smooth except for zero- or one-dimensional sets

whose points have a finite number of normals assigned to them.

Definition 3.1 The visible rim, , is the set of points

for which the line segment is tangent to at and does

not intersect .

Definition 3.2 The occlusion boundary, , bounds the

visible and the occluded points. It is the set of points for

which the line segment contains at least one visible rim

point and does not intersect .

Clearly, the occlusion boundary is a superset of the visible rim

(Figure 2). A convenient way to visualize and study the occlu-

sion boundary and the visible rim is to look at their spherical

projections onto an image centered at the robot’s position (Fig-

ure 3). Their projections are identical; this projected contour

is known as the occluding contour [1].

In general, the occlusion boundary is collection of closed,

piecewise-smooth curves, , whose number and

shape depends on the robot’s position. The endpoints of

the smooth segments of these curves project to cusps or T-

junctions on the occluding contour (Figure 3). Given a smooth

path , for the robot, the curves move on

the surface in a way that depends smoothly on , except for a

discrete set of values for which their topology changes. These

changes occur precisely when the topology of the occluding

contour changes [13–15].

Between any two consecutive topological transitions the oc-

clusion boundary can be thought of as a collection of smooth

curves that “slide” over the surface of the object as the robot

moves, causing deformations to the occluding contour. In par-

ticular, given an instantaneous direction of motion, , we

can express the motion of the occlusion boundary using the

epipolar parameterization. The details of this parameteriza-

tion are not important here and the reader is referred to [16].

The important point is that given a smooth segment of

Figure 3: The occluding contour. Each point on the oc-

clusion boundary projects to a single point on the spherical

image. For simplicity, the image of the occlusion boundary

on a plane tangent to the spherical image is shown.

 



, this parameterization allows us to define the segment

of that corresponds to .

The motion of the occlusion boundary induced by the

robot’s motion directly affects the set of surface points be-

coming visible. When the occlusion boundary at time

slides over a surface point that was occluded from positions

, that point becomes visible. The following

theorem (see [17] for a proof) gives a qualitative characteri-

zation of these visibility transitions (Figure 4):

Theorem 3.1 Let and let be a point of tangency

of the segment with . If is a smooth occlusion

boundary segment whose points satisfy

, all points on are occluded from position .

Conversely, if , all points on are

visible from position .

Once a point becomes visible, it may be possible to recover

its three-dimensional coordinates using a visual sensor. We

consider two types of sensors:

Range sensors. With such a sensor the robot can deter-

mine the coordinates of all visible points.

Cameras. With such a sensor the robot can detect the

occluding contour. Furthermore, when the robot moves

along a path and knows its speed and acceleration, it

can determine the coordinates of all points on the visible

rim from the deformation of the occluding contour [16].

The exploration problem can now be formulated as follows:

Definition 3.3 (Range sensor-based exploration) Given a

connected surface and an initial position ,

generate a finite-length path such that the occlusion bound-

ary slides over all points on that were occluded at . In

other words, if is the set of points occluded at and

, must satisfy .

Definition 3.4 (Camera-based exploration) Given a con-

nected surface and an initial position , generate

Figure 4:

a finite-length path such that if ,

must satisfy .

To facilitate our discussion we use the following definition:

Definition 3.5 A point on is explored if and only if the

three-dimensional coordinates of were determined by the

robot from some position along its path. The boundary of the

explored points is the exploration frontier.

4 Incremental Exploration

Having provided a formulation for the exploration problem,

this section considers a strategy for exploring an object of

arbitrary shape. The idea is to control the robot’s motion so

that the set of explored points incrementally “grows” on the

surface. To achieve this objective, the robot performs the

following actions during the -th iteration: It selects a point

on the exploration frontier, moves to a position where it is

visible, and finally performs a sequence of motions forcing all

points in a neighborhood of to be explored. This process

terminates when the set of explored points is identical to the

object’s surface, i.e., when the exploration frontier degenerates

to a collection of isolated points.

To completely specify our exploration strategy we need to

answer four questions: (1) How to select point , (2) how

to find a position where is visible, (3) how to explore a

neighborhood of , and (4) how to guarantee that only a

finite number of iterations are necessary. The crucial point in

our approach is that the third and fourth questions, which lie

at the heart of the exploration problem, can be answered using

a local strategy, i.e., one that does not depend on the history

of the exploration process (the set of points explored and the

path generated in the previous iterations). We discuss each of

the four questions below.

In our approach, the point is simply chosen to be any

point on the exploration frontier. The coordinates of the points

comprising the frontier are available to the robot because the

exploration frontier bounds the set of explored points.

The answer to the second question is also simple. If the

robot’s sensor is a camera, all points on the exploration fron-

tier were points on the visible rim at some previous position

of the robot; if it is a range-sensor, all points on the explo-

ration frontier were points on the occlusion boundary at some

previous position. Hence, it suffices for the robot to retrace

its path back to a position where the selected point was

on the occlusion boundary or the visible rim. This can be

achieved if, along its path, the robot saves its current position

together with the set of points belonging to the visible rim

(or the occlusion boundary, if a range sensor is used) at that

position. This information allows the robot to (1) associate

It is, in fact, possible to show that the coordinates of only a discrete set of

occlusion boundary or visible rim points need to be stored from each position.

 



with each exploration frontier point a set of previous positions

from which that point is visible, and (2) plan a collision-free

path to any such position.

Now suppose that the selected point is visible. We use a

neighborhood exploration strategy to answer the third ques-

tion. The only input to this strategy is the selected point .

The goal is to generate a path, based on information provided

by the robot’s sensor, such that an open neighborhood of

becomes explored.

In order to explore the surface in a finite amount of time,

the neighborhood must be large enough so that only a

finite number of such neighborhoods is necessary to cover the

whole surface of the object.

Definition 4.1 Given a class of surfaces , a neighborhood

exploration strategy is complete for if and only if for all

surfaces and all sequences ,

the sequence of explored neighborhoods is such that

for some finite .

Equipped with a complete exploration strategy for , the

robot uses the following strategy to explore a surface :

Surface Exploration Strategy

Step 1: If a range sensor is available, select a point on the

occlusion boundary; otherwise select on the visible

rim. (Initially the exploration frontier is identical to the

occlusion boundary.)

Step 2: Use to explore a neighborhood of . During this

step, the set of points explored on the surface is expanded.

Step 3: Select any point on the current exploration frontier.

If no such point exists, stop; the exploration process is

complete.

Step 4: If a range sensor is available, move to a previous

position, at which is on the occlusion boundary;

otherwise move to a previous position where is

on the visible rim.

Step 5: Repeat steps 2-5.

The only step left unspecified in the above strategy is Step 2.

The next two sections describe two neighborhood exploration

strategies that can be used to implement this step. These

strategies give rise to two different solutions to the exploration

problem. The first strategy, , which is the most general,

uses a range sensor. It is complete for the class of smooth and

connected surfaces of finite area (Section 5). The second one,

, uses a camera and is complete only for the subclass of

surfaces with no concavities, e.g., the torus or, more generally,

surfaces produced by appropriately deforming spheres with

handles (Section 6).

5 Exploration Using a Range Sensor

Suppose that the robot needs to explore the neighborhood

of a selected occlusion boundary point on with the help

of a range sensor. Strategy is based on the following

observation: If the robot looks at from the direction of

its surface normal and is positioned close enough to , all

points in a neighborhood of must be visible. Intuitively,

the reason for this is that the smoothness of around

severely constrains the variation of the surface normals in the

point’s neighborhood; this limits the sets of points that can be

occluded when the robot is close to along .

Using this observation, strategy prescribes exactly how

the robot should move to reach a position along , while

at the same time guaranteeing the completeness of the strat-

egy for arbitrary smooth surfaces. In particular, the strategy

specifies (1) how to reach positions along , and (2) how

far away from the robot should go.

Reaching a position close to along is trivial. Since

is visible from the robot’s initial position, the robot moves

along a straight line towards , determines the surface normal

at when is reached, and then moves along that normal.

The following lemma shows that after is reached, the

robot can guarantee that a neighborhood of is explored

by performing an arbitrarily small position adjustment along

. See [18] for the proof.

Lemma 5.1 Let be the set of visible points when the

robot is at distance from along . Then, there is an

such that contains a neighborhood of for all

.

Unfortunately, an arbitrarily small motion away from can

leave arbitrarily small. The robot must therefore move

sufficiently far from so that contains a neighborhood

of that is large enough to guarantee completeness. In [18]

we show that the robot can guarantee completeness by simply

moving away from along until either a collision

with the surface does not allow further motion, or an a priori

defined distance is reached. Furthermore, the selection

of does not affect the completeness of the strategy. This

result follows from the smoothness of , which ensures that

if the robot moves away from along , the distance

traveled before a surface collision occurs cannot be arbitrarily

small.

The above strategy can be improved by adding an additional

stopping condition that reduces the amount of robot motion

away from . This condition uses Theorem 3.1 and requires

the robot to monitor the occlusion boundary while moving

away from . In particular, during the robot’s motion away

from its instantaneous velocity, , is along . The

occlusion boundary curves at any time during this motion can

be partitioned into open segments falling into two categories,

 



Figure 5: Executing strategy . (a) Views of an environment

with two spheres, as the robot moves away from point on

the sphere shown in the first image, along . The solid

curves correspond to occlusion boundary points in and

the dashed curves to points in . Condition (c) in Step 3

forces the robot to stop at time . (b) Top view of a horizontal

plane containing and .

and , whose points satisfy and

, respectively. If are the distances of and

from , respectively, the robot can stop moving when

(Figure 5).

Intuitively, this constraint allows the robot to move away

from as long as the set of visible points near strictly

expands. To see this, note that according to Theorem 3.1, the

segments in slide over previously-occluded points on ,

expanding the set of points that are visible in ’s neighbor-

hood, while the segments in cause a contraction of this

set. The distance determines the size of

the visible neighborhood of , and increases monotonically

as long as .

Given that is on the occlusion boundary from the robot’s

position, , the following neighborhood exploration strat-

egy can now be specified:

Strategy

Step 1: Starting from , move on a straight line to .

Step 2: Determine the surface normal at , .

Step 3: Move in direction , until one of the following

conditions is satisfied:

a. The surface obstructs the robot’s motion.

b. An a priori defined distance from is reached.

c. , where are the distances of and

to , respectively.

The following theorem establishes the correctness of the

strategy. The interested reader is referred to [18] for the proof.

It is based on the fact that the surface is smooth and does not

have infinite curvature at .

Theorem 5.1 Strategy is complete for smooth and con-

nected surfaces of finite area.

6 Exploration Using a Camera

This section considers an alternative strategy called .

The strategy has three characteristics: (1) It uses a camera

instead of a range sensor, (2) it moves the robot close to the

selected point only when this is dictated by the shape of

the object’s surface, and (3) it is complete for a subset of the

surfaces handled by strategy , namely those that are non-

concave and generic. When the robot’s sensor can provide

information only about the shape of the occluding contour,

allows the exploration of almost all surfaces that can be

explored with such a sensor: It is easy to see that points

in a surface concavity cannot belong to the visible rim, and

hence cannot become explored by any strategy using only

information derived from the occluding contour.

Strategy is based on the following simple observation:

Suppose the robot is positioned level with a point on a hill top;

then this point will belong to the visible rim. By moving up

or down, the robot will see just over the hill or not quite to

the top, respectively. These motions cause the visible rim to

slide over a neighborhood of that point, according to Theorem

3.1. In general, this motion corresponds to motion on the

plane defined by the selected point , the surface normal

, and the robot’s position [17]. Strategy uses this

observation to explore a neighborhood of while at the

same time guaranteeing that is large enough to ensure

completeness.

To achieve this, consider why can be arbitrarily small.

There are two possibilities:

The size of depends on the length of the visible rim

curve containing and the distance of its endpoints

from , if such endpoints exist. Depending on the

robot’s position, , these lengths can be arbitrarily small;

they can also become arbitrarily small because of a topo-

logical change in the visible rim when is infinitesimally

perturbed on .

The size of is constrained by the amount of robot

motion on .

A precise definition of generic surfaces is beyond the scope of this paper,

and the reader is referred to [19]. Intuitively, generic surfaces are surfaces

whose geometrical characteristics do not change if they are infinitesimally

perturbed. All smooth surfaces (except for a zero-measure set) are generic.

 



The main idea of strategy is to exploit the following

result, which ensures the length of the visible rim curve con-

taining never becomes arbitrarily small:

Proposition 6.1 Let be a smooth, non-concave, generic

surface. Given a sequence of points, , and a se-

quence of positions, , from which is on the visible

rim, there exists a sequence of positions, , satisfying the

following four conditions:

1. is on and is reachable from .

2. is visible from .

3. There exists an such that the length of the visible

rim curve, , containing at is larger than for

all .

4. There exists an such that for all and all infinites-

imal perturbations, , of on the plane containing

and , the distance between the endpoints of the

visible rim curve containing at is greater than .

Given a point , determines a set of positions,

, such that at least one of the resulting se-

quences satisfies Proposition 6.1 (Section 6.1).

Once is determined, ensuring that never diminishes

is fairly simple. If is the plane defined by , , and ,

it suffices for the robot to move on a circle in centered at

of radius . Because the robot can collide with the

surface, this motion also involves moving closer to along

a curve in the intersection , if such a collision occurs.

Due to lack of space a description of this strategy is omitted.

The interested reader is referred to [18] for the details.

Given that is on the visible rim from the robot’s position,

, the following neighborhood exploration strategy can

now be specified:

Strategy

Step 1: Starting from , plan a path to determine a set of

positions on , such that for

at least one , satisfies Proposition

6.1.

Step 2: For each , (a) move to , and (b)

starting from , move in the plane defined by ,

and to explore a neighborhood of .

Theorem 6.1 Strategy is complete for smooth, non-

concave, generic, and connected surfaces of finite area.

Figure 6: Top row: Views of three spheres from three positions

on . Bottom row: Top views of . Shaded

areas correspond to the intersection of with the three

spheres. Each view in the top row corresponds to the robot

position in the view of below it.

6.1 Positioning the Robot on

This section briefly describes how to generate a path, start-

ing from an initial position , that allows determination

of the set . The main idea in this process is that every

position, , can be characterized by two geometric

relationships: (1) The angle formed by segment and the

asymptotes [20] and bitangents at , and (2) the distance

between and . In the following we show how these

two relationships can be used to determine . This essen-

tially reduces the determination of to the determination of

the bitangents and asymptotes at . The following provides

an intuitive explanation for the selection process through an

example; for formal proofs and more details see [17, 18].

Suppose is on the visible rim when the robot is positioned

at . The angle between segment and the asymptotes and

bitangents affects the distance between and the endpoints

of the visible rim curve containing it. To see this, consider

the example in Figure 6. By moving the robot close to the

bitangent line through and (without changing its distance

to ), the right T-junction endpoint of the visible rim curve

containing can get arbitrarily close to . To avoid this,

must be such that the segment forms a large angle with

both bitangent lines through .

Similarly, the distance between and affects the length

of the visible rim curve containing . If the robot moves

close enough to in the example of Figure 6, the sphere

containing will not be occluded by the other two spheres.

On the other hand, moving too close to would cause the

visible rim curve containing to be arbitrarily short. This

implies that should be closer to than either or , but

The bitangents at are the lines that are tangent to at at least two

points, one of which is .

 



should not be arbitrarily close to .

A generalization of the above for the case of a general

smooth, non-concave and generic surface leads to the fol-

lowing result. We only present it here for the case where

is elliptic; a similar result holds for the case of parabolic and

hyperbolic points.

Theorem 6.2 Let be the bitangent half-lines

with origin on . Let be the points

of tangency of with for which the segments

do not intersect . Then, we can construct a set

of positions that is uniquely determined by the half-lines

, the distances , and an a priori defined constant

, and contains at least one position for which the

sequence satisfies Proposition 6.1. Furthermore, the size

of is at most .

Therefore, to construct , it suffices to determine the

bitangents at and their contacts with that are visible from

. This can be provably achieved by circumnavigating

on , until the robot’s initial position, is reached,

while maintaining the visibility of [17, 18]. During this

process, the robot moves closer to only to maintain the

visibility of , or when surface collisions prevent the robot

from maintaining a fixed distance from .

7 Discussion

The two strategies developed in the previous sections

demonstrate that a number of trade-offs are involved when

deciding on a strategy to explore an object. Information about

object geometry (e.g., whether or not concavities exist) allows

the robot to use simpler sensors and allows the robot to stay

farther away from the object being explored.

An even more general consequence that follows from our

analysis is that the robot can explore different parts of the

same object in different ways. When multiple strategies are

available, a crucial issue is how to decide which strategy to

use.

As an example, consider how strategies and can

be combined. The robot can use a camera to explore from

a distance any connected, non-concave region of a surface,

even though that surface may also contain concavities. This is

because the convergence properties of change only when

the robot attempts to explore the surface near the boundary of

such a region [17]: When the robot uses to explore the

surface near a parabolic curve bounding a surface concavity,

the set of points explored near the parabolic curve diminishes

as the parabolic curve is approached. Consequently, the robot

can keep using until the rate of points explored (e.g., the

area of newly-explored points) falls below an a priori defined

threshold. Within such a framework, the robot will have to

use only when necessary, i.e., when exploring close to

concavities. An important future direction of our research

will be to develop a better understanding of the interaction

between these and other exploration strategies.
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Abstract

An approach is presented for exploring an unknown, ar-

bitrary surface in three-dimensional (3D) space by a mobile

robot. The main contributions are (1) an analysis of the ca-

pabilities a robot must possess and the trade-offs involved in

the design of an exploration strategy, and (2) two provably-

correct exploration strategies that exploit these trade-offs and

use visual sensors (e.g., cameras and range sensors) to plan

the robot’s motion. No such analysis existed previously for

the case of a robot moving freely in 3D space. The approach

exploits the notion of the occlusion boundary, i.e., the points

separating the visible from the occluded parts of an object.

The occlusion boundary is a collection of curves that “slide”

over the surface when the robot’s position is continuously con-

trolled, inducing the visibility of surface points overwhich they

slide. The paths generated by our strategies force the occlu-

sion boundary to slide over the entire surface. The strategies

provide a basis for integrating motion planning and visual

sensing under a common computational framework.

1 Introduction

An important, unsolved problem in robotics is the devel-

opment of strategies for real-time and provably-correct ex-

ploration of unknown environments where three-dimensional

reasoning and visual sensing is necessary. Such exploration

strategies are necessary when a mobile robot must control its

position in order to reach a desired location in an unknown

three-dimensional environment, or to produce a map of it.

The main focus of this paper is the development of strategies

for solving the object exploration task: In this task the goal

of the robot is to plan a collision-free path allowing it to

sense all points on the surface of an object in the environment.

We assume that the robot is a point and that it is equipped

with a camera or a range sensor. We assume that the robot’s

environment contains objects that are finite volumes bounded

by closed and connected surfaces of arbitrary shape.

The support of the National Science Foundation under Grant Nos. IRI-

9022608 and IRI-9220782 is greatfully acknowledged.

The major contributions of this paper are (1) the devel-

opment of a framework for solving the object exploration

problem that makes explicit both the capabilities a robot must

possess in order to successfully explore an object, and the

trade-offs involved in the design of an exploration strategy,

and (2) two exploration strategies that exploit these trade-offs

and rely on visual sensors (e.g., cameras or range sensors) for

planning the motion of the robot. These strategies build on

computer vision research that has studied the appearance of

smooth and piecewise-smooth surfaces [1, 2]. Our results pro-

vide a basis for integrating motion planning and visual sensing

under a common computational framework.

Our work has been inspired by recent approaches which,

instead of assuming that complete information about the envi-

ronment is available [3], use only the sensor information that

is necessary for planning the motion of the robot [4]. These

approaches follow a purposive [5], act-while-thinking strategy

and consider robotic motion planning as a continuous process

where sensing and action are tightly coupled [6–8].

In our previous work we focused on the path planning prob-

lem, i.e., the task of reaching a location within an unknown

three-dimensional environment [7]. That work provides the

basis for the work we present here. More specifically, in [7]

we obtained three main results:

In order to solve the path planning problem a robot must,

in general, be capable of exploring the surface of an

arbitrary object. This result shows the importance of

solving the object exploration problem.

A provably-correct path planning strategy was developed

under the assumption that an object exploration strategy

is available to the robot. However, an exploration strat-

egy was not presented.

Through a theoretical analysis of the type of sensing in-

formation that is necessary and sufficient for solving the

path planning and exploration problems, we showed that

in order to solve these problems a robot must plan its

motion based on the perceived shape (i.e., appearance)

of the objects and must use sensors that provide infor-

mation for at least a one-dimensional set of object points



from every position of the robot. This result implies that

visual sensors (i.e., sensors that provide shape informa-

tion about the visible portions of object surfaces ) are

important for planning a robot’s motion.

In this paper we develop strategies that guarantee

correctness and bounded length paths for exploring ar-

bitrary geometrically-complex, three-dimensional environ-

ments. When trying to perform tasks that depend on the

appearance of an object (as is the case with three-dimensional

exploration and path planning), provable correctness is critical

(see Section 2): Object appearance can drastically change de-

pending on the position of the robot, making ad hoc strategies

unpredictable, incomplete, and even non-terminating

To our knowledge, no strategies currently exist for solving

the object exploration problem in non-polyhedral environ-

ments when the robot is able to freely move in space (i.e., has

three degrees of freedom in position). In the case of polyhe-

dra, the strategies developed (e.g., [9]) rely on the fact that

the objects consist of a finite collection of planar faces, and

produce paths whose lengths diverge in the limit. A number

of recent approaches in computer vision have been suggested

for exploring the surfaces of objects [8, 10–12], but their cor-

rectness in arbitrary environments has not been investigated.

2 Overview of our Approach

As a robot moves in its environment, the set of visible

points changes. In our approach we capture and control these

visibility transitions by analyzing the occlusion boundary of

objects. For a given robot position, this is the collection of

closed curves bounding the occluded object points (Section

3). The shape and position of these surface curves almost

always depends continuously on the robot’s position: When

the robot’s position is continuously controlled, these curves

can be thought of as sliding on the surface. Furthermore, their

topology (i.e., connectivity) can change only at a discrete set

of robot positions. If an occlusion boundary curve slides over

a previously-occluded point during the robot’s motion, that

point becomes visible. This allows us to formulate exploration

as the task of forcing the occlusion boundary to slide over the

points occluded from the robot’s initial position (Section 3).

Intuitively, the main difficulty in solving the exploration

problem is that although the robot has some control over the

motion of the occlusion boundary over the surface, this control

is not complete; the motion of the occlusion boundary also

depends on the shape of the surface itself. In addition, the

Visible portions of an object surface contain all points for which the

open line segment connecting them to the robot does not intersect any object.

In our discussion, “visual sensors” include cameras, where only information

about the projected shape of the visible surfaces is directly available, as well

as more powerful mechanisms such as range sensors, which directly provide

distances to visible surface points within a finite ball around the robot.

(a) (b) (c)

Figure 1: Forcing the occlusion boundary curve , shown as

a white circle in the first image, to slide over the dark curve

drawn on the torus.

topology of the occlusion boundary can change unexpectedly,

further complicating the exploration process.

To illustrate the difficulties involved in exploring an object,

consider the torus shown in Figure 1(a). In order to explore

the torus, the robot must force the visibility of all points along

the dark curve drawn on its surface. One way to proceed is to

move downward, forcing the smooth curve , which is part of

the occlusion boundary, to slide over the segment of the dark

curve that is initially occluded. As the robot moves down-

ward, however, shrinks to a point and disappears (Figure

1(c)), changing the topology of the occlusion boundary and

making any further downward motion of the robot ineffective.

The robot must now move differently in order to continue the

exploration process. Similar difficulties occur due to geomet-

rical changes in the occlusion boundary (i.e., even when no

topological changes of the occlusion boundary occur).

This simple example illustrates that a number of basic steps

are necessary to solve the exploration problem. It is there-

fore necessary to ask how many times such actions need to be

executed, whether the whole surface is always explored, and

whether the exploration process is guaranteed to terminate.

These issues are precisely the reasons why provably-correct

exploration strategies are necessary: Since the answers to

these questions are not evident even for geometrically-simple

surfaces such as the torus, provably-correct exploration strate-

gies are necessary if one hopes to use them for exploring real

objects.

To explore the surface of an object we present an iterative

strategy (Section 4) that repeatedly performs a sequence of

basic motions in order to incrementally “grow” the set of points

made visible on an object surface. These motions are designed

in a way that guarantees (1) they will be executed only a finite

number of times, and (2) when the process terminates the

surface will be completely explored.

Clearly, the robot’s motions at each iteration of the explo-

ration process depend on the robot’s capabilities and the sensor

 



Figure 2: Points and belong to the occlusion boundary.

Only point belongs to the visible rim.

input. These motions determine the class of objects that the

robot can provably explore. To study the trade-offs involved

in the design of an exploration strategy we consider two dif-

ferent types of basic motions. The first type uses a sensor

capable of providing the three-dimensional coordinates of all

visible points (e.g., a range sensor), and requires the robot to

move very close to an object at every iteration (Section 5).

With these capabilities we show that arbitrary objects can be

explored. The second type of basic motions uses a camera

that provides only the shape of the projection of the occlusion

boundary, and requires the robot to get close to the surface

only when the surface geometry makes this necessary (Sec-

tion 6). In this case we show that the resulting exploration

strategy can only be used to explore non-concave objects or

the non-concave regions of a general object. We then briefly

discuss the trade-offs in these two exploration strategies, and

also describe how they can be combined (Section 7).

3 Visibility and Occlusion

In order to solve the exploration problem in an unknown

environment one must understand the structure of the occlu-

sion boundary, its relation to object geometry, and the way its

structure changes when the robot moves. This section presents

the basic concepts required for this analysis.

Without loss of generality, we consider in rest of the paper

the case where the environment contains a single object whose

surface is connected, has finite area, and bounds an open

volume in . Furthermore, we limit our discussion to the

case where is smooth; for these surfaces every surface point

has a uniquely-defined outward surface normal, , and

tangent plane, , both of which depend smoothly on .

Given a robot path , a point

is occluded from position if and only if the line

segment intersects ; otherwise is visible.

The strategies we present can be extended to handle piecewise-smooth

surfaces. These surfaces are smooth except for zero- or one-dimensional sets

whose points have a finite number of normals assigned to them.

Definition 3.1 The visible rim, , is the set of points

for which the line segment is tangent to at and does

not intersect .

Definition 3.2 The occlusion boundary, , bounds the

visible and the occluded points. It is the set of points for

which the line segment contains at least one visible rim

point and does not intersect .

Clearly, the occlusion boundary is a superset of the visible rim

(Figure 2). A convenient way to visualize and study the occlu-

sion boundary and the visible rim is to look at their spherical

projections onto an image centered at the robot’s position (Fig-

ure 3). Their projections are identical; this projected contour

is known as the occluding contour [1].

In general, the occlusion boundary is collection of closed,

piecewise-smooth curves, , whose number and

shape depends on the robot’s position. The endpoints of

the smooth segments of these curves project to cusps or T-

junctions on the occluding contour (Figure 3). Given a smooth

path , for the robot, the curves move on

the surface in a way that depends smoothly on , except for a

discrete set of values for which their topology changes. These

changes occur precisely when the topology of the occluding

contour changes [13–15].

Between any two consecutive topological transitions the oc-

clusion boundary can be thought of as a collection of smooth

curves that “slide” over the surface of the object as the robot

moves, causing deformations to the occluding contour. In par-

ticular, given an instantaneous direction of motion, , we

can express the motion of the occlusion boundary using the

epipolar parameterization. The details of this parameteriza-

tion are not important here and the reader is referred to [16].

The important point is that given a smooth segment of

Figure 3: The occluding contour. Each point on the oc-

clusion boundary projects to a single point on the spherical

image. For simplicity, the image of the occlusion boundary

on a plane tangent to the spherical image is shown.

3



, this parameterization allows us to define the segment

of that corresponds to .

The motion of the occlusion boundary induced by the

robot’s motion directly affects the set of surface points be-

coming visible. When the occlusion boundary at time

slides over a surface point that was occluded from positions

, that point becomes visible. The following

theorem (see [17] for a proof) gives a qualitative characteri-

zation of these visibility transitions (Figure 4):

Theorem 3.1 Let and let be a point of tangency

of the segment with . If is a smooth occlusion

boundary segment whose points satisfy

, all points on are occluded from position .

Conversely, if , all points on are

visible from position .

Once a point becomes visible, it may be possible to recover

its three-dimensional coordinates using a visual sensor. We

consider two types of sensors:

Range sensors. With such a sensor the robot can deter-

mine the coordinates of all visible points.

Cameras. With such a sensor the robot can detect the

occluding contour. Furthermore, when the robot moves

along a path and knows its speed and acceleration, it

can determine the coordinates of all points on the visible

rim from the deformation of the occluding contour [16].

The exploration problem can now be formulated as follows:

Definition 3.3 (Range sensor-based exploration) Given a

connected surface and an initial position ,

generate a finite-length path such that the occlusion bound-

ary slides over all points on that were occluded at . In

other words, if is the set of points occluded at and

, must satisfy .

Definition 3.4 (Camera-based exploration) Given a con-

nected surface and an initial position , generate

Figure 4:

a finite-length path such that if ,

must satisfy .

To facilitate our discussion we use the following definition:

Definition 3.5 A point on is explored if and only if the

three-dimensional coordinates of were determined by the

robot from some position along its path. The boundary of the

explored points is the exploration frontier.

4 Incremental Exploration

Having provided a formulation for the exploration problem,

this section considers a strategy for exploring an object of

arbitrary shape. The idea is to control the robot’s motion so

that the set of explored points incrementally “grows” on the

surface. To achieve this objective, the robot performs the

following actions during the -th iteration: It selects a point

on the exploration frontier, moves to a position where it is

visible, and finally performs a sequence of motions forcing all

points in a neighborhood of to be explored. This process

terminates when the set of explored points is identical to the

object’s surface, i.e., when the exploration frontier degenerates

to a collection of isolated points.

To completely specify our exploration strategy we need to

answer four questions: (1) How to select point , (2) how

to find a position where is visible, (3) how to explore a

neighborhood of , and (4) how to guarantee that only a

finite number of iterations are necessary. The crucial point in

our approach is that the third and fourth questions, which lie

at the heart of the exploration problem, can be answered using

a local strategy, i.e., one that does not depend on the history

of the exploration process (the set of points explored and the

path generated in the previous iterations). We discuss each of

the four questions below.

In our approach, the point is simply chosen to be any

point on the exploration frontier. The coordinates of the points

comprising the frontier are available to the robot because the

exploration frontier bounds the set of explored points.

The answer to the second question is also simple. If the

robot’s sensor is a camera, all points on the exploration fron-

tier were points on the visible rim at some previous position

of the robot; if it is a range-sensor, all points on the explo-

ration frontier were points on the occlusion boundary at some

previous position. Hence, it suffices for the robot to retrace

its path back to a position where the selected point was

on the occlusion boundary or the visible rim. This can be

achieved if, along its path, the robot saves its current position

together with the set of points belonging to the visible rim

(or the occlusion boundary, if a range sensor is used) at that

position. This information allows the robot to (1) associate

It is, in fact, possible to show that the coordinates of only a discrete set of

occlusion boundary or visible rim points need to be stored from each position.
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with each exploration frontier point a set of previous positions

from which that point is visible, and (2) plan a collision-free

path to any such position.

Now suppose that the selected point is visible. We use a

neighborhood exploration strategy to answer the third ques-

tion. The only input to this strategy is the selected point .

The goal is to generate a path, based on information provided

by the robot’s sensor, such that an open neighborhood of

becomes explored.

In order to explore the surface in a finite amount of time,

the neighborhood must be large enough so that only a

finite number of such neighborhoods is necessary to cover the

whole surface of the object.

Definition 4.1 Given a class of surfaces , a neighborhood

exploration strategy is complete for if and only if for all

surfaces and all sequences ,

the sequence of explored neighborhoods is such that

for some finite .

Equipped with a complete exploration strategy for , the

robot uses the following strategy to explore a surface :

Surface Exploration Strategy

Step 1: If a range sensor is available, select a point on the

occlusion boundary; otherwise select on the visible

rim. (Initially the exploration frontier is identical to the

occlusion boundary.)

Step 2: Use to explore a neighborhood of . During this

step, the set of points explored on the surface is expanded.

Step 3: Select any point on the current exploration frontier.

If no such point exists, stop; the exploration process is

complete.

Step 4: If a range sensor is available, move to a previous

position, at which is on the occlusion boundary;

otherwise move to a previous position where is

on the visible rim.

Step 5: Repeat steps 2-5.

The only step left unspecified in the above strategy is Step 2.

The next two sections describe two neighborhood exploration

strategies that can be used to implement this step. These

strategies give rise to two different solutions to the exploration

problem. The first strategy, , which is the most general,

uses a range sensor. It is complete for the class of smooth and

connected surfaces of finite area (Section 5). The second one,

, uses a camera and is complete only for the subclass of

surfaces with no concavities, e.g., the torus or, more generally,

surfaces produced by appropriately deforming spheres with

handles (Section 6).

5 Exploration Using a Range Sensor

Suppose that the robot needs to explore the neighborhood

of a selected occlusion boundary point on with the help

of a range sensor. Strategy is based on the following

observation: If the robot looks at from the direction of

its surface normal and is positioned close enough to , all

points in a neighborhood of must be visible. Intuitively,

the reason for this is that the smoothness of around

severely constrains the variation of the surface normals in the

point’s neighborhood; this limits the sets of points that can be

occluded when the robot is close to along .

Using this observation, strategy prescribes exactly how

the robot should move to reach a position along , while

at the same time guaranteeing the completeness of the strat-

egy for arbitrary smooth surfaces. In particular, the strategy

specifies (1) how to reach positions along , and (2) how

far away from the robot should go.

Reaching a position close to along is trivial. Since

is visible from the robot’s initial position, the robot moves

along a straight line towards , determines the surface normal

at when is reached, and then moves along that normal.

The following lemma shows that after is reached, the

robot can guarantee that a neighborhood of is explored

by performing an arbitrarily small position adjustment along

. See [18] for the proof.

Lemma 5.1 Let be the set of visible points when the

robot is at distance from along . Then, there is an

such that contains a neighborhood of for all

.

Unfortunately, an arbitrarily small motion away from can

leave arbitrarily small. The robot must therefore move

sufficiently far from so that contains a neighborhood

of that is large enough to guarantee completeness. In [18]

we show that the robot can guarantee completeness by simply

moving away from along until either a collision

with the surface does not allow further motion, or an a priori

defined distance is reached. Furthermore, the selection

of does not affect the completeness of the strategy. This

result follows from the smoothness of , which ensures that

if the robot moves away from along , the distance

traveled before a surface collision occurs cannot be arbitrarily

small.

The above strategy can be improved by adding an additional

stopping condition that reduces the amount of robot motion

away from . This condition uses Theorem 3.1 and requires

the robot to monitor the occlusion boundary while moving

away from . In particular, during the robot’s motion away

from its instantaneous velocity, , is along . The

occlusion boundary curves at any time during this motion can

be partitioned into open segments falling into two categories,
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Figure 5: Executing strategy . (a) Views of an environment

with two spheres, as the robot moves away from point on

the sphere shown in the first image, along . The solid

curves correspond to occlusion boundary points in and

the dashed curves to points in . Condition (c) in Step 3

forces the robot to stop at time . (b) Top view of a horizontal

plane containing and .

and , whose points satisfy and

, respectively. If are the distances of and

from , respectively, the robot can stop moving when

(Figure 5).

Intuitively, this constraint allows the robot to move away

from as long as the set of visible points near strictly

expands. To see this, note that according to Theorem 3.1, the

segments in slide over previously-occluded points on ,

expanding the set of points that are visible in ’s neighbor-

hood, while the segments in cause a contraction of this

set. The distance determines the size of

the visible neighborhood of , and increases monotonically

as long as .

Given that is on the occlusion boundary from the robot’s

position, , the following neighborhood exploration strat-

egy can now be specified:

Strategy

Step 1: Starting from , move on a straight line to .

Step 2: Determine the surface normal at , .

Step 3: Move in direction , until one of the following

conditions is satisfied:

a. The surface obstructs the robot’s motion.

b. An a priori defined distance from is reached.

c. , where are the distances of and

to , respectively.

The following theorem establishes the correctness of the

strategy. The interested reader is referred to [18] for the proof.

It is based on the fact that the surface is smooth and does not

have infinite curvature at .

Theorem 5.1 Strategy is complete for smooth and con-

nected surfaces of finite area.

6 Exploration Using a Camera

This section considers an alternative strategy called .

The strategy has three characteristics: (1) It uses a camera

instead of a range sensor, (2) it moves the robot close to the

selected point only when this is dictated by the shape of

the object’s surface, and (3) it is complete for a subset of the

surfaces handled by strategy , namely those that are non-

concave and generic. When the robot’s sensor can provide

information only about the shape of the occluding contour,

allows the exploration of almost all surfaces that can be

explored with such a sensor: It is easy to see that points

in a surface concavity cannot belong to the visible rim, and

hence cannot become explored by any strategy using only

information derived from the occluding contour.

Strategy is based on the following simple observation:

Suppose the robot is positioned level with a point on a hill top;

then this point will belong to the visible rim. By moving up

or down, the robot will see just over the hill or not quite to

the top, respectively. These motions cause the visible rim to

slide over a neighborhood of that point, according to Theorem

3.1. In general, this motion corresponds to motion on the

plane defined by the selected point , the surface normal

, and the robot’s position [17]. Strategy uses this

observation to explore a neighborhood of while at the

same time guaranteeing that is large enough to ensure

completeness.

To achieve this, consider why can be arbitrarily small.

There are two possibilities:

The size of depends on the length of the visible rim

curve containing and the distance of its endpoints

from , if such endpoints exist. Depending on the

robot’s position, , these lengths can be arbitrarily small;

they can also become arbitrarily small because of a topo-

logical change in the visible rim when is infinitesimally

perturbed on .

The size of is constrained by the amount of robot

motion on .

A precise definition of generic surfaces is beyond the scope of this paper,

and the reader is referred to [19]. Intuitively, generic surfaces are surfaces

whose geometrical characteristics do not change if they are infinitesimally

perturbed. All smooth surfaces (except for a zero-measure set) are generic.
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The main idea of strategy is to exploit the following

result, which ensures the length of the visible rim curve con-

taining never becomes arbitrarily small:

Proposition 6.1 Let be a smooth, non-concave, generic

surface. Given a sequence of points, , and a se-

quence of positions, , from which is on the visible

rim, there exists a sequence of positions, , satisfying the

following four conditions:

1. is on and is reachable from .

2. is visible from .

3. There exists an such that the length of the visible

rim curve, , containing at is larger than for

all .

4. There exists an such that for all and all infinites-

imal perturbations, , of on the plane containing

and , the distance between the endpoints of the

visible rim curve containing at is greater than .

Given a point , determines a set of positions,

, such that at least one of the resulting se-

quences satisfies Proposition 6.1 (Section 6.1).

Once is determined, ensuring that never diminishes

is fairly simple. If is the plane defined by , , and ,

it suffices for the robot to move on a circle in centered at

of radius . Because the robot can collide with the

surface, this motion also involves moving closer to along

a curve in the intersection , if such a collision occurs.

Due to lack of space a description of this strategy is omitted.

The interested reader is referred to [18] for the details.

Given that is on the visible rim from the robot’s position,

, the following neighborhood exploration strategy can

now be specified:

Strategy

Step 1: Starting from , plan a path to determine a set of

positions on , such that for

at least one , satisfies Proposition

6.1.

Step 2: For each , (a) move to , and (b)

starting from , move in the plane defined by ,

and to explore a neighborhood of .

Theorem 6.1 Strategy is complete for smooth, non-

concave, generic, and connected surfaces of finite area.

Figure 6: Top row: Views of three spheres from three positions

on . Bottom row: Top views of . Shaded

areas correspond to the intersection of with the three

spheres. Each view in the top row corresponds to the robot

position in the view of below it.

6.1 Positioning the Robot on

This section briefly describes how to generate a path, start-

ing from an initial position , that allows determination

of the set . The main idea in this process is that every

position, , can be characterized by two geometric

relationships: (1) The angle formed by segment and the

asymptotes [20] and bitangents at , and (2) the distance

between and . In the following we show how these

two relationships can be used to determine . This essen-

tially reduces the determination of to the determination of

the bitangents and asymptotes at . The following provides

an intuitive explanation for the selection process through an

example; for formal proofs and more details see [17, 18].

Suppose is on the visible rim when the robot is positioned

at . The angle between segment and the asymptotes and

bitangents affects the distance between and the endpoints

of the visible rim curve containing it. To see this, consider

the example in Figure 6. By moving the robot close to the

bitangent line through and (without changing its distance

to ), the right T-junction endpoint of the visible rim curve

containing can get arbitrarily close to . To avoid this,

must be such that the segment forms a large angle with

both bitangent lines through .

Similarly, the distance between and affects the length

of the visible rim curve containing . If the robot moves

close enough to in the example of Figure 6, the sphere

containing will not be occluded by the other two spheres.

On the other hand, moving too close to would cause the

visible rim curve containing to be arbitrarily short. This

implies that should be closer to than either or , but

The bitangents at are the lines that are tangent to at at least two

points, one of which is .

7



should not be arbitrarily close to .

A generalization of the above for the case of a general

smooth, non-concave and generic surface leads to the fol-

lowing result. We only present it here for the case where

is elliptic; a similar result holds for the case of parabolic and

hyperbolic points.

Theorem 6.2 Let be the bitangent half-lines

with origin on . Let be the points

of tangency of with for which the segments

do not intersect . Then, we can construct a set

of positions that is uniquely determined by the half-lines

, the distances , and an a priori defined constant

, and contains at least one position for which the

sequence satisfies Proposition 6.1. Furthermore, the size

of is at most .

Therefore, to construct , it suffices to determine the

bitangents at and their contacts with that are visible from

. This can be provably achieved by circumnavigating

on , until the robot’s initial position, is reached,

while maintaining the visibility of [17, 18]. During this

process, the robot moves closer to only to maintain the

visibility of , or when surface collisions prevent the robot

from maintaining a fixed distance from .

7 Discussion

The two strategies developed in the previous sections

demonstrate that a number of trade-offs are involved when

deciding on a strategy to explore an object. Information about

object geometry (e.g., whether or not concavities exist) allows

the robot to use simpler sensors and allows the robot to stay

farther away from the object being explored.

An even more general consequence that follows from our

analysis is that the robot can explore different parts of the

same object in different ways. When multiple strategies are

available, a crucial issue is how to decide which strategy to

use.

As an example, consider how strategies and can

be combined. The robot can use a camera to explore from

a distance any connected, non-concave region of a surface,

even though that surface may also contain concavities. This is

because the convergence properties of change only when

the robot attempts to explore the surface near the boundary of

such a region [17]: When the robot uses to explore the

surface near a parabolic curve bounding a surface concavity,

the set of points explored near the parabolic curve diminishes

as the parabolic curve is approached. Consequently, the robot

can keep using until the rate of points explored (e.g., the

area of newly-explored points) falls below an a priori defined

threshold. Within such a framework, the robot will have to

use only when necessary, i.e., when exploring close to

concavities. An important future direction of our research

will be to develop a better understanding of the interaction

between these and other exploration strategies.
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